
PsychologicalReview
1999,Vol. 106,No. 3, 491-528

Phonology, ReadingAcquisition,andDyslexia:
Insightsfrom ConnectionistModels

MichaelW. Harm
Mark S.Seidenberg

Universityof SouthernCalifornia

The developmentof readingskill and basesof developmentaldyslexia were explored using con-
nectionistmodels.Four issueswereexamined:the acquisitionof phonologicalknowledgeprior to
reading,how thisknowledgefacilitateslearningto read,phonologicalandnonphonologicalbasesof
dyslexia, andeffectsof literacy on phonologicalrepresentation.Comparedwith simplefeedforward
networks, representingphonologicalknowledgein an attractornetwork yieldedimproved learning
andgeneralization.Phonologicalandsurfaceforms of developmentaldyslexia, which areusually
attributedto impairmentsin distinct lexical andnonlexical processing“routes,” werederived from
differenttypesof damageto thenetwork. Theresultsprovide a computationallyexplicit accountof
many aspectsof readingacquisitionusingconnectionistprinciples.

Phonologicalinformationplaysa centralrole in learn-
ing to read and in skilled reading. Several converging
sourcesof evidenceindicatethat learningto relatethespo-
kenandwrittenformsof languageis acritical stepin learn-
ing to read (seeAdams,1990, for an extensive review).
Children’s knowledgeof thephonologicalstructureof lan-
guageis a goodpredictorof early readingability (Bradley
& Bryant, 1983; Tunmer& Nesdale,1985; Mann, 1984;
Olson,Wise,Conners,Rack,& Fulker, 1989;Shankweiler
& Liberman,1989)andimpairmentsin the representation
or processingof phonologicalinformation are implicated
in at least some forms of developmentaldyslexia (Ma-
nis, Seidenberg, Doi, McBride-Chang,& Peterson,1996;
Stanovich, Siegel, & Gottardo,1997). Use of phonolog-
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ical informationis not limited to beginningreaders;skilled
readersalso rely on this information in identifying words
(VanOrden,Pennington,& Stone,1990;Lukatela& Tur-
vey, 1994; Seidenberg, 1985; Jared& Seidenberg, 1991;
Perfetti& Bell, 1991;Perfetti,Bell, & Delaney, 1988)and
integratingwordswith sentencecontexts (Pollatsek,Lesch,
Morris, & Rayner, 1992). Phonologyplaysan important
role in working memory(?) andmaybeparticularlyrele-
vantto retaininginformationabouttheliteral formsof sen-
tenceswhile ambiguitiesareresolved. A principalgoal in
developingmodelsof word recognitionis to explain how
phonologicalinformationis representedin lexical memory
andusedin readingandhow anomaliesrelatedto therepre-
sentationor useof phonologygive rise to specificpatterns
of readingimpairment.

Thepresentresearchinvestigatedtherole of phonolog-
ical information in early readingand dyslexia. Our fo-
cuswason usingthe theoreticalframework developedby
Seidenberg and McClelland (1989, hereafterSM89) and
Plaut,McClelland,Seidenberg, andPatterson(1996,here-
afterPMSP)to understandnormalandimpairedreadingac-
quisition. The initial applicationsof this framework were
to phenomenarelatedto skilled reading(SM89). We then
showedhow it couldaccountfor formsof dyslexiaobserved
in adultsfollowing brain injury (Plautet al., 1996). The
presentpaperrepresentsa furtherextensionof this frame-
work to encompassdevelopmentalforms of dyslexia. We
presentnew simulationsaddressingnormalanddisordered
developmentalphenomena.Our researchfocuseson four
issues:

1. Phonologicalrepresentation.In orderto addressde-
velopmentalissuesweneededtodeviseanapproachto pho-
nologicalrepresentationthat wasanadvanceover the rep-
resentationalschemesusedin previousmodelsof reading.
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Whereas
�

previouscomputationalmodelslargelyfocusedon
adultperformance,thecurrentwork focusesonhow phono-
logical representationsdevelop,andhow propertiesof pho-
nological representationaffect learningto read. This em-
phasisrequireddevelopinga moresophisticatedmethodof
representingphonologicalinformationthanearliermodels
haddemandedgiventhekindsof questionsthey addressed.
Thesimulationsdescribedbelow exploretheuseof a pho-
nologicalrepresentationanalogousto theattractornetworks
that have beenusedin modelsof semanticrepresentation
(e.g. Plaut& Shallice,1993).Althoughnot a fully general
accountof phonologicalstructure,thisrepresentationincor-
poratessomeimportantrepresentationalprinciplesandit al-
lowed us to addressdevelopmentalissuesin considerable
detail. It alsoprovidesthe beginningsof a computational
accountof a variety of phonologicalphenomenasuchas
categoricalperceptionof phonemes,althoughthis is not the
primaryfocusof theresearch.

2. Role of prior phonologicalknowledgein learning
to read.Childrenbring to thereadingacquisitiontaskcon-
siderableknowledgeof phonologicalstructurederivedfrom
experiencewith spokenlanguage.This is an importantas-
pectof thechild’sexperiencethatpreviousmodelshave ig-
nored.For example,thearchitectureof theSeidenberg and
McClellandmodelincludedasetof phonologicalunitsthat
would allow the network to representthe pronunciations
of words,but this representationdid not itself encodevery
muchinformationaboutthestructureof Englishphonology.
Similarly, the Coltheart,Curtis,Atkins, andHaller (1993)
model is endowedwith a way of deriving rulesgoverning
thecorrespondencesbetweengraphemesandphonemesbut
thisprocessis notconstrainedby factsaboutthephonolog-
ical structureof the language;hencethe modelcan learn
rulesfor phonologicalsystemsthat could not occurin hu-
manlanguages.Both modelswerein effect learningabout
phonologicalstructureat thesametimethey learnedto map
betweenorthographyandphonology. Thechild, in contrast,
alreadyknowsagreatdealaboutphonologyandmainlyhas
to learnhow orthographicrepresentationsmaponto it. In
thesimulationspresentedbelow, we addressedhow theex-
istenceof prior knowledgeof phonologicalstructure–and
differencesin thequalityof thisknowledge–affectedlearn-
ing to read.

3. Basesof developmentaldyslexia. The third issue
we addressconcernsthe basesof developmentaldyslexia.
The goal is to be able to explain impairmentsin learning
to readin termsof anomaliesin thenormalsystem.There
is now goodevidencethat developmentaldyslexia occurs
in at leasttwo forms (Manis et al., 1996;Castles& Colt-
heart,1993; Murphy & Pollatsek,1994; Stanovich et al.,
1997).Theseformsareanalogousto thesurfaceandphono-
logical subtypesof acquireddyslexia (Patterson,Marshall,
& Coltheart,1985;Beauvois& Derouesné,1979).Thesig-
naturedeficit of thesurfacesubtypeis impairedreadingof
wordswith atypicalspelling-soundcorrespondences(“ex-

ceptions”suchas PINT and HAVE), whereasthe signature
deficit of thephonologicalsubtypeis impairedgeneraliza-
tion (i.e., pronunciationof nonwords such as MAVE and
GLORP). Thereis considerablecontroversyaboutthebases
of thesedeficits, however. The standardinterpretationis
that thesepatternsreflectimpairmentsto separateprocess-
ing routines(the“routes”in thedual-routemodel,asin Cas-
tles & Coltheart,1993). The “nonlexical” pronunciation
mechanismusesrulesto translatefrom spellingto sound.
The“lexical” mechanisminvolvesaccessingaword’sentry
in an orthographiclexicon andusingthat to accessits en-
try in a phonologicallexicon. Thedual-routetheoryholds
thatexceptionwordscanonly bereadby thelexical route,
whereasnonwordscanonly be readby the rules. The two
subtypesof developmentaldyslexia (andtheiranaloguesin
acquireddyslexia) areseenasderiving from selectivedam-
ageto oneor the otherpronunciationmechanism:surface
dyslexia involvesan impairmentto the lexical route, and
phonologicaldyslexia thenonlexical route.

Ourapproachis different.Wedonotmodelwordrecog-
nition andpronunciationin termsof differenttypesof pro-
cessingmechanismsthatapplyto differenttypesof stimuli.
Rather, ourtheoryis statedin termsof computationsinvolv-
ing differenttypesof information(orthography, phonology,
semantics).In this approach,all typesof wordsandnon-
wordsareprocessedin the sameway: the presentationof
an orthographicpatternasinput initiatesthe spreadof ac-
tivationvia weightedconnectionsthroughoutthenetwork.
Below we show that, ratherthanderiving from damageto
differenttypesof namingmechanisms,thetwo subtypesof
developmentaldyslexia canbeexplainedin termsof differ-
ent typesof damage to the lexical network. This account
alsoexplainsadditionalfactsaboutthesepatternsof devel-
opmentaldyslexia, includingthepredominanceof “mixed”
casesin which bothexceptionwordsandnonwordsareaf-
fected.Thesesimulationsshow how specificpatternsof im-
pairedreadingcanarisefrom specifictypesof phonological
andnon-phonologicalanomalies.

4. Effectsof literacy onphonologicalrepresentation.In
thefinal simulationswe addresshow the representationof
phonologicalinformationmayitself beaffectedby learning
to read.Severalstudieshave providedevidencethatrepre-
sentationsof phonologyarealteredby knowledgeof alpha-
betic orthographies(e.g. Morais,Cary, Alegria, & Bertel-
son,1979; Read,Yun-Fei,Hong-Yin, & Bao-Qing,1987;
Morais,Bertelson,Cary, & Alegria, 1986). Thesurprising
implicationof thiswork is thatliterateandilliterateindivid-
ualshave somewhat differentrepresentationsof the struc-
tureof spokenlanguage.Themodelsthatwe employedin
oursimulationsallowedustoexaminethisissuebecausethe
weightsonconnectionsencodingphonologicalinformation
werethemselvesallowedto changein thecourseof learning
to read.Theeffectsof literacy on phonologicalrepresenta-
tion could thenbe assessedby comparingthe representa-
tionsbeforeandaftertrainingon thereadingtask.
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1. AcquiringPhonologicalKnowledge

Our first goalwasto try to approximatethechild’s ac-
quisition of phonologicalknowledgeprior to learning to
read. We constructeda modelthat, like thechild, wasex-
posedto phonologicalword formsandlearnedto represent
themin memory. Themannerin which thenetwork repre-
sentedthis informationallowedit to extractgeneralizations
aboutthephonologicalstructureof English;in particular, it
learnedaboutthestructureof phonemicsegments(i.e., that
they consistof clustersof phoneticfeatures)andaboutcon-
straintson thesequencesof phonemes(i.e., phonotactics).
We presenttestsof themodelthatassessedwhatit haden-
codedaboutphonologicalstructure.Thisphonologicalrep-
resentationwastaken to approximatea beginningreader’s
knowledgeof phonologyandwasusedin subsequentmod-
elsthatlearnedto mapfrom orthographyto phonology.

Cleanup Units

Phonological Output Units

Figure1. Architectureof thephonologicalattractornetwork.

Phonological Representation

The phonologicalrepresentationschemethat we em-
ployedhastwo principaldesignfeatures.First, it employsa
distributedrepresentationof phonemesin which unitscor-
respondto phoneticfeatures. Second,this representation
formedpartof thelargernetwork illustratedin Figure1, in
which all of the phoneticfeatureunits wereconnectedto
eachotherandto a setof phonologicalcleanupunits,anal-
ogousto the semanticcleanupunits employed by Hinton
andShallice(1991)andPlautandShallice(1993).Therep-
resentationis slot-basedin the sensethat the input vector
correspondsto a sequenceof phonemes,and so it inher-
its someof theknown limitationsof slot-basedapproaches
(Plautet al., 1996). For example,the / � / phonemein the
initial consonantslot is representedseparatelyfrom the/ � /
in the final consonantslot, and thereforewhat is learned
aboutthe phonemein onepositiondoesnot automatically
carryover to thesamephonemein anotherposition. Plaut
et al. (1996)termedthis thedispersionproblem. It makes
thetaskof learningphonologicalrepresentationsmorecom-
plicated,insofar asthemodelhasto learnto representsev-
eral / � /’s ratherthanjust one.However, this representation
hasother propertiesthat are more importantfor our pur-
poses.First, the interconnectionsbetweeninput units and
thecleanupapparatusallow the network to encodedepen-
denciesacrossslots. Theslot problemis moreseriousin a

simplefeedforwardnetwork in whichthesekindsof depen-
denciescannotberepresentedatall. Second,this represen-
tationallowsthemodelto capturethefactthatphonemesin
differentpositionssometimesdiffer phonetically. The fact
thatword initial voicelessplosives(e.g.,/ � /,/� /) in English
are generallyaspiratedprovides a well-known example.1

Finally, phonologicalcodeswere centeredon the vowel.
Vowels arethe primarysourceof variability in phonology
and in orthographic-phonological correspondences;thus,
centeringon the vowel minimizedthe dispersionproblem
for thoseaspectsof therepresentationfor which it is most
salient. In summary, the presentrepresentationusespho-
neticfeaturesin slotscorrespondingto phonemes,but min-
imizedthedispersionproblemby incorporatingdirectcon-
nectionsbetweeninput units, a set of cleanupunits, and
vowel-centering. Phonemesare representedby phonetic
featuresbut in contrastto standarddistinctive featurema-
trices(suchasChomsky & Halle, 1968),the network can
encodedependenciesacrossfeaturesandsegments.

Phonemeswererepresentedusinga vectorof 11 real-
valuedunits,eachof whichcorrespondedto aphoneticfea-
ture. The set of featuresand representationsfor individ-
ualphonemesweredrawn from recenttheorizingin phonet-
ics andphonology(Gorecka,1992;Steriade,1993). Units
could expressvaluesrangingbetween-1 to 1. Somefea-
tures,suchaslabial andpharyngealwerebinary, takingon
valuesof -1 and1. Others,suchasvoicewereternary, al-
lowing valuesof -1, 0 and1. Thesonorant featuretookval-
uesalonga continuousgradient,representingan encoding
of thesonorityhierarchy. A monosyllablewasrepresented
as6 of thesephonemeslots,in CCVVCC formation. The
monosyllablewas vowel centered,with diphthongsoccu-
pying the middle two vowel slots. The secondof the two
vowel slotswascodedasan emptyphoneme(all features
having a value of -1) if the vowel was not a diphthong.
For example,thephonologicalform of theword BAT would
be / ��� � / while the form of the word BLADE would be
/ ���	��
� /. Tables1 and2 summarizethephonemesandfea-
turesused. The total representationfor the phonological
form of a monosyllablewas 66 units, with 6 slots of 11
unitsdefininga phoneme.Silentphonemeswerecodedby
settingall featuresto -1.

We found 95 uninflectedmonosyllabicEnglishwords
that could not be representedin this template,specifically
thoserequiring3 consonantphonemesbeforeor after the
vowel (e.g.STREET, WHILST). Thesewordswereexcluded
for purelypragmaticreasons.Theadditionof leadingand
trailing consonantslotswould raisethe numberof phono-
logicalunitsfrom 66 to 88. Thiswould increasethesizeof
thephonologicalcomponentfrom 6,996weightsto 11,264
weights,andsignificantly increasenetwork training time.
Given the largenumberof simulationsdescribedbelow, it

1Suchallophonicvariationwasnotutilizedin thecurrentstudy,
but is somethingto beinvestigatedin futureresearch.
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Table1
Phonological FeatureRepresentation:Consonants
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/ � / -1 1 -1 -1 1 1 0 -1 1 0 0 pat
/ � / -1 1 0 -1 1 1 0 -1 1 0 0 bat
/ � / -1 1 -1 -1 1 -1 1 -1 -1 1 0 top
/ � / -1 1 0 -1 1 -1 1 -1 -1 1 0 dog
/ � / -1 1 -1 -1 1 -1 -1 -1 -1 -1 0 kite
/ � / -1 1 0 -1 1 -1 -1 -1 -1 -1 0 give
/ � / -0.5 1 -1 -1 0 -1 1 -1 1 0 0 fit
/ � / -0.5 1 0 -1 0 -1 1 -1 1 0 0 vine
/ � / -0.5 1 -1 -1 0 -1 1 -1 -1 0 0 with
/ � / -0.5 1 0 -1 0 -1 1 -1 -1 0 0 the
/ � / -0.5 1 -1 -1 0 -1 1 -1 -1 1 0 sit
/ � / -0.5 1 0 -1 0 -1 1 -1 -1 1 0 jazz
/ � / -0.5 1 0 -1 0 -1 -1 1 -1 -1 -1 hat
/� / -0.5 1 -1 -1 0 -1 0 -1 -1 0 0 shot
/ � / -0.5 1 0 -1 0 -1 0 -1 -1 0 0 beige
/ � / -0.8 1 -1 -1 1 -1 0 -1 -1 0 0 catch
/ � / -0.8 1 0 -1 1 -1 0 -1 -1 0 0 gin
/ � / 0 0 1 1 1 1 0 -1 1 0 0 mop
/  / 0 0 1 1 1 -1 1 -1 -1 1 0 not
/ ! / 0 0 1 1 1 -1 -1 -1 -1 -1 0 sing
/ " / 0.5 0 1 0 -1 -1 -1 1 1 -1 -1 rat
/ # / 0.5 0 1 0 -1 -1 1 -1 -1 1 0 loop
/ $ / 0.8 0 1 0 0 1 -1 -1 1 -1 0 win
/% / 0.8 0 1 0 0 -1 0 -1 -1 0 1 yes

wasfelt thatthecostin trainingtimedid not justify themi-
norbenefitthatrepresentingtheadditional95wordswould
yield. Below we describea simulationusinga muchlarger
corpusof wordswhichshows thataddingthesewordsdoes
notcreateany otherproblemsfor ourapproach.

Thephonologicalattractornetwork wascreatedby con-
nectingall featureunitsto eachotherandto asetof cleanup
units (in effect a setof hiddenunitsmediatingthecompu-
tationfrom thephonemerepresentationto itself). Including
theseconnectionsallows the behavior of units to change
over time; thephonologicalcomponentbecomesa dynam-
ical systemwhosestatecan changeitself. When trained
appropriately, suchsystemscandevelopattractorstates,or
basinsofattraction(Hinton& Shallice,1991;Plaut& Shal-
lice, 1993). Suchbasinscanbe thoughtof asa surfacein
state-space,suchthat statesneara fixed attractorwill be
drawn into thatattractorstate.Ideally, theentire66 dimen-
sional state-spacewould be characterizedby a landscape
of overlappingattractorbasins,suchthatany of theinfinite
numberof statesthenetwork canfind itself in will resolve
to a phonemicallyandphonotactiallylegal endstateover
time.

The direct connectionsbetweenphonologicalunits al-
lowed the encodingof somesimple types of dependen-
ciesbetweenphoneticfeatures.For example,a givenpho-

nemecannotbebothconsonantalandsonorant(seeTables1
and2); if consonantalis positive,sonorantmustbenegative,
andvice versa.This constraintcanbeencodedby a nega-
tive weightfrom theconsonantalfeaturewithin a phoneme
to thesonorantfeature,forcing themto haveoppositesigns
if they arebothnonzero.However, Englishphonologyalso
exhibits morecomplex dependenciesthatcannotbe repre-
sentedby simpledirectconnections.For example,consider
therelationshipsbetweenthedegreefeatureonthefirst two
phonemesof asyllable.As summarizedin Table3, thereis
a constraintagainstbothdegreefeaturesbeingsetto 1, al-
thoughthey canbothbe-1, or they canhaveoppositesigns.
This contingency cannotbeencodedby directconnections
betweenthe two unitsandis thekind of phenomenonthat
motivatestheuseof networkswith a layerof so-calledhid-
denunits (Rumelhart,Hinton, & Williams, 1986). When
hiddenunits are utilized in an auto-attractor, meaninga
setof units thatmaptheir activationfrom themselvesonto
themselvesovertime,they arecalledcleanupunits, because
they assistthe units in “cleaningup” the outputactivation
values(Plaut& Shallice,1993), that is, coercingthe pat-
ternsinto a legalconfiguration.

In the phonologicalattractornetwork depictedin Fig-
ure1, eachunit’sdynamicscanbedescribedasanonlinear
squashedsumof its input. The hyperbolictangentactiva-
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Table2
Phonological FeatureRepresentation:Vowels
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/ & / 1 -1 1 0 0 -1 0 -1 -1 0 1 heed
/ ' / 1 -1 1 0 0 -1 0 -1 -1 0 -1 hid
/ ( / 1 -1 1 0 -1 -1 0 -1 -1 -1 1 paid
/ ) / 1 -1 1 0 -1 -1 0 -1 -1 -1 -1 head
/ * / 1 -1 1 0 -1 -1 0 1 -1 -1 1 hat
/ + / 1 -1 1 0 -1 -1 -1 1 -1 -1 -1 hot
/ , / 1 -1 1 0 -1 -1 -1 -1 1 -1 -1 paw
/ - / 1 -1 1 0 -1 -1 -1 -1 1 -1 1 toad
/ . / 1 -1 1 0 0 -1 -1 -1 1 0 -1 took
/ / / 1 -1 1 0 0 -1 -1 -1 1 0 1 boot
/ 0 / 1 -1 1 0 -1 -1 -1 -1 -1 -1 -1 hut

Table3
Distributions of DegreeFeatures in ConsonantSlotsPre-
cedingtheVowel

DegreeC1 DegreeC2 Example Legal
-1 -1 _RAT Yes
-1 1 _PAT Yes
1 -1 BRAT Yes
1 1 BPAT No

tion function(hereafter‘tanh’) waschosen,ratherthanthe
more traditional logistic function, becauseit hasa num-
ber of propertiesthat make it attractive for this applica-
tion. The hyperbolictangent(seeFigure2) hasthe famil-
iar s-shape,but its input/outputcurve passesthroughthe
point (0,0). The more traditional logistic activation func-
tion passesthrough(0,0.5),meaninganinput of 0 to a unit
resultsin an outputof 0.5. With the tanhfunction, in the
absenceof any input the units producea zero output,al-
lowing for ambient,inactivestates.Further, thetanhactiva-
tion functionpreservesthesignof theinput: negativeinput
meanstheoutputwill benegative,andpositiveinputmeans
the output will be positive. This makes it easierto read
weightsascorrelationsbetweenunits. Eachphonological
unit hasanauto-connection:aweightsetto 0.75andfrozen
to thatvalue.Theactivationof thephonologicalunits(pos-
itive or negative) tendsto dropoff towardszeroover time,
in theabsenceof any externaldriving input.

TrainingCorpus

A set of 3,123monosyllabicwords was chosenfrom
varioussources,including lists usedin previous research
andanonlinedictionary. Propernounsandmorphological
variationson words(suchasplurals,pasttense,etc.) were
excludedin order to keepthe size of the training corpus

-6 -4 -2 2 4 6
X

-1

-0.5

0.5

1

Y

Figure 2. Activationcurve for hyperbolictangentfunctionused
in simulations:y 1 tanhx

2 .

manageable.As with the complex onsetwordsdescribed
previously, thedecisionto excludetheinflectedwordswas
purelyapragmaticonerelatedto computingtime. Onp. 14
we describetheresultsof anadditionalsimulationdemon-
strating that the model can be trained on almost 8,000
monosyllabicwordswithout creatingany additionalprob-
lems.

Eachword wasassigneda frequency derived from its
frequency of presentationin theWall StreetJournalCorpus
(Marcus,Santorini,& Marcinkiewicz, 1993). This corpus
is muchlargerthanthemorecommonlyusedBrown corpus
and provides more robust frequency estimates.This fre-
quency wastransformedinto a probability of presentation
by a logarithmictransformation(seePlautet al., 1996,for
a discussionof log frequency compression):

pi 2 log 343 fi 5 1006�7 16
logm5 100

(1)

Here fi is the frequency of word i, m is the frequency of
the mostfrequentword in the corpus(THE, frequency 2.7
million occurrences).Wordswith a probability pi lessthan
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0.058 wereset to 0.05. Log frequency was usedto facili-
tate training; a much larger amountof training would be
neededto give a reasonablecoverageof all words. For
example,in the Wall StreetJournalcorpus,the word THE

occursapproximately50 thousandtimes more often than
theword ISLE, and16 thousandtimesmoreoftenthanthe
word CZAR. Using probabilitiesof presentationthat area
linear function of word frequency would be computation-
ally intractablewith online learning. The total sumof the
WSJfrequenciesof thewordsusedin thetrainingcorpusis
approximately21 million. If we wish anitem with a count
of 1, suchas FILCH, to be 90% likely to appearat least
once,we would needto sampleapproximately50 million
words. Using log compressedprobabilities,thenumberof
necessarysamplesdropsto about22 thousand.

TrainingMethod

Wethentrainedthisnetwork on thephonologicalcodes
for the wordsin the corpus. The goal of training wasfor
thenetwork to developarepresentationof thephonological
structureof Englishmonosyllables.In reality, childrende-
velopsuchrepresentationsin thecourseof learningto com-
prehendandproducespoken language,taskswe werenot
preparedto simulate. We thereforeuseda simplified pro-
cedurein which themodelmerelyhadto learnto represent
andretainphonologicalcodesover time. On eachtrial, the
phonologicalrepresentationof theword wasclampedonto
thephonologicalunits.Theseunitsweregivenahardwired
tendency to decaytheir activation valuesover time. The
network’s task was to retain the input patterndespitethe
tendency for unit activationsto decay. This taskpressures
the network to form dynamicalattractorsthat embodythe
statisticalregularitiesin thetrainingset.Weightadjustment
was performedon the differencebetweennetwork output
andthephonologicalform of thetargetword.

Initially, all weightsin the phonologicalattractornet-
work wereassignedsmallrandomvaluesbetween-0.1and
0.1. The exceptionsto this werethe 66 connectionsfrom
eachof the phonologicalunits to themselves,which were
frozenat 0.75. Units thereforehada tendency to retaina
fractionof theirpreviousactivationlevel, andto experience
agradualratherthanimmediatedeclinein theiroutputlevel.
Figure3 showstheoutputof unitsovertimewith initial val-
uesof 1, 0.6, 9 0 : 6 and 9 1, assumingno otherinput to the
units.Theunits’ activationeventuallydropsoff to zero.

The network was trained using the backpropagation
throughtime trainingalgorithm(Williams & Peng,1990).
Theoutputof eachunit at a giventime is a functionof the
sumof its aggregateactivation,accordingto the following
formulas.

ot
i 2 f 3 xt

i 6 (2)

xt
i 2 ∑

j ; U
wi < j ot = 1

j (3)

Time

U
ni

t O
ut

pu
t

0 1 2 3
-1.0

-0.6

-0.2

0.2

0.6

1.0

Figure3. Dynamicsof aunit with auto-decay. Positiveandneg-
ativevaluesdecayto zeroover time.

Hereot
i denotestheoutputof unit i at time t, xt

i refersto the
input to thatunit at time t, f is theactivation(“squashing”)
functionwhich mapsthe input of a unit to its output,U is
the setof all units, andwi < j denotesthe weight from unit
j to i. Eachunit, then,takesthe weightedsum(weighted
by w) of theoutputsof otherunitson theprevioustimetick
t 9 1,andthisbecomestheinputx to thatunit for tick t. The
outputof thatunit, o is theresultof applyingtheactivation
function f to theinputvaluex.

In training,anerrormeasureE wasdefinedasin Equa-
tion 4, equal to the sum of squareddifferencesbetween
the outputvectoro andthe target vectord, summedover
all time ticks T and all units I accordingto the formula
E 2 ∑I

i ∑T
t 3 ot

i 9 dt
i 6 2. Minimizing the error E essentially

meansminimizing the distancebetweenvector o and d,
sinceE is the squareof the euclideandistancebetweeno
andd.

Thenetwork wasrun for a presetnumberof time ticks,
with eachunit updatingits activation at eachtime slice
accordingto the weightsandactivationsof all otherunits
for theprevioustime sliceaccordingto Equations2 and3.
Then the derivative of the error E with respectto each
weightw in thenetwork wascomputed,asperthestandard
backpropagationequations(Rumelhartet al., 1986). Each
weight wasthenadjustedby changingits valueaccording
to thenegativeof theerrorderivative,multipliedby asmall
constantcalleda learningrate(denotedµ). Early piloting
revealedthata learningrateµ 2 0 : 001wasappropriate,and
thisvaluewasusedthroughouttrainingof thephonological
network.

The network was trainedusing online learning. Dur-
ing training,a “zeroerrorradius”of 0.1wasused,meaning
that errorslessthan 0.1 were countedas zero. The acti-
vation functionstypically employed in connectionistnet-
workscannotreachtheirextremalvaluesexceptin thelimit
of aninfinitely largeinput. The“zero errorradius” is used
to avoid overtrainingthenetwork, which cannever exactly
obtaintheextremalvalues.
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Wordsweresampledprobabilisticallyfrom thetraining
setaccordingto their probabilityvalue p, ascomputedby
Equation1. Onaverage,awordwith p 2 0 : 5 is selectedby
thenetwork abouttwiceasoftenasa wordwith p 2 0 : 25.

To train thenetwork, thefollowing algorithmwasused:
1. A wordwassampledrandomlyfrom thetrainingcor-

pusaccordingto thefrequency distribution(Equation1).
2. For time tick 0, the 66 phonologicalunits were

clampedwith theappropriatevaluesfor thatword.
3. The network was run for 4 ticks, with units un-

clamped.
4. For ticks 2-4, the outputof eachphonologicalunit

wascomparedwith the actualvalueof the word, and the
differencewaspropagatedbackwardsthroughthenetwork,
generatingerrorgradientsfor eachweight.

5. The weightswere updatedaccordingto their error
gradient.

6. Continuewith step1.
Becauseeach unit had a positive auto connection

weight, it tendedto retainthesignof its initial value. Be-
causethe auto connectionweightswere frozen at a low
enoughvaluethattheunits’ activationwoulddropoff, each
unit neededincreasedinput activationfrom otherunitsand
from the cleanupunits in orderto reachthe target output.
Training washaltedafter a million trials, whenit wasob-
servedthatthesumsquarederrorwasnotdecreasing.

Results

Several testswere devised to assessthe natureof the
phonologicalrepresentationsthatthemodeldeveloped.The
generalstrategy wasto quantifytheability of themodelto
retainandrepairdegradedor incompletephonologicalrep-
resentations,andto characterizetheattractordynamicsthe
modelhadformed.In latersectionswewill relatethequal-
ity of theseattractorsto specificphenomenaobserved in
studiesof speechperception,suchasphonemicrestoration
effectsandcategorical perceptionof consonants.Because
our focusis onreading,wehavenotexhaustivelyexamined
themodel’scapacityto simulatesuchspeechperceptionef-
fectsor attemptedto simulatea broadrangeof data. We
canshow, however, thatthenetwork encodessufficientpho-
nologicalinformationto produceseveralof theeffectsthat
havebeenobservedin humans,subjectto implementational
limitationssuchastherestrictionto monosyllables.These
resultssuggestthatit wouldbefruitful to furtherexplorethe
relevanceof this kind of architectureto speechperception
phenomena.

Pattern Retention. The first methodof assessingthe
phonologicalattractorsinvolved observinghow well the
model performedon the task on which it was trained:
retaining phonological patternsover time. A nearest-
neighbormeasure wasusedto assessthecorrectnessof the
phonologicaloutput. For eachof the 6 output phoneme
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Figure 4. Patternretentionaccuracy over the courseof phono-
logical training.

slots,the11 featureswerematchedagainstthesetof exist-
ing phonemes.Thephonemethatwasclosestin euclidean
distanceto theactualoutputwasconsideredtheoutputpho-
nemefor thatposition. A word wasscoredascorrectif all
of theoutputphonemeswerethecorrectones.

A second,more stringentmeasurewas also usedto
identify illegal phonemes.Thefeaturaloutputof themodel
canbecorrectby thenearestneighbormeasurebut still not
correspondto a legalcombinationof features(for example,
an outputthat is featurallyclosestto / > /, but is not conso-
nantal).An outputwasthereforescoredaslegal if andonly
if thereexistsaphonemein whichall 11outputfeaturesare
within 0.5of thatphoneme’srepresentation.

Figure4 summarizesthe evaluationof the training set
over thecourseof training. At asymptote,just 11 itemsof
theoriginal 3123wereincorrect,andthenumberof illegal
phonemesdroppedto 10.

PatternCompletion. We next assessedthenetwork us-
ingapatterncompletiontask.Informationwasdeletedfrom
an input patternandwe observed the extent to which the
modelcouldfill this gapgivenwhat it encodedaboutpho-
nologicalstructure.This testwasconductedfor all itemsin
thetrainingset.Eachof the66featureswastakenin succes-
sion,andits valuewasleft unspecified.All otherfeatures
for thegivenwordwereclampedto theirappropriatevalues.
Thenetwork wasallowedto runfor 4 ticks,asit wasduring
training. Thenthe differencebetweenthe unclampedfea-
ture’svalueandits targetwasmeasuredandrecorded.This
wasdonefor all 66 featuresover all 3123words. This test
assessedthe capacityof the network to coercean incom-
pletephoneticpatterninto one that is phonemicallylegal
within thetargetlanguage.

Theaveragemagnitudeof theerrorej for eachfeature
j was computedover all 3,123words in the training set:
ej 2 ∑3123

i ? 1 @ o 3 i 6 j 9 d 3 i 6 j @ 5 3123. The resultsareshown in
Figure5 (top). In general,the error is quite low for most
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ryngeal,round,tongue,andradical.Bottomfigureshows theconditionalentropy of thesefeatures.

features,averagingA 0 B 1 for mostitems.Recallthatduring
traininga zeroerrorradiusof 0.1wasused,soit is not sur-
prising that many valueshover near0.1; the network con-
siderstheeffective,trainableerrorin suchacaseto bezero.
Sincetheactivations(andtargets)for eachunit rangefrom
-1 to 1, therangeof possiblesquarederrorsis 0 to 4, soan
errorof 0.1is quitelow. Thus,for amajorityof features,the
network fills in thecorrectvaluebasedon theneighboring
featuresto ahighdegreeof accuracy.

A numberof featuresdo have high error values,how-
ever. Thevoicedfeaturesin the2ndand5th slot arehigh,
asarea clusterof vowel featuresrelatedto placeandman-
ner of articulation. The explanationfor theseeffectscan
beseenby examiningthefeaturalrepresentationsof all the
phonemes.The voicedfeatureis the only onethat distin-
guishes/ C / from / D /; also/ E / from / F /, / G / from / H /, andsev-
eralotherminimalpairs.Givenawordformwith thevoiced
bit unspecified,thenetwork hasno way to know what the
correctvalue is. In short, the voiced featureis relatively

unconstrainedby its neighboringfeatures.In contrast,the
consonantalfeatureis totally constrainedby theotherfea-
turesin a segment.It is thereforenot surprisingthaterrors
arehigheron thelessconstraineditems.

To demonstratethismorerigorously, theconditionalen-
tropyfor eachfeaturewascomputed.Theentropy H I JLK of
a distribution J is definedas:

H I JLKNM ∑
x OQP

p I xK log2 p I xK (4)

SeeCover and Thomas(1991) for derivation and discus-
sion.Theconditionalentropy, or conditionaluncertaintyof
distribution J , giventheenvironmentR , is definedas

H I JTS RUKVMXW ∑
y OQY

p I yK ∑
x OQP

p I x S yK log2 p I x S yK (5)

For eachfeaturein thephonologicaloutputarray, thecon-
ditionalentropy of thefeaturewascomputedrelative to the
valuesof the 10 other featuresin its phonemeslot. The
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entropy was computedover all words in the training set,
weightedby thefrequency of eachword.

Figure5 (bottom)shows a plot of the conditionalen-
tropy, or uncertainty, of eachunit in thephonologicalout-
put in unitsof bits. As expected,thevoicedfeaturesfor the
consonantslotsshow high uncertainty. The consonantsin
slot 1 and6 show lessuncertaintybecausethey areempty
moreoften thanthe inner consonants,andthe featuresof
emptyslotsareeasilypredictablefrom its environment.

Visually, thematchbetweenthemeansumsquareder-
ror and the conditionalentropy is quite good. A Pearson
correlationover the two setsof numbersrevealeda good
match: r 2 0 : 88, t 3 646 2 15, p Z 0 : 0001. Thus, errors
in the network approximatethe conditionaluncertaintyin
the trainingset. This resultis not surprisinggiventhat the
residualerror of a network trainedusingthe sumsquared
errormeasureapproximatestheconditionalvarianceof the
trainingset(Bishop,1995).

We next examinedthe kindsof errorsthat weremade.
Given that the model’s inaccuracy is a functionof the un-
certaintyof a feature,is it thecasethatadifferent,but legal
phonemeis alwaysproduced?Thefeaturecompletiontask
wasrepeatedasabove,but theoutputwasassessedaccord-
ing to whethertheoutputphonemewascorrector incorrect.
Incorrectpatternswerefurther classifiedaseither legal or
illegal,usingthemethoddescribedin theprecedingsection.

Productionof incorrectphonemeswas infrequent,av-
eraging8.4%over all featuresandtraining setitems. The
productionof anillegalphonemeoccurredfor 1.13%of the
featuresandtrainingsetitems,so13.5%(1 : 13%5 8 : 4%)of
theincorrectitemsresultedin anillegalphoneme.Thefea-
turethatproducedthemostillegal phonemeswhenleft un-
specified(14%) was the pharyngealfeatureon the vowel
phoneme. The conditionalentropy of featureswas also
correlatedwith the tendency for thosefeaturesto produce
illegal patternswhen unspecified:r 2 0 : 72, t 3 646 2 8 : 3,
p Z 0 : 0001.

Evenin ambiguousenvironments(seeFigure5,bottom)
thenetwork wasmorelikely thannot to producethecorrect
word; theerrorrateneverexceeded50%.Whenthecorrect
word wasnot produced,thenext mostlikely outcomewas
creatinganovel, legalword(e.g.PONE, whenthetargetwas
BONE). Theproductionof illegal patternswaslargely lim-
ited to the placeandmannerof articulationof the vowel.
Thesefeaturesare the onesthat are the mostunderdeter-
minedby theirenvironments(Figure5, bottom).

Attractor Basins. The phonological network has
formedwhat arecalledattractorbasins.The main idea is
that if oneconsidersthe66 phonologicalfeaturesasform-
ing a high dimensionalspace,with eachfeaturerepresent-
ing onedimension,thetrainednetwork consistsof a setof
attractorstatesin this space.A point in this spacecorre-
spondingto thephonologicalform of awordwill besubject
to the network dynamics,andpulled in variousdirections

within the space.Thoseforceshave the effect of limiting
theregionsin which thenetwork cansettle,suchthatnoisy
ordegradedinputisverylikely tobecoercedintoacoherent
pattern.

To visualizethe66 dimensionalspaceis of courseim-
possible.However, it is possibleto provideasmallexample
thatcanbevisualized.Supposeoneonly considerstwo fea-
turesof the66; the roundandradical features,which will
bemanipulatedwith respectto thevowel. Theword / >\[\� /
providesanenvironmentin whichthesetwo featurescanbe
manipulated.In thecontext of theword / >\[]� /, the four ex-
tremalvaluecombinationsof thesetwo featuresdefinefour
phonemes.Of thosefour, only 3 arelegal phonemesin the
/ > � / context. A combinationof -1 and-1 gives/ >][\� / (CUT),
1 and1 gives/ >_^`� / (COAT), 1 and-1 gives/ >]ab� / (CAUGHT),
and-1,1is illegal.

To exploretheattractorswithin thephonologicalspace,
all featuresfor theword / >\[]� / wereclampedto their actual
valuesexceptthe roundandradicalfeaturesof the vowel.
Thesefeatureswere systematicallyset to valuesranging
from -1 to 1 in incrementsof 0.1, giving 400 initial states
for a word. For eachof thesestates,thenetwork wasrun,
andthe two featuresin questionwereallowedto drift. For
eachof the 400 combinationsof values,the statesof the
two featuresweresampledafterrunningfor two ticks. The
directionin which eachfeaturemovedwasrecorded.This
createda two dimensionalvectorfield, asdepictedin Fig-
ure6 (arrow magnitudesarescaledby a constantfor read-
ability). Thefigure illustratesthedirectionthat thephono-
logicalstatemoveswhentherestof theform of theword is
heldconstant.Figure6 shows that thenetwork pulls away
from the illegal stateof -1, -1 and toward a nearbylegal
configuration.Theinfinite number(subjectto machinepre-
cision)of initial statesdefinedby theplanein Figure6 be-
comescoercedinto only 3 final states:the threelegal cor-
nersof theplane.

Theattractorbasinscanbe shown in threedimensions
by computingfor eachpointon thetwo dimensionallattice
of Figure6, the distancea point movesover 4 time ticks
(by which time it hassettled).Figure7 depictstheattractor
basinsfor the vectorplot of Figure6. The metaphorbe-
ing usedhereis thata point in thedynamicspaceis like a
ball that rolls along the surfacesformedby the attractors.
Pointsinitially atstableattractors(thethreecorners)donot
changetheir state,andarehenceshown at z 2 0. Hilltops
show the divisions betweenbasins,or regions the points
roll into: pointsnearthe COAT cornerroll into thatcorner;
pointsalongthemiddletroughroll into theCAUGHT corner,
while pointsnearCUT roll there.

To examinethesensitivity of theseattractorsto thelocal
environment,the experimentwas repeatedwith the word
/ >]�c� / usedastheinitial state.This is identicalto theprevi-
oustrial, exceptthatthepalatalfeatureof thevowel is setto
0 insteadof -1. Theeffect of thedifferentvalueof palatal
is thatsuddenlyroundingis illegal; in English,front vowels
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Figure6. Phonologicalattractor, depicting3 legalphonemesderivedfromcom-
binationsof two features:roundandradical.

cannotberound(althoughtherearelanguagesin whichthis
is allowed,suchasGerman).Whenpalatalis 0, rounding
is -1 andradicalis -1 theresultingphonemeis / � / (rhymes
with CAT). For a configurationof 0, -1, 1 the result is / h /
(rhymeswith PET).

Figure 8 depictsthe differing attractorsfor the same
features(contrastwith Figure6). In this case,thenetwork
shunsany positivevalueontheroundfeature,correctlycap-
turing thegeneralizationthatpalatal=0prohibitsround=1.

The inputs to the roundfeaturewereexaminedto see
how thenetwork wasableto capturethis generalization.It
turns out that the input to the roundingfeature,averaged
over all words in the corpus,is negative. This is largely
dueto the fact that roundingis off moreoften thanon; its
meanvalueover all wordsis -0.4,andthemedianis -1. In
theenvironmentof theword / >]�c� /, theinput from all other
phonologicalunitsandthecleanupunits is -2. Theweight
from thepalatalfeatureto theroundingunit is -2, suchthat
whenpalatalis -1, it cancelstheambientdispositionto turn
off this feature.Thenetwork hasthusimplementedthefol-
lowing “rule”: if palatalis 0, roundingmustbe-1. If palatal
is -1, roundingcanbeeitheronor off. Importantly, thenet-

work hasdonesousing“soft” attractors,sothatintermedi-
atevalueswhich thenetwork never experiencesin training
still tendto getpulledinto a legalstate.

In summary, the network representsphonological
knowledgein termsof attractorsin statespace. We have
shown how this knowledgecan be usedto completepat-
ternsthataremissinga featureto repairor completepartial
or noisyrepresentations.We provideadditionalanalysesof
the model’s phonologicalrepresentationsbelow. We now
turnto areadingmodelthatlearnsto maporthographicrep-
resentationsontothisstructuredphonologicalknowledge.

2. Learningto Read

Thequestionaddressedin thissectionconcernstherole
of prior phonologicalknowledgein learningto readaloud.
Giventheextensivebehavioral evidencelinking phonolog-
ical representation,readingacquisition,and dyslexia, we
expectedthat having this knowledgein placewould facil-
itate learningthemappingbetweenspellingandpronunci-
ation. Thesesimulationsalsoprovide a closeranalogueto
the child’s experiencethanhadearlierword readingmod-
els,permittingmorevalid comparisonsbetweenmodeland
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child performance.
The simulationsreportedbelow involve comparisons

amongthreeconditions. In the TrainedAttractor condi-
tion, the weightsthat resultedfrom the pretrainingproce-
dureprovidedthe initial stateof thereadingmodel. In the
UntrainedAttractor condition,the samenetwork architec-
tureandtaskwereused,but thephonologicalattractorpart
of thenetwork wasinitialized with small randomweights.
This model had the capacityto encodehigher-order de-
pendenciesamongfeaturesbut unlike the TrainedAttrac-
tor model, it did not have this knowledgein placeat the
startof learningto read.The third, Feedforwardcondition
utilized a simplefeedforwardnetwork; theconnectionsbe-
tweenphoneticfeatureunitsandthecleanupapparatuswere
eliminated,leaving only connectionsfrom orthographyto
the hiddenunits, andfrom the hiddenunits to the phono-
logical units. This modelhada more limited capacityto
representdependenciesamongfeatures.Theseconditions
allowed us to examinethe relative importanceof having
phonologicalknowledgein placeprior to learningto read
comparedto simply having the capacityto learnandrep-
resentsuchknowledgein the courseof learningto read.
Basedon previous findings we expectedthe feedforward
network to performmorepoorly, particularlyon nonword
generalization,becauseof its restrictedcapacityto repre-

sentphonologicalstructure.

Architecture

Thearchitectureusedin theTrainedandUntrainedAt-
tractorconditionsis illustratedin Figure9. Theinput layer
wasa setof 208units representingthespellingsof words.
Thesewerefully connectedto anintermediatelevel of 100
hiddenunits,which in turn werefully connectedto output
representation,whichwasthephonologicalattractornetde-
scribedabove. In the Feedforwardcondition,the connec-
tionsbetweenphonologicalunitsandthecleanupunitswere
eliminated.In eachcase,themodelwastrainedto mapthe
spellingof awordontoits pronunciation.

Eightslotsof 26unitseachwereusedto representwords
up to 8 letterslong, with eachslot correspondingto a let-
ter position and eachunit representingone letter. Words
werevowel-centered,with thefirst vowel of a word repre-
sentedin slot4, andany consonantsgrowing outwardfrom
thevowel. Thepresenceof a givenletterwithin a slot was
indicatedby settingthatunit to thevalueof 1 andall others
to 0.

Thereis considerableinefficiency in this orthographic
representation.For example,therearevowelunitsin theon-
setandcodapositionsthatarealwayssetto 0 becausevow-
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Figure 8. Phonologicalattractorfield, in differentphonologicalenvironment.
Palatalis 0, yieldingdifferentdynamicsthanin Figure6.

elscannotoccurin thesepositions.Conversely, theconso-
nantunitsin thevowel positionsarealwaysoff. Therepre-
sentationwaschosento be assimpleaspossible,building
in very little of thestructureof Englishorthographybeyond
whatwasimposedby thebasicarchitecture.

TrainingMethod

Thebackpropagationthroughtimealgorithmwasagain
used,with online learningandwordsselectedfor training
usingthe sameprocedureasdescribedin Section1. The
sametrainingcorpususedin thephonologicaltrainingwas
usedfor readingtraining. After a word waschosen,theor-
thographicunitswereclampedwith thepatterncorrespond-
ing to the spellingof the word for 6 time ticks. Unit ac-
tivationswereupdatedfor 6 time ticks. On the final tick
the outputof the phonologicalunits wascomparedto the
word’sphonologicaltarget.As is standardfor theBPTTal-
gorithm,thediscrepancy betweentheoutputandthetarget
overeachoutputunit is injectedinto theoutputunitsof the
network. Thiserrorfor eachoutputunit is thenusedtocom-
putetheerrorfor all unitswhichareconnectedto theoutput
unit: the error for a hiddenunit, example,is a functionof

its contribution to the error for theoutputunits. Theerror
thateachhiddenunit accumulatesis thenusedin thesame
way to determinetheerroron all input units.Similarly, the
cleanupunits in the phonologicalattractornetwork accu-
mulateerrorbasedon theerrorof theoutputunits they are
connectedto. In this sense,“blame” for theoverall error is
propagatedbackwardthroughthenetwork from theoutput
units. Once“blame” is assignedfor eachunit, weightscan
be updatedby changingthemslightly in thedirectionthat
would reducetheerror. Theerrorsarethendiscarded,and
the cycle repeatswith the selectionof a new word. The
effectof this trainingprocedureis thattheweightscometo
take on valuesthatminimizetheerrorfor eachword in the
trainingset.Regular, rulegoverneditemsexertasimilaref-
fectontheweightsto theextentthattheir targetsandinputs
aresimilar, while exceptionspull theweightsin a different
direction. For example,theweightsfrom theorthographic
rimeof wordslike GAVE, BRAVE andSAVE all haveasimi-
lar phonologicalrimetarget,sotheirinfluenceonthevalues
of the weightsis similar. Thepatternsof activity over the
hiddenunits that thesewordscreatewill have somesimi-
larities,dueto theiroverlappingspellings,andsomediffer-
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Figure9. Thearchitectureof thereadingmodel.

ences,dueto their differing onsets.Thesimilaritiesin the
hiddenunitactivities,coupledwith similaritiesin theoutput
targets,producerule-like behavior. For theexceptionword
HAVE, in contrast,the network mustacquiresensitivity to
thepresenceof theH in theenvironmentof AVE in orderto
overridethedefault behavior createdby the regularneigh-
borhood.

Piloting revealedthata learningrateµ of 0.005wasap-
propriatefor thereadingcomponentsof themodel(thecon-
nectionsfromtheorthographictohiddenunits,andfromthe
hiddenunitsonto thephonologicalrepresentation).Lower
valuesresultedin much longer training times,andhigher
valuesled to instabilities in the network. This value is
higherthanthevaluethatwasusedin thephonologicalat-
tractor(0.001).Initial studiesuseda learningrateof 0.001
throughoutthemodel,andwhile taking longerto train (on
theorderof severaldaysperrun), thesesimulationsexhib-
itedqualitatively similarperformanceto oneswith a higher
learningrate.

Oneother importantfeatureof the training procedure
wasthe interleaving of two typesof training trials. In the
phonologicalacquisitionphasedescribedabove, themodel
wastrainedona phonologicalretentiontask.We now want
themodelto learnasecondtask,mappingfromorthography
to phonology. However, wealsowantthemodelto retainits
knowledgeof phonologicalstructure. Training the model
exclusively on the readingtaskwill result in weightsthat
areoptimal for this taskbut not necessarilyfor thephono-
logical retentiontask. Blocked training on different tasks
is the condition that gives rise to what has beentermed
“catastrophicinterference”(McCloskey & Cohen,1989).
Undertheseconditions,trainingon thesecondtaskresults
in a failure to retainall of whatwaslearnedin connection
with the first task. The solutionto this problemis simply
to interleave trainingon thetwo tasks(seeHetherington&
Seidenberg, 1989).Forgettingon thefirst taskis avoidedif

therearea few additionaltrials of this typeduringtraining
on thesecondtask. This interleaving of tasksis alsomore
realisticwith respectto thechild’sexperience,which is not
strictly blockedby task. Thechild acquiresextensive pho-
nologicalknowledgethroughexposureto spokenlanguage;
however, their experiencewith speechdoesnot endonce
readinginstructionbegins.

Thus,trainingon thereadingtaskwasinterleavedwith
additional trials on the phonologicalretentiontask. We
will refer to the latter taskas the “listening” taskbecause
it involvesencodingandretaininga phonologicalpattern.
On eachtraining trial, a randomnumberwas computed.
Basedon this randomnumber, that training cycle wasei-
thera readingor listeningcycle. On 80%of the trials, the
modelwastrainedon the readingtask;on 20%the listen-
ing task.2 On readingtrials, the network was trainedas
describedabove. On listeningtrials, themodelwastrained
as in Section1. Hence,the phonologicalweightshad to
assumevaluesthat would facilitate performanceon both
tasks.

Lengthof Training. Eight simulationruns, represent-
ing differentsubjects,wereconductedfor eachof thethree
conditions.On eachrun theweightsfrom orthographicto
hiddenunits and from hiddenunits to phonologicalunits
wererandomizedto valuesbetween9 0 : 1 and0 : 1. For the
TrainedAttractorcondition,thephonologicalnetwork was
trainedasin Section2 for eachof theeight runs. TheUn-
trainedAttractorconditionhadrandomweightsassignedto
the attractornetwork, while the Feedforwardnetwork had
no attractornetwork. In all networks, the initial weights
andtheexactorderof presentationsof thewordswerede-
terminedby the initial randomnumberseed.Within each
training condition, all of the eight runs were identical to
eachother except for the initial seed. Resultspresented
below, unlessotherwisenoted,representthe meanperfor-
manceof the8 networkswithin eachcondition.

For eachrun, the TrainedAttractor network was pre-
sentedwith 1 million wordsduringthephonologicaltrain-
ing phase,asin Section1. It wasthentrainedon10million
words during the readingphase. Since80% of the trials
during the readingphasewerereadingexamplesand20%
wereinterleaved listeningexamples,eachrun exposedthe
network to a total of 3 million listeningtrials and8 million
readingtrials. The UntrainedAttractor network was not

2This ratio of readingto listeningtrials is higherthanwould
be experiencedby a child. We endedup with this ratio after ex-
plorationsof a variety of ratiosyieldedtwo findings: first, using
20% listeningtrials wassufficient to prevent significantunlearn-
ing of phonology;second,usinga larger percentageof listening
trials hadlittle effect on masteringeitherthe listeningor reading
tasks.Wethereforeusedthe80-20ratio in orderto keepthetrain-
ing timesrelatively low. Essentiallythesameresultsobtainif the
proportionof listening trials is increased,but the network takes
longerto learn.
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subjectedk to phonologicalpretraining;it simplywastrained
on 10 million wordsin the readingphase,with the above
distributionsof readingand listeningtrials. The Feedfor-
wardnetwork wastrainedfor 10million readingtrials.

We useda large numberof training trials during each
phase(listeningandreading)in orderto beableto examine
asymptoticlevels of performance.As will be seenbelow,
the resulting learningcurves were highly nonlinear, with
rapid learningduringthefirst million or soword presenta-
tionsandslower learningthereafter.

Results

Wefirst describetheperformanceof theTrainedAttrac-
tor nets,andthenprovidecomparisonsto theUntrainedAt-
tractorandFeedforwardconditions.

Word Performance. The output that eachmodel pro-
ducedfor wordsin thetrainingsetwasevaluatedusingtwo
criteria. First, eachphonemein theword wasassessedus-
ing thenearestneighbortestdescribedpreviously. Thepho-
nemein thetraininginventorythatwasclosest,byeuclidean
distance,to the outputof the network wasdeterminedfor
eachposition.Thesephonemeswerethencomparedto the
target phonemes.Phonemeswere judgedcorrect if they
wereidenticalto thetargetor if they weremembersof pre-
definedequivalenceclassesof phonemes.Therationaleun-
derlyingtheequivalenceclassesis thattherearesomevaria-
tionsin theproductionof certainphonemesthatparticipants
could producebut would not be detectable.Theseclasses
were/ a / and/ l / (e.g.COT andCAUGHT), / ^nm / and/ ^ / (e.g.
thedifferencein somedialectsof Englishbetweenthevow-
elsof DOE, whichcanhaveatrailing / m / sound,andDOME,
which doesnot), and/ ��
 / and/ � / (thelaterbeinga shorter,
moreclippedversionof / ��
 /). All phonemesin a word (or
nonword)hadto beclosestto thetargetonesfor theitemto
bescoredascorrect.

In addition,the featuresfor eachoutputphonemehad
to correspondto a legal phonemein the training set; that
is, therehadto be a phonemein the training set in which
eachoutputfeaturewaswithin 0.5of thevaluefor thatpho-
neme.Thenearestneighborcriterionaffordsthepossibility
thatthecomputedoutputmightbecloserto thecorrectpho-
nemethanany othereventhoughtheparticularcombination
of featuresdoesnot correspondto any phoneme.Imposing
thesecondscoringcriterionensuredthatsuchtrials would
bescoredasincorrect.

Figure10(left) showsthemeanperformanceof eachof
thethreenetworksonthetrainingsetitemsovertime.There
is virtually no differencebetweenthe Trained and Un-
trainedAttractornetworks. TheFeedforwardnetwork per-
formsabit morepoorly, reachingthesameasymptoticlevel
of performanceastheattractornetworks,but moreslowly.
At asymptote,thetrainedattractornetworksaveraged98%
correcton the training set. The majority of errorswere

on low frequency exceptionwords(e.g.,CHOIR) or ortho-
graphicallyunusuallow frequency words (e.g., MYRRH).
Theseresultsare in accordwith the resultspresentedby
Seidenberg andMcClelland(1989)andthebehavioral data
reportedby WatersandSeidenberg (1985)andothers.

Nonword Generalization. The models’ capacitiesto
generalizeto novel itemswereassessedusinga setof 364
nonwords.The86 pseudowordsfrom Glushko (1979),Ex-
periment1, and 156 of the 160 items from McCannand
Besner(1987)3 were combinedto form 239 items (three
lessthanthesumof thetwo sets,becausethreeitemswere
duplicatedin theGlushko andMcCann& Besnerstudies).
An additional125 items were generatedby taking exist-
ing wordbodiesandreplacingtheonsetto form a nonword
(asin Seidenberg, Plaut,Petersen,McClelland,& McRae,
1994).4 For most items, therewas only one correctpro-
nunciationallowedwhenscoringthenetwork’soutput.For
someitems, if the network producedoneof two possible
outputsit wasscoredascorrect(e.g. the nonword DOMB

couldbepronouncedeither/ ��l`o / asin BOMB or / ��^po / as
in COMB). This scoringis consistentwith behavioral data
reportedby Seidenberg et al. (1994), who found that the
two most commonpronunciationsof the more than 500
nonwords in their study accountedfor over 90% of par-
ticipants’ responses.The developmentof nonword gener-
alizationperformanceis summarizedin Figure10 (right).
At asymptote,the Trained Attractor networks scoredan
averageof 79% of the nonword set correct,as measured
by thestringentcriterionand88%correctby themorelax
nearest-neighbormeasure.Performanceof theTrainedand
UntrainedAttractornetworkswasagainquitesimilar, with
onlyslightlypoorerperformanceontheUntrainedAttractor
networksearly in training. However, theFeedforwardnet-
worksexhibitedmuchworseperformanceon thenonword
setthroughouttraining.

Replicationwith a Larger Corpus. As notedearlier, the
trainingcorpususedin thesesimulationsincludedmostbut
notall monosyllabicwordsin English.Two classesof items
wereexcluded: onesthat did not fit theCCVVCC phono-
logical template(e.g., STRING) and inflectedwords (plu-
rals suchas BOOKS andtensedverbssuchas BAKES and

3Four items(BINJE, FAIJE, JINJE, WAIJE) wereexcludedbe-
causethey containedthe letter J two positionsafter the vowel.
This letter in this slot is not seenin thetrainingset. As such,the
modelcouldnever get theseitemscorrect. This problemreflects
aninherentlimitation of theslotbasedrepresentationscheme(see
PMSPfor discussion).Thisproblemwould not ariseif themodel
hadbeentrainedonpolysyllabicwordswhichprovidecoverageof
thisgap(e.g.,BANJO, CONJURE). Thesewordsweretheonlyones
from theMcCannandBesnerandGlushko studiesthatexhibited
thisproblem.

4Theentiresetof nonwordsis availableat http://siva.usc.edu/
m̃harm/papers/dyslex.psyrev /nonword.stim.pdf.
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Figure10. Comparisonbetweenthenormalreadingmodel,thefeedforwardmodel,andtheinitially untrained
attractormodelon thetrainingset(left) andnonword generalization(right).

BAKED). Theseitemswereexcludedfor a pragmaticrea-
son,theneedto keepnetwork trainingtimeswithin reason-
ablebounds.However, theexclusionof thesewordsraises
questionsaboutthe generalityof the resultswe have pre-
sented. Onequestionis whethersimilar levels of perfor-
mancecanbeachievedwith a largernumberof wordsto be
learned.A secondquestionis whetherwordswith complex
onsets(such STRING) or codas(suchas BURST) present
any special challenges. Finally, the propertiesof En-
glishinflectionalmorphologycreatecomplex orthographic-
phonologicalmappingsfor thesewords. In both theplural
and pasttense,the phonologicalrealizationof the inflec-
tion is conditionedby thepreviousphoneme.In bothBUDS

and BOOKS, for example,the plural morphemeis spelled
with S. However, whetherits pronunciationis voiced(as
in BUDS) or unvoiced(asin BOOKS) dependson thevoic-
ing of theprecedingphonemewhich is itself inconsistently
cuedby the orthography. Thusboth MOUTH and TENTH

endin TH but differ in voicing;althoughbothform theplu-
ral by addingS in theorthography, the inflectionsarepro-
nounceddifferently. The mappingsbetweenspellingand
pronunciationfor thesewordsarethereforerathercomplex.
In summary, thewordsweexcludeddiffer in somerespects
from the wordsin the training corpusandraiseadditional
challengesfor ourapproachthatneedto beaddressed.

To explore thesequestions,we conducteda replica-
tion simulationusinga muchlargercorpus.Monosyllables
wereextractedfrom theCELEX electroniccorpus(Baayen,
Piepenbrock,& van Rijn, 1993). All itemsfitting a CC-
CVVCCCtemplatewereused,yielding7,839words.Most
of theadditionalwordsareinflecteditems. Thephonolog-
icalnetworkwasexpandedfrom66to88unitstoaccommo-

datethe larger template,andadditionalorthographicunits
wereaddedto fit longerwords. Asidefrom thesechanges,
no otheralterationsweremadeto themodel’sarchitecture,
representationsor trainingregime.

After 10 million trials, themodelhadcorrectlylearned
99% of the training set, as scoredby the strict criterion.
Nonword generalizationimproved: the model correctly
pronounced84%of thebenchmarknonwordsetby thestrict
criterion,and90%by themorelax one.Theoriginalmodel
had difficulty pronouncingsomenonwords that had few
neighborsin the original training set; for example,it pro-
ducederrorson nonwords that look like plurals, suchas
SNOCKS and PHOCKS. The larger model,which contains
many plurals,hasno difficulty with theseitems. Thesere-
sultsdemonstratethatincreasingthesizeof thetrainingset
not only doesnot createproblemsfor the model,it facili-
tatesperformanceonnonwordsbyprovidingbroadercover-
ageof thespaceof orthographicandphonologicalpatterns.

Performanceon words with complex onsetsor codas
and on inflected words is summarizedin Table 4. For
comparisonwealsoexaminedtheperformanceof astrictly
feedforward network on theseitems. Both attractorand
feedforwardmodelsachievedhighlevelsof performanceon
thesewords,with a slight advantagefor the former. The
models’ capacitiesto generalizewere examinedby test-
ing themon nonwordswith plural or pasttenseinflections.
Here the attractornetwork performedsignificantly better
thanthefeedforwardnetwork. Theseresultsareconsistent
with theconclusionthattheattractorstructureis relevantto
learningcomplex spelling-soundmappings;however, the
learningof the largercorpusproceededwithout complica-
tion. The larger model doestake significantly longer to
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train,q however, andso the smallermodelandcorpuswere
usedin subsequentsimulations.

Discussion:TheReadingModel

The simulationsshow that the central findings from
SM89 andPMSPreplicateusingan output representation
that is an attractornetwork employing phoneticfeatures.
Thereweretwo importantotherfindings.First, theAttrac-
tor networksyieldedbetterperformancethanthe Feedfor-
ward network, but the advantagewasalmostentirely spe-
cific to nonword generalization.This result is consistent
with the earlier finding that the SM89 model performed
betteron words in the training set thanon generalization.
If the task is merely to learn the pronunciationsof a set
of words,a feedforwardnetwork is sufficient (cf. SM89).
However, beingable to pronouncenonwordsrequiresthe
capacityto combinesublexical orthographic-phonological
unitsin novel ways.Achieving human-likeperformanceon
this taskrequireshaving a morestructured,componential
representationof phonologicalinformationand the corre-
spondencesbetweenorthographyandphonology. This ad-
ditional capacitycanbe achieved in two ways. Oneis by
building additionalstructureinto the orthographicor pho-
nological representationsthemselves. That was the path
taken by PMSP, whosephonologicalrepresentationrelied
onanextrinsically-determinedorderingof thephonemes.If
this knowledgeis not built into therepresentation,thenthe
networkarchitectureitself mustallow it to beencoded.This
capacitywasprovidedby theattractorarchitectureexplored
here.

Thesecondimportantfinding wasthatalthoughtheat-
tractor architecturewas necessaryfor achieving adequate
nonword performance,therewas little differencebetween
the Untrainedand Pretrainedconditions. The Pretrained
modellearnedslightly fasterbut bothmodelsrapidly con-
vergedon very similar levelsof performance.Thus,it was
not necessaryto have knowledgeof phonologicalstructure
in placeprior to trainingonthereadingtaskbecausethis in-
formationcouldberapidlypickedup in thecourseof train-
ing on this task. Themodel’s architecturemustallow pho-
nologicalstructureto berepresentedin acomponentialway
but giventhehighdegreeof redundancy exhibitedby natu-
ral languagephonology, this informationcanbeacquiredat
the sametime asknowledgeof orthographic-phonological
correspondences.

The fact that the Pretrainedand Untrainednetworks
yielded similar performancecontrastswith results that
we presentedin Harm, Altmann, and Seidenberg (1994).
Thatstudyalsoexaminedtheeffectsof prior phonological
knowledgeonacquisitionof spelling-soundknowledgeand
found that pretrainingon phonologyyieldeda significant
improvementin performance.However, in that studywe
did not interleave readingand listening trials. The Pre-
trainedmodelperformedbetterbecausetherewaslessun-
learningof phonologicalstructureduring the readingtask.

In the simulationsreportedabove, this advantagefor the
pretrainedmodelwasobviatedby theinclusionof theinter-
leavedlisteningtrials.

In summary, thesesimulationssuggestthat having an
architecturethat permits the encoding of dependencies
amongfeaturesandphonemesis critical to achieving ahigh
level of readingskill, particularlythecapacityto generalize
to novel instances.Childrennormally acquirethis knowl-
edgein thecourseof learningtousespokenlanguageandso
it is in placeprior to theonsetof readinginstruction.This is
likethePretrainedAttractorconditionin oursimulations.It
is interestingthattheUntrainedAttractorconditionyielded
similarperformanceto thePretrainedcondition,insofarasit
suggeststhathaving thecapacityto representcertaintypes
of knowledgeis more importantthanactuallyhaving this
knowledge in place prior to reading. However, the Un-
trainedconditiondoesnotcorrespondtoanythingthatcould
occurin reality; the situationin which the child is not ex-
posedto phonologicalinformationuntil readinginstruction
begins never occurs. The Untrainedconditionis informa-
tive becauseit suggeststhat phonologicalstructurecanbe
rapidly learnedfrom examplesbut it is not analogousto
anything in a child’sexperience.

It shouldbeapparentthatthetrainingprocedurethatwe
usedonly capturedsomeverygeneralcharacteristicsof the
child’s actualexperiencein learningto read. Thesesimu-
lations,like earlierones,useda procedurein which words
wereprobabilisticallyselectedfor training basedon their
frequenciesof occurrencein adult English. Readingin-
structionis quite different: childreninitially learn to read
small vocabulariesof wordsthatexpandover time. More-
over, childrenin at leastsomeclassrooms(e.g.,onesem-
phasizing“phonics”methods)areprovidedwith additional
training that emphasizessimilarities betweenwords with
respectto subword units suchas onsetsand rimes. They
also receive explicit training in the pronunciationof par-
ticular lettersandletter combinations.Noneof this is in-
corporatedin themuchsimplermethodwe useto train our
models.Two pointsshouldbenoted.First, thereis nothing
in our approachthatprecludesstructuringthetrainingpro-
cedurein morerealisticways; indeed,the modelsprovide
an interestingway to examinewhetherparticularwaysof
introducingwords to childrenwould yield morerapid ac-
quisition.This is animportantareafor futureresearch,one
thatcouldprovide insightsthatwould beusefulfor educa-
tors who plan instructionalcurricula. Second,the method
thatwe usedin trainingthemodelsis probablynot theop-
timal one(for childrenor for models). Teacherspresum-
ably structurereadinginstructionin specificwaysbecause
it facilitateslearningandwe would expectthe samething
to occurin ourmodels.Beingmorerealisticabouttraining
would allow moredetailedcomparisonsto childrenin the
earlieststagesof learningto read.It would probablyallow
ourmodelsto learnmoreefficiently aswell.
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Table4
Larger Training CorpusResults

% Correct
WordClass Type Example N Attractor FeedForward
Plural / r / CATS 798 99 95

/ s / BUGS 1045 98 96
PastTense / � / BUGGED 724 98 90

/ � / BAKED 599 99 94
Third PersonSingular / r / BAKES 229 99 99

/ s / BEGS 307 99 98
Complex Onset STREET 211 100 97

Coda WORLD 704 98 85
NonwordPlural / r / BAIPS 20 95 75

/ s / GLEWS 20 95 90
NonwordPastTense / � / POVED 20 85 60

/ � / BAXED 20 90 50

3. DevelopmentalDyslexia

Developmentaldyslexia is the failure to acquireage-
appropriatereadingskills despiteadequateintelligenceand
opportunity to learn. Whereasacquiredforms of dys-
lexia areobservedin premorbidlyliterateadultsfollowing
braininjury, developmentaldyslexia is observedin children
learningto read,apparentlyasa consequenceof congenital
anomalies.Our goal is to explain differentpatternsof dys-
lexic behavior in termsof differenttypesof impairmentsto
the simulationmodel that affect the courseof acquisition.
We also attemptto link theseforms of simulatedimpair-
mentto evidenceconcerningpossibleconstitutionalor ex-
perientialfactorsthatlimit children’sperformance.

The causesof developmentaldyslexia have beenthe
subjectof considerabledebateextendingover many years.
In the recent past, attention has primarily focused on
impairmentsin the representationand use of phonolog-
ical information as the proximal cause(seeLiberman&
Shankweiler, 1985;Adams,1990;Farmer& Klein, 1996,
for reviews). Learningto readinvolveslearninghow writ-
ten symbolsrepresentthe soundsof language. Children
who cansoundout words (eitherovertly or covertly) can
thenmatchthemto wordsknown from speech,providing
a kind of self-teachingmechanism(Jorm& Share,1983).
The training procedurein our networks approximatesthis
self-teachingprocess:thenetworkgeneratesaphonological
codefor a letterstringandit is thencomparedto theveridi-
cal phonologicalcodethat providesthe basisfor calculat-
ing theerrorusedto adjusttheweights.On trials whenthe
child hascorrectlysoundedout a word, this teachingfeed-
backis self-generatedby comparingthecomputedcodeto
a word known from speech.Translationfrom orthography
to phonologyalsopermitsthechild to recognizewordsthat
have not beenseenbeforeandto learnthe pronunciations
of new words.

Thereis strongevidencethat individual differencesin

therepresentationanduseof phonologicalinformationare
relatedto level of readingachievement(Bradley & Bryant,
1978, 1983; Mann, 1984; Lundberg, Olofsson,& Wall,
1980; Wagner& Torgesen,1987). Pre-readerswho have
developedmoresegmentalrepresentationsof phonological
structure,as revealedby “phonologicalawareness”tasks
suchas repeatinga spoken word with a single phoneme
deleted,show higherlevelsof readingability in latergrades
(Share,Jorm,Maclean,& Matthews,1984;Adams,1990).
Impairmentsin the developmentof suchsegmentalrepre-
sentationsmight then be the causeof dyslexia in at least
somechildren.

This account,which is widely acceptedamongread-
ing researchers,leaves two important issuesunresolved.
First, what is thenatureof thedeficit thatgivesrise to im-
pairedphonemicrepresentations?Many studieshaveestab-
lishedthatdyslexia is associatedwith poorperformanceon
tasksthatrequiremanipulatingphonemicrepresentationsin
working memory. A few studieshave attemptedto estab-
lish causallinks betweenpoorphonologicalrepresentations
andimpairedreadingacquisition(e.g. Bradley & Bryant,
1983). However, the natureof the informationprocessing
deficit that gives rise to phonologicalimpairmentsis not
clear. Attentionhasrecentlyfocusedon thehypothesisthat
impairmentsin phonologicalrepresentationaresecondary
to “temporal”processingdeficits(Tallal, 1980;Tallal et al.,
1996; Merzenichet al., 1996). The processingof speech
involvesperceivingsmalldifferencesamongrapidlychang-
ing signals. Tallal andothershave providedevidencethat
thecapacityto processbrief and/orrapidlychangingacous-
tic stimuli is impairedin somechildren.Tallal’shypothesis
hasgeneratedconsiderableinterestbut is alsocontroversial
andthefocusof ongoingresearch.Oneproblemis thatthe
exactnatureof the“temporalprocessingdeficit” is unclear;
many studiesproviding evidencefor sucha deficit utilized
complex tasksthat involved both perceptualandmemory
components,makingit difficult to determinewhat kind of
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impairmentled to poorperformance.A relatedquestionis
whetherthe deficit is specificto speechor reflectsa more
generalproblemthat also occursin other modalities(Di
Lollo, Hanson,& McIntyre, 1983;Chase& Jenner, 1993;
Galaburda& Livingstone,1993). Finally, theevidencefor
deficits in speechperceptionis strongestin childrenwho
exhibit broaderimpairmentsin theuseof spokenlanguage
(?).

Thesecondimportantquestionis, how doesanimpair-
mentin phonologicalrepresentationinterferewith learning
to read? Phonologicaldyslexics arenot equally impaired
in all aspectsof word reading. Previous theorieshave not
explainedhow deficitsin phonologicalrepresentationgive
rise to the specificpatternsof behavioral impairmentthat
areobservedin thesechildren. Why arecertainaspectsof
readingaffectedandnotothers?

We addressedtheseissuesby introducingimpairments
in the representationandprocessingof informationin the
phonologicalattractor. The principal result was that the
main impactof theseimpairmentswason generatingpho-
nological codesfor unfamiliar letter strings (nonwords).
This is importantbecauseimpairednonword readingis the
signaturedeficit in the behavioral patterntermeddevelop-
mentalphonologicaldyslexia (Temple& Marshall, 1983;
Castles& Coltheart,1993). Thus the model provides a
computationallink betweenphonologicalimpairmentsand
specificaspectsof dyslexic reading. The simulationsalso
providesomesuggestiveleadsaboutpossiblebasesfor pho-
nologicalimpairmentsandwhethertheseimpairmentswill
alsoaffectspeechperception.Onepuzzleaboutthephono-
logical deficit hypothesisis that many dyslexics who per-
form poorly on “phonologicalawareness”tasksappearto
have normal speechperceptionand production. It is not
clearwhy a phonologicalimpairmentwould not affect the
useof spoken languageaswell. Our simulationssuggest
that a phonologicalimpairmentthat is not severeenough
to interfere with basic aspectsof speechperceptioncan
nonethelesshave a significantimpacton readingacquisi-
tion. With a more severe phonologicalimpairment,per-
formanceon both readingand speechperceptiontasksis
affected.

A secondtypeof dyslexia. Although the evidencethat
phonologicalinformationplaysimportantrolesin learning
to read,skilled reading,anddyslexia is compelling,several
recentstudieshave convergedon theconclusionthatsome
readingimpairmentsarenotcausedbyphonologicaldeficits
(Castles& Coltheart,1993; Murphy & Pollatsek,1994;
Manis et al., 1996;Stanovich et al., 1997). Thesestudies
identifieda subgroupof dyslexics whoseword recognition
was significantly below age-appropriatelevels but whose
performanceon nonword readingwas not. Castlesand
Coltheart(1993)andManis et al. (1996)referredto these
childrenas “surfacedyslexics.” This term was originally
appliedto casesof acquireddyslexia in which thepatientis

moreimpairedon readingexceptionwordsthannonwords
(e.g. Pattersonet al., 1985). Thetermwasextendedto the
developmentalsurfacedyslexics in the above two studies
becausethey tooweremoreimpairedin readingexceptions
than nonwords. Thus, phonologicaland surfacedyslexia
arecomplementarypatternsin whicheitherexceptionword
or nonword readingis moreimpaired.Thisdoubledissoci-
ationis classicallyinterpretedwith thedual-routemodelas
arisingfrom separateimpairmentsto thelexical or nonlexi-
cal route.

Differencesbetweenthe subtypesof dyslexic children
are illustratedby the summarydatafrom the Manis et al.
studypresentedin Figure11. Dyslexic participants(mean
age12.4) who were readingat aboutthe 4th gradelevel
werecomparedto groupsof same-agedandyoungernor-
mal readers.Dyslexicswereidentifiedassurfaceor phono-
logical dyslexic on the basisof discrepanciesbetweenex-
ceptionand nonword reading,using the following proce-
dure.Levelsof exceptionword andnonword readingwere
observed in samplesof same-agednormal readers. Sur-
facedyslexic participants(N = 15) weredefinedas those
childrenwhoseexceptionword readingwaslower thanex-
pectedgiven their level of nonword reading,basedon the
regressionof nonword scoreson exception word scores
for thenormalreaders.Conversely, phonologicaldyslexic
participants(N = 17) werechildrenwhosenonword read-
ing waslower thanexpectedgiventheir level of exception
word reading.Thesurfacedyslexics’ performanceclosely
matchedthat of youngernormalreadersin termsof over-
all level of performanceand both groupsreadexception
words more poorly than simple nonwords. Phonological
dyslexics’ performancewasquite different. Their level of
exceptionword readingwas like that of youngernormals
but they weremuchworseat readingnonwords. Thus,al-
thoughbothsurfaceandphonologicaldyslexics performed
morepoorly thansame-agednormalreadersonbothexcep-
tionsandnonwords,thesurfaceparticipantswererelatively
more impairedon exceptionwords and the phonological
dyslexicsonnonwords.

The term “surface dyslexia” is not very informative
aboutthe natureof thesechildrens’ impairmentor its un-
derlying cause. Suchchildrenhave beenlabelledsurface
dyslexic becausethey aremoreimpairedonexceptionsthan
nonwords.However, thisfocusonimpairedexceptionword
readingoverlookstwo prominentaspectsof their behav-
ior. First, mostof thesechildrenareimpairedon both ex-
ceptionsandnonwordscomparedto normalreadersof the
sameage. Althoughsurfacedyslexia is oftendescribedas
a “selective” impairmentin exceptionword reading,these
children’simpairmentis typically not limited to this typeof
word. Second,thereadingperformanceof the“surfacedys-
lexic” childrenin boththeManiset al. andStanovich et al.
(1997)studieswasindistinguishablefrom that of younger
normal readers,whereasthe performanceof the phono-
logical dyslexics was quite different. Beginning readers,
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Figure11. Datafrom Maniset al. (1996),bothdyslexic groupsexhibitedimpairmenton bothexceptionsand
nonwords,but phonologicaldyslexics showeda greaterimpairmenton nonword performance,andthesurface
dyslexics showeda greaterimpairmenton exceptionword performance.Phon= phonologicaldyslexics; Surf
= surfacedyslexics,Sn= same-agednormals,Yn = youngernormals.

like “surface” dyslexics, are poorerat readingexception
words than soundingout nonwords. Insofar as their per-
formanceon both typesof stimuli quantitatively matches
that of youngernormals,the surfacedyslexics canbesaid
to bedevelopmentallydelayed.Becausethey exhibit agen-
eraldevelopmentalreadingdelayratherthana specificim-
pairmentin readingexceptions,we suggestthat the term
“readingdelayed”is moreaccuratethan“surfacedyslexic”
andwe will useit throughoutthe remainderof this article
exceptwhenreferring to earlierstudiesor specificclaims
of thedual-routemodel. In contrast,phonologicaldyslex-
icsexhibit apatternof performancethatis notseenin good
readersat any age. In particular, their nonword readingis
extremelypoorgiventheir level of exceptionword reading.

Manis et al. (1996) provided additionalevidencethat
thesearedistinctsubtypesof dyslexiawith differentcauses.
This evidencederivedfrom performanceon two validation
tasks,phonemepositionanalysisandorthographicchoice.
Theformerinvolvesrepeatingawordor nonwordandiden-
tifying thepositionof aphoneme(e.g.,“what soundcomes
beforethe/ � / in / r>\mt[\�u� /”). Thelatter involvesidentifying
the correctspelling of a word, with a pseudohomophone
asfoil (e.g., RANE vs. RAIN). The phonologicalandsur-
facedyslexicsalsoexhibiteda doubledissociationon these
tasks: phonologicaldyslexics were impairedon phoneme
position analysisbut not orthographicchoiceand surface
dyslexics performedin the oppositeway. The studiesby
Stanovich et al. (1997)andMurphy andPollatsek(1994)

yieldedsimilar results.Takentogether, thesedatastrongly
suggestthattherearetwo distinctpatternsof impairedread-
ing with differentcauses.

Manisetal. (1996)alsoexaminedvariability amongthe
individualswithin eachgroupin orderto determinewhether
any of theparticipantsexhibitedtruly selective impairment
in the readingof exceptionsor nonwords. The dual-route
modelattributesthe surfaceandphonologicalsubtypesto
impairedacquisitionof the lexical andnonlexical reading
mechanisms,respectively. The model thereforepredicts
thattherecouldbechildrenwho arenormalin readingone
typeof letterstringandimpairedontheother, thatis, “pure”
caseswith truly selective impairmentsratherthan“mixed”
patternsin which both exceptionsand nonwords are im-
paired,but onemorethantheother.

In general,the participantsidentified as phonological
dyslexics in the Manis et al. studywereimpairedon both
nonword and exceptionword readingcomparedto same-
agednormalreaders.Defininga “pure” caseof phonolog-
ical dyslexia asonein which theparticipant’sperformance
onexceptionwordswaswithin a standarddeviationof nor-
mal agematchedchildren,but nonword performancewas
one standarddeviation or more below that of the normal
childrenresultedin the identificationof 5 purephonolog-
ical dyslexics (outof 17). Theirdata,alongwith meansfor
thesameagednormalcontrols,areshown in Table5. These
5 participantswereamongtheleastimpairedof thephono-
logical dyslexic participantsandscoredrelatively well on
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Table5
The“Pure” Phonological Dyslexics from the Manis et al.
Study

Phonological
Participant Exception Nonword Test
122 76 65 83
124 67 72 96
138 69 67 83
147 72 72 92
514 65 54 95
MeanSN 75(12) 89(9) 87(10)
MeanPhonDys 49(15) 49(10) 63(20)

Note. Valuesshown arepercentcorrect. Standarddeviationsare
shown in parenthesis.SN = sameagednormalparticipants;Phon
Dys= phonologicaldyslexic participants.

Table6
The“Pure” SurfaceDyslexicsfromtheManisetal. Study

Participant Exception Nonword
101 47 80
139 25 80
148 47 84
149 40 83
1506 47 83
MeanSN 75(12) 89(9)
MeanSurfDys 32(11.6) 72.7(10.4)

Note. Valuesshown arepercentcorrect. Standarddeviationsare
shown in parenthesis.Of the5 purecases,all but 1 wereamong
theleastimpairedof thesurfacedyslexics.

thephonemedeletiontest.
Five “pure” surfacedyslexics (out of 15)werefoundin

the Manis et al. study; thesechildrenwerewithin 1 stan-
darddeviation on nonword readingbut at least1 standard
devition below normalon exceptions.Their dataaresum-
marizedin Table6. All of the “pure” caseswerelessim-
pairedin nonword readingthanthe averageof the surface
dyslexic group,andall but onewerelessimpairedon ex-
ceptionword readingthanthe group. Thus, in a studyof
51 dyslexic children,10 wereidentifiedas“pure” subtype
cases;theseweremildly impairedchildrenwho happened
to fall just below thecutoff criterionin readingonetypeof
stimulusbut not theother.

To summarize,the Manis et al. studyandotherrecent
researchsuggeststhat thereareat leasttwo forms of de-
velopmentaldyslexia. In the phonologicalsubtype,per-
formanceis below age-expectedlevelson both exceptions
andnonwords,but is worseon nonwords;this impairment
appearsto be secondaryto deficits relatedto the repre-
sentationor processingof phonologicalinformation. The
performanceof the childrenin this groupdoesnot resem-
ble that of youngernormal readersbecausetheir level of
nonword readingis so poor given their level of exception

word reading.In thereadingdelaysubtype,performanceis
alsobelow age-expectedlevelsonbothexceptionsandnon-
words,but is relatively worseon exceptions. Their over-
all performancepatterncloselyresemblesthat of younger
normalreaders.Truly selective impairmentsin which the
child is impaired in readingone type of letter string but
normalon theotherarerareandtendto beassociatedwith
mild deficits.Wenext considerhow currentmodelsof word
recognitioncanaccountfor thesedata.

Theoriesof DevelopmentalDyslexia

The dual-routemodeltakesthe surfaceandphonolog-
ical subtypesasstrongevidencefor thetwo namingmech-
anismsthat it entails.Thelexical routeis theonly onethat
cangeneratepronunciationsof exceptionwords. Thenon-
lexical route is the only one that cangeneratepronuncia-
tionsof nonwords.Therefore,animpairmentin thelexical
routewill yield poorexceptionwordperformancebut leave
nonwordnamingunaffected.An impairmentin thenonlex-
ical routewill have theoppositeeffect.

Themodelthatwe have beendevelopingsinceSeiden-
berg and McClelland (1989) doesnot explain thesepat-
ternsin termsof damageto separatesubsystemsthat pro-
cessexceptionwordsandnonwordsbecausetherearenone:
words and nonwords are processedusing the sameunits
andweightedconnections.Ourapproachis insteadto view
thesepatternsasthe resultof differenttypesof damageto
this system.By hypothesis,onetypeof damagehasa big-
ger impacton exceptionword readingandanotheron non-
words. Below we presentsimulationsexhibiting theseef-
fects. This approachto explainingtheimpairmentsis con-
sistentwith the ideathat they arisefrom differenttypesof
neurobiologicalanomalies,but doesnot requirethe auxil-
iary assumptionthatthereareseparatelexical andnonlexi-
cal routes.

Our accountof thesephenomenadiffersfrom thedual-
routetheoryin four majorrespects.

1. The natureof the impairmentin phonologicaldys-
lexia. Coltheart’s view is that it derivesfrom impairedac-
quisition of the grapheme-phonemecorrespondencerules
that are the basisof the nonlexical route. Becausethese
rulesarenotadequatelymastered,thechild mispronounces
nonwords.This accountignoresthefactthatsuchchildren
exhibit broaderimpairmentsin the representationanduse
of phonology. They performpoorly on many non-reading
tasksthat involve theuseof phonology, includingthepho-
nological awarenesstasksthat have beenwidely studied.
The dual-routeframework treatstheseimpairmentsases-
sentiallyunrelated;childrenwho are impairedin learning
grapheme-phonemecorrespondenceshappento also have
additional impairmentsin the representationand use of
phonology. In our approach,the two deficitsarecausally
related:phonologicaldyslexia derivesfrom animpairment
in therepresentationof phonologicalinformation.This im-
pairmentaffectsperformanceon tasksinvolving theuseof
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this
�

information,oneof which is readingacquisition,espe-
cially nonwordreading.

The hypothesisthat phonologicalimpairmentsrather
thanimpairedrule-learningunderliephonologicaldyslexia
derivesfrom two sources.First, asmentionedabove, there
is a vastdevelopmentalliteraturerelatingphonologicalim-
pairmentsto readingdifficulties(e.g.,Shankweiler& Liber-
man, 1989; Olson et al., 1989; Share,1995; Wagner&
Torgesen,1987; Tunmer& Nesdale,1985). Second,the
hypothesisis consistentwith abodyof computationalmod-
eling work. One importantsourcewas Besner, Twilley,
McCann,andSeergobin’s (1990)observationthatbecause
theSM89modelperformedrelatively poorly on nonwords
its performancewas like that of a phonologicaldyslexic.
Plautetal. (1996)demonstratedthatimproving themodel’s
phonologicalrepresentationyielded bettergeneralization.
Harm andSeidenberg (1996)presentedpreliminarysimu-
lation resultsshowing thatdegradinga model’s capacityto
encodephonologicalregularitiesled to poorgeneralization.
Similar resultswerereportedby Brown (1997),who com-
pareda small scalemodelusingSM89 representationsto
oneusingPMSPrepresentations.Consistentwith the ear-
lier work, hefoundthatthenetwork with SM89-stylepho-
nological representationsperformedmorepoorly on non-
words. Theseresultsled Brown to proposethat impover-
ishedphonologicalrepresentationsareimplicatedin devel-
opmentaldyslexia.

Thepresentstudyadvancesthis work by showing that
theseresultsobtainwith morerealisticphonologicalrepre-
sentations,by introducingaphonologicalattractorin which
phonologicalstructureis learned,by providing computa-
tional analysesof why phonologicalrepresentationis re-
lated to generalization,by relating the phonologicalim-
pairmentswe introduceinto the model to variousdeficits
in phonologicalawarenessand speechperceptionseenin
somedyslexic children, and by relating the behavior of
the modelto behavioral dataon children’s readingperfor-
mance.

2. The natureof impairmentin the surface(or “read-
ing delay”) subtype. CastlesandColtheart’s (1993)view
emphasizestheimpairmentin exceptionword readingseen
in thesechildrenbut this is only one part of their behav-
ior. Thebroaderpictureis thatthey aredevelopmentallyde-
layedwith respectto reading,whichyieldsimpairedperfor-
manceon all typesof stimuli not just exceptions.Whereas
Coltheartandcolleaguesexplainthispatternin termsof im-
paireduseof thelexical route,weview it in termsof factors
thatcausethis typeof generaldevelopmentaldelay.

3. Accountsof selective andmixed patterns. We see
it asa problemfor the Coltheartet al. (1993) theory that
somekindsof selective impairmentspredictedby thedual-
routemodelhavenotbeenobserved.In principle,thedual-
routemodelaffordsthepossibilitythatexceptionwordand
nonword readingcouldcompletelydissociate,with perfect
performanceononeandnil performanceontheother, apat-

ternthathasnotyetbeenobserved.In theCastlesandColt-
heart(1993)andManis et al. (1996)studies,therewerea
small numberof childrencategorizedas“pure” surfaceor
phonologicaldyslexics. However, Manis et al. found that
therewasa strongrelationshipto degreeof readingimpair-
ment:the“pure” childrenweremild cases.Below weshow
how thispatternarisesin ourmodel.Thedual-routemodel
however, predictsa much broaderrangeof dissociations
thanhave beenobserved.5 Thefactthatmostdyslexicsare
impairedon bothexceptionsandnonwordsalsopresentsa
problemfor the dual-routemodel. Thesestimuli arehan-
dled by separatemechanismsandso the observed pattern
canonly beexplainedby assumingthat in mostcasesboth
routeshappenedto developanomalously. Why bothroutes
shouldroutinelybe impairedtogetheris unclearandthere
is certainlyno independentevidence(e.g.,from neurobiol-
ogy or neuroimaging)thatthis is so. Our theoryprovidesa
simpleaccountof themixedcases:becauseasinglemecha-
nismis usedto generatepronunciationsfor all letterstrings,
a given type of developmentalanomalywill tendto affect
both exceptionsand nonwords, thoughnot necessarilyto
thesamedegree.Phonologicalimpairmenthasa biggeref-
fect on nonwords thanexceptions;with only a very mild
impairment,nonword performancecanfall slightly below
age-expectedlevelswhile exceptionword readingis within
normallimits. With a moresevereimpairment,both non-
wordsandexceptionsbegin to beaffected;the impairment
continuesto have a biggerimpacton nonwordsbut perfor-
manceonbothtypesof itemsfallsbelow age-expectedlev-
els. Theoppositeeffectsareseenin thesurface/delaytype
of pattern.Thetypesof impairmentsweexplorebelow have
theseeffects.

4. Relationshipsto normalreading. Finally, thereare
differencesin how the two subgroupsof dyslexics com-
pare to normals. Whereasthe surfacedyslexics’ perfor-
manceis very much like that of youngernormal readers,
thephonologicaldyslexics’ performanceis not. Thedual-
mechanismtheoryoffersno explanationfor thesedifferent
patterns.In contrast,we show why onepatternof impair-
menttendscreatebehavior that looks like youngernormal
readingwhereastheotherdoesnot.

5CastlesandColtheart(1996)presentacasestudyof a10year
old child (MI) whosepronunciationaccuracy wasvery low onex-
ceptionwordsbut within normalon regularwordsandnonwords.
However, MI cannotbetakenasproviding evidencefor a normal
nonlexical routewith a selective impairmentin the lexical route
becausehisreadingof eventheitemsthathepronouncedcorrectly
washighly atypical. His readingwasvery effortful andhe often
took several secondsto soundout a word, methodicallyworking
throughletter by letter beforeproducingthe final pronunciation
(e.g.,“c..o..n..t..ex..t... context!”) (Castles,personalcommunica-
tion). Ratherthanaselective impairmentin thelexical route,MI is
bettercharacterizedasaseveremixedcasewhoutilizedanoff-line
compensatorystrategy.
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Phonolov gical Dyslexia Simulation

We simulatedphonologicaldyslexia by impairing the
representationof phonologicalinformationbeforetraining
themodelto read.We thenexaminedhow readingacquisi-
tion proceededundertheseconditions.Thecapacityof the
network to representphonologicalstructurewas impaired
in two waysdiffering in severity. Themild form of damage
involvedimposingadegreeof weightdecayon theweights
in thephonologicalattractor. With thismethod,eachweight
w in theattractoris reducedin magnitudeaccordingto the
formula∆w 2 9 wρ whereρ is thedecayconstant.Weight
decayplacesboundsonthemagnitudesthattrainedweights
can acquire,therebyreducingthe depthof the phonolog-
ical attractors.Pilot studiesrevealedthata slight degreeof
weight decay(usinga decayconstantρ 2 0 : 00005)hada
smalleffecton theability of thenetwork to performphono-
logicaltaskssuchaspatterncompletion.Thisconditionwill
thereforebe referredto as the mild phonologicalimpair-
ment. A moresevereform of damagewasalsoexplored,
which involved removing the phonologicalcleanupunits,
thecontinuedimpositionof weightdecay, andthesevering
of a random50% of the connectionsbetweenthe phono-
logical units. This hasa largereffect on the ability of the
network to encodephonologicaldependenciesandwill be
referredto asthemoderatephonologicalimpairment.After
presentingtheseresults,wewill describea third simulation
with anevenmoreseverephonologicalimpairment.

The effect of differing levels of phonologicalimpair-
menton the patterncompletiontask(seep. 7) wastested.
The meansum squarederror over all simulationsand all
featureswasmeasured.Thenormalmodelproducedmean
errorof 0.08,themildly impairedmodel0.16,andthemore
severelyimpairedmodel0.38(F 3 2 w 216 2 1829,p Z 0 : 001).
Thus, as damageincreases,the ability of the network to
perform the task is graduallydegraded. This result indi-
catesthat the two typesof anomaliesdid degradethe rep-
resentationof phonologicalinformation. We now consider
how readingacquisitionproceedswith thesetypesof im-
pairmentsin place. To comparethe mild and moderate
phonologicalimpairmentconditionsto the normal model
discussedin theprevioussection,eightsimulationsof each
conditionwererun. As with thenormalmodel,a different
randomnumberseedwaschosenfor eachsimulationrun.

Figure12 shows the resultsfor the mild phonological
impairmentcondition. Whereasperformanceon exception
words is essentiallyunaffected, nonword performanceis
significantlyimpaired.Thispatterncorrespondsto a“pure”
phonologicaldyslexic. Thepurecasesobservedby Manis
et al. (1996) were also only mildly impaired. Figure 13
shows theperformanceof themodelwith moderatephono-
logicaldamage.Nonwordperformancedeclinesfurtherand
exceptionsalsobegin to beaffected,yielding the “mixed”
pattern. The differencein meanexception word perfor-
mancebetweenthe normalandseverely impairedmodels

waslargest,19.2%,at500,000trials.

More Severe Impairments. The phonologicalimpair-
mentspresentedaboveinvolvedreducingthecapacityof the
phonologicalattractorin someway, eitherthroughweight
decayor weight decayconjoinedwith lesioning. These
methodsproducethecorrectpatternsof results;smalllevels
of impairmentproduceapurecase,andgreaterimpairments
producea mixed case. For the mixed case,however, the
levelexceptionwordimpairmentwassmallerthanobserved
in theManiset al. study. This is potentiallyproblematic;if
phonologicaldamagecannotproduceimpairmentsin read-
ing aslargeasareseenin thebehavioral literature,it would
underminethephonologicalimpairmenthypothesis.

Thereis a limit on the degreeof impairmentthat can
be producedby simply removing connectionsin the pho-
nologicalattractor;in the limit, with all connectionssev-
ered,performancewould be identical to the Feedforward
simulationdiscussedearlier. However, a moreseriousim-
pairmentwascreatedby making the computationswithin
the phonologicalattractormore noisy. Formally, at each
time slice of processing,the effective weight wxi < j wasde-
rivedfrom theweightwi < j accordingto the formulawxi < j 2
wi < j 3 1 : 0 7 σp 3 t 646 , whereσ is a freeparameter, and p 3 t 6 is
a gaussiandistributedrandomvariablewith standarddevi-
ationσ thatwasvariedacrosssimulations.σ 2 0 : 1 yielded
performanceverysimilar to themoderatephonologicalim-
pairmentconditiondiscussedabove,while σ 2 0 : 2 resulted
in extremely impairedlearning(exceptionsandnonwords
neverscoringbetterthan20%correct).

Figure14 shows thedevelopmentalcurvesfor thenor-
mal and severely impairedmodels. The normal dataare
theaverageof 8 simulationsandthe impaireddatatheav-
erageof simulationsusingsigmasof .115, .125, and .15.
Noisecorruptionis clearlycapableof producinglarge im-
pairmentsin bothexceptionandnonword performance.A
valueof σ 2 0 : 15producedperformancethatis 50%lower
than the normalmodelon exceptions,and 51% lower on
nonwords. The simulationsillustrate the continuity be-
tweendegreeof phonologicalimpairmentandlevel of read-
ing performance:thelargerthenoisecorruptionparameter
σ, theworsetheexceptionandnonword reading.As in the
mild and moderatesimulations,phonologicalimpairment
primarily affectsnonwords,with exceptionsimplicatedat
moreseverelevels.

Table7 shows the resultsof the simulationswith mild
phonologicaldamage(weight decay), moderatedamage
(lesioning),and variousvaluesof σ. All networks were
evaluatedat 1.5 million trials. The table also provides
datafrom individual participantsin theManiset al. study.
Theparticipants’performancevariedconsiderably;onewas
classifiedas normal, two were moderatelyimpaired,and
two moreseverely. Eachsimulationcreatesadeficitpattern
that is closelymatchedby a participantin the behavioral
study.
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Figure 12. Impairmentof nonwords(left) in thepresenceof mild phonologicaldamage.No effect is seenon
exceptionword reading(right).
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Figure 13. Greaterimpairmentto nonwordsresultingfrom moderatephonologicalimpairment(left). Excep-
tion wordsalsobegin to beaffected(right).

The ComputationalBasis of Nonword Impairments.
Both the behavioral andsimulationdatasuggestthat pho-
nologicalimpairmentshave their mainimpacton nonword
generalization.We now useanalysesof thenetwork to get
at why this outcomeobtains.Thebasicinsight is this: Our
model containsa phonologicalattractorstructurewhose
function is to complete,cleanup or repair incompleteor
noisyphonologicalpatterns,usingtheknowledgeof phono-
logical structurethat is representedin theseweights.Hav-
ing this structurein placein thenormalmodelaffectswhat

is learnedin the weightsmediatingthe computationfrom
orthographyto phonology. Specifically, with the clean-up
apparatusin place,the mappingthroughthe hiddenunits
canberelatively imprecise:theoutputfromthehiddenunits
only hasto beexactenoughfor theclean-upapparatusto re-
solve into thecorrectpattern.This imprecisionturnsout to
be relevant to nonword generalization.Without the clean-
up apparatus,themappingfrom orthographyto phonology
mustbemoreprecise;themodelcanlearnthemappingsfor
words in the training setbut generalizespoorly. In short,
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Figure 14. Invasive phonologicalimpairmentsimulation. Nonwords(left) andexceptionwords(right) are
bothseverelyimpaired,andcannotrecover.

Table7
Phonological impairment,comparedwith participantsfrom
Manisetal. (1996)

Level of
Score Impairment

Exc NW Exc NW
Participant76† 76 83 +1 -6
Model,Mild Impair. 68 65 0 -10

Participant44† 67 73 -8 -16
Model,ModerateImpair. 60 58 -8 -17

Participant138‡ 69 67 -6 -22
Model,σ 2 0 : 115 42 52 -11 -22

Participant151‡ 54 56 -21 -33
Model,σ 2 0 : 125 49 41 -19 -34

Participant319‡ 32 37 -43 -52
Model,σ 2 0 : 15 18 24 -50 -51

Note. †Normal Participant. ‡PhonologicalDyslexic Participant.
Participant level of impairment is the difference between
participant’s score and the mean for the same-agednormal
controls(exc: 75%,nw: 89%). Model level of impairmentis the
differencebetweenthemodel’sscoreandthemeanfor thenormal
model (exc: 68%, nw: 75%). All model measurementswere
takenat1.5M iterations.

the clean-upapparatusdiscouragesoverfitting the training
data.

To demonstratetheseeffects more clearly, we exam-
inedthephonologicaloutputcomputedonthebasisof input
from thehiddenunits in theabsenceof any input from the
phonologicalattractornetwork. This wasaccomplishedby
taking trainednetworks andthenperformingthe testwith
thephonologicalweightsremoved.Theoutputof thesenet-
works werecomparedthe computedoutputfor eachword
to theveridicalpattern.Thisyieldsanindex of theprecision
of themappingperformedby thehiddenunits.Thenormal
model’s errorwas36.7, themildly impairedmodel’s error
was14.9,andthemoreseverelyimpairedmodel’serrorwas
8.4 (F 3 2 w 216 2 1357,p Z 0 : 001). Thus,the outputof the
hiddenunits is lessprecisefor the normalattractormodel
thanin thetwo phonologicallyimpairedconditions.

We have hypothesizedthat the effect of requiring the
hiddenunits to performa moreexactcomputationis over-
fitting of the training data,which interfereswith general-
ization. In orderto examinethis,we constructeda testthat
wasperformedon both thenormalandmoderatelyphono-
logically impairednetworks. The inconsistentneighbor-
hood-EAT wasexamined. This neighborhoodhasa large
numberof rule governedpronunciations(e.g.,EAT, MEAT,
BEAT, SEAT, TREAT) andseveralexceptions(e.g.,GREAT,
THREAT, SWEAT). A typical run of thenormalmodelwas
used,which scoredcorrectly on all words and nonwords
containingthis word body. We alsoexamineda run of the
phonologicallyimpairedsimulationthat producedcorrect
outputfor all of thewordswith this bodybut anerroron a
similarnonword GEAT.

Oneof the featuresthat distinguishesthe / y / phoneme



PHONOLOGY, READING ACQUISITION AND DYSLEXIA 25

Figure 15. Normalmodelhiddenunit contribution to tonguefeaturefor words(top left to bottomright) EAT,
MEAT, TREAT andthenonword GEAT. Positivevaluesareshown in black,negativevaluesaregrey. Eachcell’s
shadedareadepictsits magnitudefrom 0.0to 0.5.

from / � / is tongue. By looking at the hiddenunit contri-
butionsto this featureover a setof informative words,we
canbegin to seewhatit is aboutthenormalnetwork thataf-
fordsgeneralization,andwhataboutthephonologicallyim-
pairednetwork thatpreventsit. Hintondiagramswereused
to visualizevaryingcontributionsof thehiddenunits.Each
hiddenunit is connectedto thetonguefeatureby a variable
weight;theactivity thateachhiddenunit contributesto that
featureis the productof the hiddenunit’s outputandthat
weight. In thefiguresthat follow, theproductof eachhid-
denunit’sactivity andtheweightconnectingthatunit to the
tonguefeatureis plotted.Figure15showsthecontributions
of thehiddenunitsto thetonguefeaturefor thewordsEAT,
MEAT, TREAT andthenonword GEAT. Figure16shows the
correspondingplots for thenetwork with moderatephono-
logical impairment.A scaleof 9 0 : 5 to 0 : 5 wasusedfor all
Hintongraphs,with thesizeof theshadedboxrepresenting
theratioof thevalue’smagnitudefrom0 : 0 to z 0 : 5. A value{ 0 : 5 or Z|9 0 : 5 resultedin asolidcell in theplot. Positive
valuesareshown in black,negativevaluesin grey.

Figure15 shows that the hiddenunit activities for the
variouswords arequite similar. The hiddenunits areall
receiving differentactivation from theorthographiconsets

of thewords,andyet for thepurposesof the tonguefeature
onthevowel thewordsarebehaving essentiallyalike. Con-
trastthis with Figure16, activationsfor thesamewordsin
the impairedmodel. The figure shows that the phonolog-
ical impairmentresultsin many moreunits makinglarger
contributions,bothpositiveandnegative,to thetonguefea-
ture. It alsoshows that the wordsaremoredifferentfrom
eachotherandfrom thenonword GEAT thanin thenormal
condition.

Borrowing a techniquefrom neuroimagingstudies,we
useda subtractive methodto highlight theseeffectsmore
clearly. Thehiddenunit activation“images”for thenormal
model’s representationof EAT andMEAT weresubtracted,
aswereEAT andTREAT, andMEAT andTREAT. Theaver-
ageabsolutevalueof thesedifferencesdifferencesfor the
normalandimpairedmodelsareplottedin Figure17. For
thenormalmodel,thedifferencesaresmallbecauseit rep-
resentsthe threewordsvery similarly. In contrast,thedif-
ferencesarelargerfor the impairedmodelbecausethereis
lessoverlapin its representationsof thethreewords.

A similarsubtractiveprocedurewasperformedtoassess
differencesbetweenthemodels’representationsof thenon-
word GEAT andthe threerhyming words. The difference
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Figure 16. Moderatelyphonologicallyimpairedmodel’s hiddenunit contribution to tonguefeaturefor (top
left to bottomright) EAT, MEAT, TREAT andGEAT. Eachcell’s shadedareadepictsits magnitudefrom 0.0 to
0.5.

Figure17. Meandifferencesbetweenhiddenunit activity for wordsMEAT, TREAT, andEAT for normal(left)
and phonologicallyimpairednetwork (right). The normal modelshows small differencescomparedto the
impairedone,indicatingthat thethreewordsaremoresimilarly representedin hiddenunit space.Eachcell’s
shadedareadepictsits magnitudefrom 0.0to 0.5.
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Figure 18. Meandifferencesbetweenhiddenunit activity for thenonword GEAT andEAT, MEAT andTREAT

for normal(left) andphonologicallyimpairednetwork (right). The phonologicallyimpairednetwork shows
greateraveragedifferencesbetweenthewordsandthenonword. Eachcell’s shadedareadepictsits magnitude
from 0.0to 0.5.

betweenEAT and GEAT wascomputedandstored,aswas
the differencebetweenMEAT and GEAT, and TREAT and
GEAT. Theabsolutevaluesof thesedifferenceswereaver-
agedandplottedin Figure18. Thedifferencesaresmaller
for thenormalmodel.

Table8 shows theseeffectsnumerically. Themeanab-
solutevaluesof thedifferencesof thehiddenunit contribu-
tionsto thetonguefeaturefor EAT, MEAT, TREAT, GEAT are
shown, for both the normalandimpairedsimulation. The
aggregateinput andoutputof the tonguefeaturefor each
item is shown aswell. For thenormalnetwork, thehidden
unit outputsfor thefour itemsareverysimilarto eachother.
The effect of this similarity canbe seenin the outputcol-
umn,wheretheoutputsareall within thresholdof thetarget
valueof zero.

In contrast,the impairednetwork shows large differ-
encesin themeancontributionsfromthehiddenunits,rang-
ing from 0.14to 0.22. The aggregateinputsto the tongue
featurefor the threewordsarevery similar, but thediffer-
encesbetweenthe hiddenunits are large. Thus, the im-
pairedmodel is able to pronouncethe threewords EAT,
MEAT, TREAT correctly, but in a qualitatively differentway
from the normal model. The normal model pronounces
EAT, MEAT, TREAT usingverysimilarhiddenunit represen-
tations,whereasthe impairedmodelproducescorrectout-
putusingdifferentrepresentationsof thewords.

The impactof representingthe wordsdifferently from
eachother is seenin performanceon the nonword GEAT.
The normalmodelcanpronouncethe nonword GEAT cor-
rectly, due to the overlap in hidden unit activity among
EAT, MEAT, TREAT. Theimpairedmodelcannotpronounce
GEAT correctlybecausetherepresentationsit hasdeveloped
for thewordsdonotoverlapenough;thenonwordisnotsuf-
ficiently closeto any of theword representationsto support
thecorrectpronunciation.Putsimply, thenormalnetwork

treatsthe threewordsEAT, MEAT, TREAT similarly, andis
henceableto pronouncea similarnonword GEAT. Theim-
pairednetwork treatsthethreewordsdifferentlyfrom each
other, representingthemmorelike unanalyzed,individual
wholeswith lessoverlappingstructure.Thereforeit cannot
take advantageof the similarity betweenthemwhenread-
ing the nonword, even thoughit can correctly pronounce
thewords.

Measuringthe sensitivity of the hidden unit layer to
a particular input featureis also illuminating. By taking
thedifferencein hiddenunit activity, asprojectedonto the
tonguefeature,for the words EAT and MEAT, we cansee
the overall sensitivity the network hasdevelopedto the M

orthographicfeature.More formally, the sensitivity to the
M featureis definedass 2 ∑100

i ? 0 @ hi
eat 9 hi

meat @ , wherehi
eat is

thecontributionof the ith hiddenunit to the tonguefeature
for theword EAT, while hi

meat is thesamemeasurefor the
word MEAT. A network which hasno sensitivity to M in
thecontext of theword MEAT would measures 2 0, while
a network which is attendingto theM would have a higher
svalue.Thesvalueis ameasureof thedegreeto which the
network has formed word specific representationswithin
theregularpoolof wordsendingin EAT.

The model with moderatephonological impairment
shows a higherlevel of sensitivity to the M letter in MEAT

thanthenormalmodeldoes(Figure19). More importantly,
the sensitivity is monotonicallyincreasingwith training,
whereasthe normalmodeldevelopsa lower level of sen-
sitivity anddoesnot increase.As training progresses,the
phonologicallyimpairedmodelis becomingmoresensitive
to spuriousaspectsof theinput; theletterM is notnecessary
for thepronunciationof thevowel in theword MEAT but the
impairedmodelis attendingto suchinformationanyway.

The -EAT examplesuggestthat thephonologicallyim-
paired networks develop solutionsto the orthographyto
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Table8
MeanDifferencesin HiddenUnit Contributions

MeanDifferences InputFrom Feature
EAT MEAT TREAT GEAT HiddenUnits Output

NormalNet
EAT 0 0.04 0.04 0.04 -0.72 -0.01
MEAT 0 0.05 0.05 -0.87 0.03
TREAT 0 0.05 -0.42 -0.02
GEAT 0 -0.91 -0.09

ImpairedNet
EAT 0 0.14 0.17 0.15 1.08 -0.10
MEAT 0 0.24 0.16 1.15 -0.03
TREAT 0 0.22 0.98 -0.14
GEAT 0 2.16 0.59

phonologymappingproblemthat are more word specific
thanwhenthephonologicalattractorapparatusis function-
ing. However, we needto considerwhetherthis patternre-
flectsageneralpropertyof thenetworksratherthanidiosyn-
crasiesassociatedwith -EAT. To test this, a setof neigh-
borhoodswas identified. A neighborhoodwasdefinedas
a set of words whoseorthographicvowel and codawere
identical, and also rhymed (for example GAVE, BRAVE,
SAVE but not HAVE). A total of 443 neighborhoodswere
foundin thetrainingcorpus.Thestandarddeviation of the
hiddenunit contributionsto the vowel’s placeof articula-
tion was measuredfor eachneighborhood.This number
wasaveragedover all hiddenunits. The averageof these
measuresoverall neighborhoods,andoverall normalmod-
els was then computed. This procedurewas repeatedfor
the moderatelyphonologicallyimpairedmodel. The nor-
mal modelsshowed a meanstandarddeviation of 0.1046
while the impairedmodelshowed a meanstandarddevia-
tion of 0.2818.Themeanstandarddeviationwithin aneigh-
borhoodwas also much higher in the impairednetworks
(F 3 1 w 146 2 225: 5, p Z 0 : 001). This indicatesthat in gen-
eral the hiddenunit representationsin the impairedmodel
aremuchmorediversewithin neighborhoodsthanthenor-
malmodel.

To summarize,thetaskof thehiddenunitsin thephono-
logically impairedsimulationis moredifficult, in thattheir
mappingonto phonologymust be more accuratethan in
the normal model. This requirementfor greateraccu-
racy causesthe modelto attendto moreword-specificas-
pectsof the input; overfitting the training datais the re-
sult. Thus, the model is biasedto becomea whole-word
reader, forming overly divergentrepresentationsfor words
with orthographicandphonologicalcommonalities.Having
formedtheseword specificrepresentationsthen interferes
with computingoutputfor novel items.6

6It is theoreticallypossibleto createtheoverfitting problemin
a model by othermeans,suchas the useof too high a ratio of
hiddenunits to patterns.This could resultin poorgeneralization

This accountis consistentwith thefinding thatphono-
logical dyslexics sometimesexhibit greaterrelianceon or-
thographicstructurethannondyslexics. Rack(1985)found
thatdyslexicshada greatersensitivity to orthographiccues
in a recall taskthannormals;conversely, they showedless
sensitivity to phonologicalcues. Other studiessuggest-
ing that dyslexics show greatersensitivity to orthographic
structurehavebeentakenasindicatingthatthey useamore
visually-basedstrategy in reading(seeSnowling, 1991,for
areview). Ourview is thatthisdependenceonorthographic
structureis not a strategy but just a consequenceof how
themappingbetweenorthographyandphonologyis learned
when the capacityto representphonologicalstructureis
limited.

As wehavenoted,amild phonologicalimpairmentonly
affectsnonwordswhereasa moreseverephonologicalim-
pairmentaffectsexceptionsaswell. The reasonswhy ex-
ceptionsareeventuallyaffectedfollow from the previous
analysis. Phonologicalimpairmentrequiresgreateraccu-
racy in themappingfrom thehiddenunitsontophonolog-
ical output. Thegreatertheimpairment,thegreaterthere-
quiredaccuracy. Achieving higher levels of accuracy re-
quiresthe recruitmentof more hiddenunits. Comparing
Figures15 and 16, it is apparentthat the phonologically
impairedsimulationusedmorehiddenunits in thecompu-
tationthanthenormalmodel. As morephonologicaldam-
agedemandsgreaterhiddenunit resourcesto performac-
curatemappings,thereare fewer computationalresources
availableto performmorespecifictasks,suchasexception
word decoding.Hence,we startto seean exceptionword

evenin thepresenceof normalphonology. However, suchadevel-
opmentalcondition(entirelynormalword readingandphonology
but very poornonword reading)is asyet unattestedin the litera-
ture. Additionally, the introductionof a training regime that ac-
tively discouragesthecomputationof thesoundpatternof aword
(“instructional”phonologicaldyslexia; see?) couldresultin poor
generalizationperformancein theabsenceof phonologicalimpair-
ments.
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Figure 19. The sensitivity to the letter M in processingthe
wordsMEAT versusEAT; normalandmoderatelyphonologically
impairedmodel.

readingdeficitatmoreseverelevelsof impairment.
This analysisof thebasisof exceptionword deficitsin

phonologicaldyslexia is interestingbecauseit is closely
relatedto the accountof exceptionword errorsin surface
dyslexia presentedbelow. In surfacedyslexia, exceptions
aremoreimpairedthannonwords.Onewayto producethis
patternis by reducingthenumberof hiddenunitsmediating
thecomputationfrom orthographyto phonology. Reducing
the computationalcapacityof the modelin this way hasa
biggerimpacton learningexceptionsthanon learningreg-
ular spelling-soundcorrespondences.Our accountof the
exceptionworddeficit in severeformsof phonologicaldys-
lexia is thatthephonologicalimpairmentindirectly hasthe
sameeffect: the capacityof the network is taxed because
the orthography} phonology pathway must encodemore
of the regularitiesin the system,leaving fewer resources
available for exceptions. Thus, in phonologicaldyslexia,
impairedexceptionword readingarisesfrom lack of com-
putationalresourcesin the orthography} phonology path-
way, indirectly causedby theprimaryphonologicaldeficit.
In surfacedyslexia, impairedexceptionword readingarises
moredirectly from reducedcomputationalcapacitycaused
by thelack of hiddenunits. Thus,we have achieveda uni-
fiedaccountof exceptionworderrorsin thetwo cases.

Other “pure” phonological dyslexics. The analysisof
thephonologicallyimpairedmodelpredictsthatmild levels
of impairmentyield purecases,whereasmoreseverelev-
elsof impairmentproducemixedcases.As discussedear-
lier, theseresultsareconsistentwith theManisetal. (1996)
study. However, therearecasestudiesin theneuropsycho-
logical literatureof pureyet severecasesof developmental
phonologicaldyslexia. Our view is thatthesepatients’per-
formancereflectotherfactorsoutsidethescopeof ourmod-
els. Oneimportantfactordiscussedby Manis et al. is the

MAKE /mAk/

Context

Meaning

Orthography Phonology

Figure 20. The “triangle” modelfrom Seidenberg andMcClel-
land(1989).

kind of remediationtheindividualhasreceived.For exam-
ple,HowardandBest(1996)discussedpatientMJ,whowas
in hereightiesat thetimeof testingbut describedasa “de-
velopmental”phonologicaldyslexic becauseshewasalife-
long poor readerwithout any known neuropathology. She
exhibited a severenonword readingimpairmentwith nor-
mal word reading.This typeof patientcanbeexplainedby
appealto the“triangle” model(Seidenberg & McClelland,
1989)shown in Figure20. Generatingthepronunciationof
a letterstringnormally relieson the computationfrom or-
thographyto phonology. However, if this pathway is com-
pletelydisabledby brain injury, it is possibleto pronounce
familiarwordsby meansof thecomputationfrom orthogra-
phy to semanticsto phonology. This part of the network
doesnot supportthe pronunciationof nonwords because
they arenotrepresentedin semantics.PatientMJ showsex-
tensiveevidenceof usingthissemantically-basedpronunci-
ation:herreadinglatenciesrevealedexaggeratedsensitivity
to semanticvariablessuchasimageability, andlower sen-
sitivity to spelling} soundpropertiessuchasconsistency.
PatientMJ hashadampleopportunityto developcompen-
satorystrategies to dealwith her developmentaldyslexia.
Extensiveremediationemphasizingsemanticapproachesto
readingcanbeexpectedto resultin improvedword reading
at theexpenseof nonword reading,andassuchcanleadto
a relatively purenonwordnamingdeficit.

Speech Impairmentsand Phonological Dyslexia. A
largenumberof studieshave investigatedwhetherthepho-
nologicaldeficitsseenin many dyslexics aresecondaryto
morebasicimpairmentsin theprocessingof speech.There
is goodevidencefor this relationshipin childrenwith de-
velopmentallanguageimpairments(sometimescalled“spe-
cific languageimpairment”;Bishop,1992). Many of these
childrenhave animpairmentin speechperceptionandpro-
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duction,which is thoughtto underlietheir deficitsin other
aspectsof languageincludingphonology, morphologyand
syntax(Leonard,McGregor, & Allen, 1992;Leonard,Sab-
badini,Leonard,& Volterra,1987;Tallal & Piercy, 1973a,
1973b; Tallal, Stark, & Curtiss,1976; seeBishop, 1992,
1997and? for reviews).By definitionphonologicaldyslex-
ics are poor readerswhoselanguageskills are otherwise
thoughtto be normal. If a speechperceptiondeficit were
theproximalcauseof phonologicaldyslexia, it wouldhave
to be onethat haslittle impacton comprehensionor pro-
ductionyet interfereswith reading.

Studiesof speechperceptiondeficits in dyslexia have
yielded mixed results. Most studieshave focusedon the
categoricalperceptionof phonemessuchas/ ~ / and/ � /. In
several group studies(e.g. Godfrey, Syrdal-Lasky, Mil-
lay, & Knox, 1981; Werker & Tees,1987; Reed,1989;
De Weirdt, 1988;Maniset al., 1997)dyslexic childrenex-
hibitedless-pronouncedcategoricalperceptioneffectsthan
normals.However, theeffectshaveoftenbeensmallandnot
statisticallyrobust.Otherstudiesfailedto yield sucheffects
at all in someconditions.Hurford andSanders(1990),for
example,foundgroupdifferencesin phonemeperceptionin
a studyof secondgradenormalanddyslexic children,but
failedto find any suchgroupdifferenceswith fourth grade
children. Moreover, analysesof individual participantsin
Maniset al. (1997)showedthatspeechperceptiondeficits
wereonly seenin a subsetof dyslexic children. Although
additionalresearchneedsto be conducted,it appearsthat
many dyslexics who exhibit cleardeficitson testsof pho-
nologicalknowledgeperformnormally on simple testsof
speechperception.

As wewill show, thephonologicalattractorcomponent
of themodelexhibitscategoricalperceptionof consonants.
We could thereforeexaminewhetherthe kinds of phono-
logical impairmentsthatwe have introducedin simulating
phonologicaldyslexia createan impairmentin this aspect
of speechperception.

Categorical perception experiments typically utilize
both identificationand discriminationtasks. In the iden-
tification task,stimuli areconstructedwith consonantsthat
vary linearly along a continuumbetweentwo exemplars,
for examplefrom / ~ / to / � /, whichdiffer in theirsecondand
third formants.Participantsareaskedto label thesetokens
asinstancesof / ~�� / or / ��� / in a forcedchoice. Their iden-
tification functionsarethenanalyzedwith respectto points
alongthecontinua.A standardfinding is thatparticipants’
identificationfunctionstendto berelatively flat andconsis-
tent within a category boundary, with a very sharptransi-
tion at the boundarypoint. Although the stimuli vary lin-
earlyfrom onetokento another, participants’identification
curvesaremarkedlynonlinear.

In the standarddiscrimination task, participantsare
givenpairsof stimuli andasked to judgewhetherthey are
thesameor different.Thebasicphenomenonis thatpartic-
ipantsarevery poorat discriminatingstimuli within a cat-

egory, andmuchbetterwhenthe contrastingstimuli span
a category boundary. Whendiscriminationscoresareplot-
tedagainststimuli pairs,a sharppeakis typically foundat
thecategory boundary, with muchpoorer(andflatter)per-
formancewithin categories(Liberman,Harris,Hoffman,&
Griffith, 1957; seealsoHarnad,1987). Werker andTees
(1987) and Godfrey et al. (1981) examinedthe categori-
calperceptionof phonemesby normalandreadingdisabled
children. Both studiesfound group effects on the slopes
of the identificationfunctions; the disabledreaders’iden-
tification curveswereslightly lesssteepthanthat of con-
trol children,althoughthe effect wasonly marginally sig-
nificant in Werker andTees(p � 0 � 06) andin oneof two
analysesby Godfrey et al. (p � 0 � 08 in one, p � 0 � 01 in
another). Werker and Teesand Godfrey et al. also an-
alyzedthe children’s discriminationscores. Both studies
useda formuladevelopedby PollackandPisoni(1971)for
predictingdiscriminationperformancefrom a participant’s
identificationcurves. Whencategorical perceptionis nor-
mal, this formulaaccuratelypredictsdiscriminationscores.
The matchbetweenpredictedandobtaineddiscrimination
thereforeprovidesanindex of deviationsfrom truecategor-
ical perception.This procedureprovidesa moresensitive
assessmentof thechild’s phonemeperceptionthanjust the
identificationtask.It is possiblethata relatively steepiden-
tification functionmight be obtainedeven if perceptionof
stimuli weremorecontinuousthancategorical,throughthe
applicationof asimplethresholdingdecisioncriteria(Mas-
saro,1987).However, if perceptionweretruly lesscategor-
ical, thechild would thenshow discriminationperformance
that is different from that predictedby their identification
curve,in contrastto normals.

In both Werker and Tees(1987) and Godfrey et al.
(1981), the reading disabled children’s discrimination
scoresweremoredeviant from theirpredictedabilitiesthan
thenormalchildren’s. Thusit wasconcludedthattheirper-
ceptionof the speechtokenswasnot asstronglycategori-
cal. Theseeffectswerestrongerandmorereliablethanin
theanalysesof theslopesof theidentificationcurves.

We replicatedtheWerker andTees(1987)andGodfrey
et al. (1981)studies,examining the normaland impaired
models’processingof speechstimuli like theonesusedin
categoricalperceptionexperiments.Stimuli rangingalong
a continuumfrom / ~ / to / � / werecreatedby linearly inter-
polatingfeaturevalues. Eachith weightedfeaturexi was
createdfrom the ith featureof a veridical / ~ / (bi) andthe
ith featurefrom a veridical / � / (di) accordingto the for-
mula xi ��� 1 � 0 � α � bi � αdi , whereα rangedfrom 0 � 0 to
1 � 0. Eleventokenswerecreated,equallyspacedalongthe
continua,by varyingα from 0 � 0 (a pure/ ~ /) to 1 � 0 (a pure
/ � /) in stepsof 0 � 1. The α parametercanbe thoughtof as
the proportionof / � / to / ~ / in the generatedtokens. The
vowel / � / wasplacedin the vowel slot to createthe com-
pletesetof tokensrangingfrom / ~�� / to / ��� /. Thesestimuli
werepresentedto thenormalnetwork andto themild and
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Figure21. Normalandphonologicallyimpairedmodels’identificationcurves(left). Comparewith datafrom
WerkerandTees(1987),Figure2 (right).

moderatelyimpairedmodels.Resultsfor thetwo impaired
modelswereaveragedtogether, on theview thatthepartic-
ipantsin thebehavioral experimentsalsovariedin termsof
theseverity of theirphonologicaldeficits.

Stimuliwerepresentedasfollows. For thefirst two time
ticks, the phonologicalunitsof thenetwork wereclamped
with therepresentationof the testtoken. Thenetwork was
then allowed to run until five ticks, with the valuesun-
clamped.Thephonologicalrepresentationattheconclusion
of fivetickswasthenrecorded.Theeuclideandistancesbe-
tweenthisoutputphonologicalrepresentationandveridical
/ ~ / and/ � / werecalculated.

To simulatethe identificationtask, the distancesfrom
the networks’ output to / ~ / (∆b) and / � / (∆d) were used
to generatea probability of labeling the output as either
of thosestimuli. The probability of an / ~ / response,pb

was computedas pb � 1 � 0 � � ∆d � � ∆d � ∆b �Q� . The prob-
ability of an / � / responsewas the mirror image: pd �
1 � 0 � � ∆b � � ∆d � ∆b �4� (notethatpb � pd � 1 � 0). Theseprob-
abilitieswererecordedfor eachnetwork’s responseto each
stimulustoken.

Figure21 depictsthe identificationcurvesfor the nor-
mal andphonologicallydisabledmodels,alongwith data
from Werker and Tees(1987). The phonologicalimpair-
mentsthatwe usedto simulatephonologicaldyslexia pro-
duce identification curves that qualitatively replicate the
Werker andTeesdata. Thephonologicallyimpairedmod-
els’ identificationcurvesappearlesssteepandarelessab-
soluteat theendpoints,comparedwith thenormalmodels.
Following Werker andTeesandGodfrey et al., thenormal
andimpairedmodels’identificationcurvesweresubmitted
to a logistic regressionanalysis;asin their studies,the im-

pairedsimulations’slopeswerereliably shallower thanthe
normalmodels’(F � 1 � 22� � 8 � 6, p � 0 � 01).

To simulatethe discriminationtask, we examinedthe
processingof tokens that differ by two intervals in Fig-
ure21, asin a standardtwo-stepdiscriminationtask.Each
steprepresentsa 10% differencebetweenstimuli; thusall
pairs of stimuli differed by 20%. The model was run
on eachstimulus in a pair using the sameprocedureas
above, anddiscriminationwasmodeledby computingthe
euclideandistancebetweenthecomputedoutputs.Thisdis-
tancewasscaledby aconstantto yield a probabilityof cor-
rectly discriminatingthe tokens: the closerthe euclidean
distanceof the outputs,the moredifficult the discrimina-
tion. Thenormalmodelwasusedasa baselineto establish
this constant;it wasfound thatdividing the euclideandis-
tanceby eight yieldeda goodmatchto the predicteddis-
criminationfunction.

Figure22presentstheresults.Thenormalmodel’sdis-
criminationcurve closelymatchesthepredictedcurve,and
shows theexpectedsharppeakin performanceat thecate-
gory boundary(at about60%,asin Figure21), with much
worseperformancewithin thecategory. Theimpairedmod-
els’ discriminationscores,in contrast,do not matchthose
predictedby their identificationscores.Further, the char-
acteristicsharppeakin performanceat theboundaryis not
seen. As in the Werker andTeesstudy, we performedan
analysisof varianceusinggroup(dyslexic or normal)and
pairing(0-20,10-30,etc.)asfactors,andthedifferencebe-
tweenpredictedandactualvaluesasthedependentvariable.
Therewas a reliable effect of group (F � 1 � 198� � 191� 6,
p � 0 � 001)andpairing(F � 8 � 198� � 2 � 3, p � 0 � 02). These
resultsmatchthoseobtainedby Werker & Tees’s two step
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Figure22. Predictedandobserveddiscriminationvaluesfor thenormalandphonologicallyimpairedmodels.

conditionanddemonstratethatthephonologicallyimpaired
modelsexhibited lessstronglycategorical perceptionthan
thenormalmodels.

BecauseManis et al. (1997) found that the group ef-
fectsthey observedon theslopeof theidentificationcurves
weredrivenby only a subsetof thedyslexic children,with
many of the phonologicaldyslexics exhibiting perfectly
normalidentificationcurves,we repeatedtheaboveexperi-
mentsusingonly thenormalandmildly impairedmodelsas
groups.The slopesof the mildly impairedconditionwere
slightly lower thanthat of the normalmodels,but in con-
trast to the above experimenttherewasno reliablegroup
difference(F � 1 � 14� � 1 � 0). The discriminationtest,how-
ever, still yieldeda reliablegroupeffect (F � 1 � 126� � 219,
p � 0 � 001).

In summary, the mild phonologicalimpairmenthad a
significant impact on readingacquisitionbut not on the
phonemeidentificationtask. This result is consistentwith
a body of findingsindicatingthat dyslexia is not strongly
associatedwith significantlydeviant identificationperfor-
mance. As the Werker andTeesandGodfrey et al. study
suggested,effectsof this mild impairmentcanbedetected
usingmoresensitive measuressuchasphonemediscrimi-
nation. A moreseverephonologicalimpairmentyieldsef-
fectson both tasks. This pattern,thoughnot characteris-
tic of most dyslexics, is typical of children with Specific
LanguageImpairment(SLI; see?). Thesechildrenexhibit
impairmentsin theuseof spokenlanguage;their identifica-
tion functionsaremarkedly deviant; andthey arealsotyp-
ically dyslexic. Thus,phonologicaldyslexia mayrepresent
amilder form of theimpairmentseenin many casesof SLI.

A final issue concernsthe relationshipbetweenthe
typesof anomalieswehaveusedto createphonologicalim-

pairmentsandcurrenthypothesesaboutdyslexia and lan-
guageimpairment. We createdtheseimpairmentsin two
ways: by modifying thearchitectureor by addingnoiseto
thecomputationswithin thephonologicalsystem.Both of
thesemanipulationsreducethe capacityof the network to
encodeaspectsof phonologicalstructure,which compro-
misesreadingin specificways. The relationshipbetween
thesetypesof impairmentsandthe anomaliesthat under-
lie phonologicaldyslexia is unknown. Our modelsarenot
closelylinkedto neurobiologyandsothesetypesof impair-
mentscannotbe equatedwith specificbrain mechanisms.
Given that theseimpairmentsgive rise to the right sorts
of behavioral effects,thereis reasonto investigatefurther
what their neurobiologicalcorrelatesmight be. At a be-
havioral ratherthan neurobiologicallevel of analysis,the
simulationscanbeconsideredin light of Tallal’shypothesis
thatdyslexia andlanguageimpairmentareassociatedwith
a temporalprocessingdeficit. Our manipulationsinvolved
changingtherepresentationalcapacityof thesystemandthe
efficiency with which patternswerecomputed.Neitherof
theseinvolvesdirectmanipulationof thetemporalprocess-
ing dynamicsof themodel.Rather, theeffect of bothtypes
of anomaliesis to disturbthe model’s temporaldynamics:
themodelconvergesmoreslowly andlessaccuratelyontar-
getpatterns.Thesimulationssuggestthatit wouldbeuseful
to think of temporalprocessingimpairmentsasoneof the
consequencesof morebasicunderlyingdeficits.

ReadingDelayDyslexia

Our accountof the “surface” form of developmental
dyslexia is that it reflectsa generaldelay in the acquisi-
tion of readingskill ratherthana selective impairmentin
readingexceptionwords or in the “lexical route.” In the
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early stagesof acquisition,children who are learning to
readnormally are poorerat readingexceptionsthan sim-
ple nonwords.Hencetheirperformancefits thepatternthat
in olderchildrenhasbeencalled“surfacedyslexia.” In the
delaypattern,the dyslexic child’s performanceis like that
of a youngernormal reader. This contrastswith the pho-
nological dyslexic pattern,which is not seenin younger
normals. The main point of this sectionis that the delay
patterncan be createdin the model in several ways and
that this fact maybe relevant to understandingdifferences
amongthesechildren. Oneway is simply to provide less
trainingfor thenormalmodel.Earlierin trainingthemodel
exhibits poorerperformanceon exceptionsthannonwords,
comparedto later in training,whenperformanceon excep-
tions (and regular words) exceedsthat on nonwords (see
Figure10). Thus,likethebeginningreader, themodelearly
in trainingexhibits the“surfacedyslexic” pattern.Thispat-
ternrepresentsa readingdelaywhenit occursin olderchil-
dren, like the participantsin the Manis et al. and Castles
andColtheartstudies.Themodelsuggeststhat this pattern
would result if childrenwho have normalcapacities(i.e.,
network architectureandability to learn)readlessoftenor
receive lessfeedbackabouttheir readingsothatthey bene-
fit lessfrom it. Thereis goodevidencethatreadingability
is relatedto amountof readingexperience.Stanovich and
hiscolleagueshave attemptedto assessrelativeamountsof
readingexperience(“print exposure”)usingmeasuressuch
as the Title RecognitionTest (Stanovich & Cunningham,
1992,1993;seealsoMcBride-Chang,Manis,Seidenberg,
Custodio,& Doi, 1993). In thesestudies,print exposure
wascorrelatedwith readingskill evenaftervariationin pho-
nologicaldecodingskill waspartialledoutof theregression
equation. Thus, taken with the print exposureresults,the
modelsuggeststhatlow levelsof performanceseenin some
dyslexic childrenmay be the resultof impoverishedread-
ing experience.Ourspecificpredictionis thatsuchchildren
will exhibit thesurface/delaypatternratherthanthephono-
logicaldyslexic pattern.

The extent to which the readingdelay patterncan be
attributedto lack of readingexperienceneedsto be inves-
tigatedfurther. We do not know whetherthe casesof sur-
facedyslexia identifiedin previousstudieswereassociated
with lack of readingexperience. Manis et al. did collect
dataonStanovich andCunningham’s(1992)Title Recogni-
tion Test,but foundno differencesbetweenthesurfaceand
phonologicalsubgroupson this measure.This finding is
ambiguous;it maybethatmoresensitivemeasuresof read-
ing experienceareneeded,but it is alsopossiblethat the
impairedperformanceof thesurfacedyslexics in thatstudy
wasnot dueto lack of readingexperience.As we discuss
below, thereareotherwaysto producethedelaypatternin
ourmodel.It wouldalsobeimportantto investigatefurther
thenatureof thisputativeimpoverishedreadingexperience.
It couldreflectdifferencesin amountof readingassociated
with culturalor socio-economicfactorsbut it alsomight re-

flect theineffectivenessfor many childrenof somemethods
beingusedto teachreading.

A secondway to createa delay is to usethe standard
architectureandprovidethenormalamountof training,but
usea non-optimallearningrate. This createsa situationin
whichthemodeldoesnotobtainthenormalbenefitsfrom a
givenamountof experience.We examinedthis possibility
by conductingsimulationsin which we variedthelearning
rateparameterof themodel.Thetermlearningrateis used
herefor historical reasons;it refersto specificparameter
in the learningalgorithm, not the overall rate at which a
network learns,which is affectedby many other factors.
Thegradientcomputationsfrom thebackpropagationalgo-
rithm specifythedirectionin weightspacefor thenetwork
to move; thelearningrateparameterdetermineshow far in
that directionthe weightsshouldbe changed.A learning
ratethat is too large cancausethe network to oscillateor
becometrappedin local minima. A learningrate that is
too small cancausea network to take a very long time to
train. While techniquesexist for automaticallydetermining
anappropriatestepsize(e.g. Jacobs,1988),very oftenthe
appropriatevalueis determinedby trial anderror. Thevalue
wearrivedat for thenormalsimulationswasµ � 0 � 005.To
createa condition in which the network is not as able to
profit from trainingexperienceasthenormalmodel,weran
a simulationwith a muchsmallerlearningrateµ � 0 � 0001.
All otheraspectsof training were identical to the normal
model. Figure23 shows theresults.With a lower learning
ratethe network experiencesdramaticallyslowed acquisi-
tion of exceptionwords,anda lesserbut still pronounced
impairmentonnonwords.

A third way to producethedelaypatternwasexplored
by Seidenberg (1992),who reporteda simulationthat ex-
aminedthe effectsof degradingthe orthographicinput to
the SM89 model. The purposeof this simulationwas to
explore how deficits in the encodingof orthographicin-
put would affect learningto read. Suchvisual-perceptual
deficitshave long beenhypothesizedto bea causeof dys-
lexia. The evidencefor suchimpairmentsis inconsistent,
asmight beexpectedif this typeof impairmentwererela-
tively rareandnot the only basisfor readingimpairment.
Seidenberg (1992) degradedthe orthographicrepresenta-
tions in the Seidenberg andMcClelland (1989)modelby
ensuringthatmoreorthographicunitswereactive for each
word thannormal. This decreasedthe discriminability of
individualwords.This impairmentcreateda generaldelay,
with poorerperformanceon regular and exceptionwords
andnonwords.

Finally, a fourth way to createa readingdelayis to re-
ducethemodel’s capacityto encodeinformationregarding
the mappingfrom orthographyto phonology. As we have
observed,thehiddenunitsplayanimportantrole in theen-
codingof orthographic-phonologicalcorrespondences.The
network musthave thecapacityto encodebothsystematic
aspectsof thesecorrespondencesandtheidiosyncrasiesas-
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Figure23. Lowerlearningratesimulation.Exceptionwordperformance(right) ismoreaffectedthannonword
performance(left).
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Figure24. Effectof lowernumberof hiddenunitsonnonwordsandexceptions.

sociatedwith exceptionwords. Althoughnot the focusof
their article, Seidenberg and McClelland (1989) reported
the resultsof a simulationin which their modelwascon-
figuredwith half theusualnumberof hiddenunitsmediat-
ing thecomputationfrom orthographyto phonology. This
manipulationhada biggerimpacton theacquisitionof ex-
ceptionwords thanregulars,but they did not examineits
effectsonnonwordgeneralization.

We replicatedthe Seidenberg and McClellandexperi-
mentusingthe attractornetwork, reducingthe numberof
hiddenunits from 100 to 20. Twenty hiddenunits does

notallow thenetwork to learnthecompletetrainingsetand
sorepresentsa severedeficit. As before,eightsimulations
wereconductedwith differentinitial randomnumberseeds.
The phonologicalcomponentwaspretrainedexactly as in
thenormalmodel,reflectingtheabsenceof a phonological
processingimpairment.

Theresultsaregivenin Figure24. Both nonwordsand
exceptionsshow decrementsbut, importantly, theimpactis
greaterfor theexceptions.Theresultis a “mixed” surface
dyslexic, showingaprimaryimpairmentto exceptionwords
andasecondaryimpairmentto nonwords.
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Analysisof theEffectsof ReducingtheNumberof Hid-
denUnits. Readingexceptionwordsgenerallyrequiresat-
tention to larger portionsof the words than doesreading
regularwords:whereasMINT canbecorrectlypronounced
by lookingat theonsetM- andrime INT, pronouncingPINT

correctlyrequiresusinginformationfrom the entireword.
The readingof exceptionwordscanbeseenasa seriesof
xor-styleproblems(Minsky & Papert,1969),in which one
unit’s statedependson the statesof otherunits in the en-
vironment.Reducingthenumberof hiddenunitsprimarily
affectsthecapacityof thenetwork to encodedependencies
that spanmoreletters. Althoughacquisitionis slowed for
all typesof items, with sufficient training the model can
eventuallylearnthesimpleandredundantpatternscharac-
teristicof regularwords. Exceptions,however, continueto
beimpaired.

Thegreaterdemandsimposedby exceptionwordscan
be quantifiedby developing a measureof computational
work. By measuringthe entropy of the vowel phoneme
(seeEquation4) acrossall words in the training set, we
canderive a measureof how muchinformationis needed
perword to communicatethatvowel. Comparingthismea-
sureto the conditionalentropy (Equation5) of the vowel
phonemewith respectto the orthographicvowel, we can
seetheextentto which theorthographicvowel reducesthe
uncertaintyof thevowel phoneme.Theextentto which in-
creasingconjunctionsof orthographicinformation reduce
the uncertaintyof the vowel phonemecanbe measuredin
thisway;first measuringtheentropy of thevowel phoneme
H ��� � , thentheconditionalentropy of thevowel phoneme
with respectto thefirst orthographicvowel H ���T� � 1 � , then
with respectto the first orthographicvowel and the letter
that follows it H ���T� � 1 � � 2 � , andsoon for themaximum4
letterscomprisingtheorthographicrimeH ����� � 1 � � 2 ���	� � 4 �

Figure25plotstheconditionaluncertaintyof thevowel
phonemeover rimesof differentlengthfor both thewhole
trainingsetanda subsetof thetrainingsetcontainingonly
regularitems.Theuncertaintyof thevowel phonemewhen
a window of 3 lettersinto the word body is consideredis
essentiallyzerofor theregulars,but still high for theentire
training set. Thus, regularsin generalrequirelessortho-
graphicinformationto disambiguatetheirpronunciations.

Encodinghigher-orderdependenciesis whatthehidden
unitsarefor, andasFigure25 suggests,althoughall types
of wordstendto requirethecapacityto representsuchde-
pendencies,exceptionsaremorelikely to requiremorethan
3 lettersto bedisambiguated.With fewer hiddenunits,the
capacityof thenetwork to encodethesedependenciesis re-
duced,which hasa largereffect on exceptions.If thenet-
work wereunableto encodedependenciescovering more
than3 lettersit would still getmostof theregularscorrect
but theexceptionswould behighly impaired.With a more
severedeficit, the capacityof the network to learngener-
alizationscovering 3 letterswill becomeimpaired,which
beginsto affect masteryof regularswill suffer aswell. Be-
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Figure 25. ConditionalEntropy of vowel phonemewith respect
to 1, 2, 3 and4 lettersin rime.

causenonwordperformanceis parasiticon masteryof reg-
ular correspondences,the“mixed” casesshowing impaired
nonword performancenaturallyfall out of greaterdegrees
of impairment. Of course,a network suffering a gradual
reductionin hiddenunits will not suddenlybe unableto
combine3 letters; the network is trying to optimize per-
formanceover itemsby their frequency, andassuchwill
lose the capacityto attendto large word bodiesin lower
frequency items(e.g.,YACHT) beforehigh frequency ones
(e.g.,THE).

Comparisonsto Behavioral Results

Having describedthephonologicalandreadingdelayed
simulationsand shown that they exhibit generalfeatures
of dyslexic performance,we cannow provide closercom-
parisonsto behavioral data. Figure11 presentedsummary
datafrom theManiset al. study. Thefigureillustratessev-
eral findings. Surface/delaydyslexics were impairedon
bothexceptionsandnonwordscomparedto same-agednor-
mal readers;they weremoreimpairedon exceptionsthan
nonwords;andtheir performancecloselyresembledthatof
youngernormalreaders.Phonologicaldyslexics werealso
impairedon both exceptionsand nonwords comparedto
same-agednormalreaders;they performedatthesamelevel
on exceptionsandnonwordsbut comparedto bothnormal
readergroupsthey weremoreimpairedon nonwords;their
performancewasnot like youngernormalreaders.

Figure26presentsthedatafrom comparableconditions
in our simulations. The meanperformanceof the normal
model,thedelaydyslexic simulationsandthemostextreme
phonologicallyimpairedsimulationsweremeasuredat 1.5
million trainingtrials. In addition,thenormalmodel’sper-
formancewasassessedwith fewer training trials (0.5 mil-
lion), whichyieldsperformancesimilar to theyoungernor-
malsin theManisetal. study. Thesesimulationresultscap-
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tureall of themainresultsseenin Figure11. Theonly de-
viationsbetweenFigures11and26arerelatedto thesome-
what lower levels of nonword performancein the model.
Thus, the simulationsreplicatethe kinds of dissociations
betweennonwordsandexceptionsseenin behavioral stud-
iesatapproximatelythesamelevelsof performance.

A final analysisaddressedthe differentdevelopmental
patternsin the phonologicalanddelaycases.Manis et al.
(1996)found that whereassurfacedyslexics exhibited be-
havior characteristicof youngernormal readers,the pho-
nologicaldyslexics exhibited an aberrantpatternnot seen
in normalreadersat any age. Figure26 exhibits this pat-
tern,but we canmake the point in a moregeneralway as
follows. The behavioral datashow that surfacedyslexics’
performanceonexceptionwordsandnonwordsis quantita-
tively within therangeof youngernormalreaders,whereas
thephonologicaldyslexics’ is not. Figure27showstheper-
formanceof the normal modelsand the surfacedyslexia
simulationson thesetypesof items. It can be seenthat
overdifferentlevelsof performance,thenormalandsurface
dyslexic modelsshow similar ratiosof word andnonword
accuracy. In contrast,thecurvesfor thephonologicaldys-
lexic simulationsdeviatefrom thosein thenormalandsur-
facedyslexic models,becauseof thelow levelsof nonword
performancecomparedto exceptions.Thedataareconsis-
tentwith theconclusionthatthesurfacedyslexicspatternof
impairedreadingis like thatof youngernormalreadersbut
thephonologicaldyslexic patternis not.

This patterncanalsobeseenin theresultsof a regres-
sionanalysisthatusedthenormalmodel’s performanceto
predictthe nonword performanceof the impairedmodels.
A regressionwasperformedto predictthenormalmodel’s
nonword scoresfrom its performanceon exceptions(r2 �
0 � 95, F � 1 � 31� � 288, p � 0 � 0001). This regressionequa-
tion wasthenusedto predictthenonwordperformancefor
eachof the impairedmodelsin turn, given their perfor-
manceon exceptions. Figure28 shows the resultsof this
analysisat differentpointsin training. The normalmodel
doesa good job of predicting the surface/delaymodels’
performance;the residualsaresmall andnot much larger
thanfor thenormalmodelitself. In contrast,thephonolog-
ical dyslexic modelsyield larger residuals,indicatingthat
nonwordperformanceis notaswell predictedby exception
performance.Theseresultsobtainat all levelsof training.
Thus, the surface/delaymodelsrequiremore training, but
their relative performanceon exceptionsandnonwords is
like thenormalmodels.Thephonologicaldyslexic models
areon a differenttrajectory, becauseof the moreextreme
impairmentin readingnonwords.

Themodelprovidesinsightaboutwhy thedevelopmen-
tal patternsdiffer for the two subtypesof dyslexia. Con-
sideragainthemappingthatthehiddenunitsmustperform.
With animpairmentin thephonologicalattractor’scapacity
to representinformation(phonologicaldyslexia), thenature
of thetaskthehiddenunit layermustsolve is changed.In-

steadof having to mapan orthographicform onto an ap-
proximatephonologicalform which is thenrefinedinto the
correctpronunciation,the outputof the hiddenunit layer
mustbe relatively exact. In contrast,the input/outputtask
facingthe hiddenunit layer in the caseof reducedhidden
unitsis thesame.It is notthenatureof thetaskthatthehid-
denunitsmustsolvethatis changed,but thecapacityof the
hiddenunitsto performthat.Thus,in thephonologicaldys-
lexic simulations,changingthenatureof thetaskcausesthe
modelto arrive at a solutionthat is differentfrom normal;
in thesurfacedyslexic/delaysimulations,the taskremains
thesamebut themodelarrivesat thesolutionmoreslowly,
producinga developmentaldelay.

Summaryof Dyslexia Simulations

Thebehavioral literaturesuggeststwo distinctsubtypes
of developmentaldyslexia, one relatedto a phonological
impairmentand one reflectinga generaldelay in the ac-
quisition of readingskill in the absenceof a phonological
impairment.Themodelingwork presentedhereaccounted
for thephonologicalsubtypein termsof damageto thenet-
work’s capacityto develophighly structuredphonological
representations;this in turn hasanimpacton thepronunci-
ationof nonwordsatmild levelsof impairment,andexcep-
tions aswell at moreseverelevels. Phonologicaldamage
affectednotonly therateatwhichthenetworkslearnedand
the asymptoticlevel of performancebut alsothe develop-
mentaltrajectory, creatinga deviant pattern. The pattern
thathasbeencalledsurfacedyslexia is createdby any type
of impairmentthat slows the acquisitionprocess,yielding
a developmentaldelay. We discussedseveral wayssucha
delaycouldbeproducedin themodelandit remainsfor fur-
therresearchto determinewhichof thesecausesis relevant
to particularsubgroupsof children.

Thisaccountis consistentwith theresultsof behavioral
geneticstudiesof theheritability of dyslexia that implicate
separatephonologicalandnonphonologicalfactors(Olson,
Forsberg, & Wise, 1994). Olsonandhis colleagueshave
providedextensive evidenceconcerningthe heritability of
phonologicalcodingskills (Olsonet al., 1989). More re-
cently Olsonet al. (1994) reportedsignificantheritability
for a factorthey termedorthographiccoding. Thedatade-
rive from performanceon an orthographicchoicetask in
which participantsdecidewhich of two stimuli is the cor-
rect spellingof a specifiedword. The alternativesareei-
ther a word and matchedpseudohomophone(e.g., RAIN-
RANE) or two homophones(PAIR-PEAR). This taskis one
of the few that assessesorthographicknowledgewithout
introducingphonologicalconfounds. Manis et al. (1996)
found that their surface dyslexic participantsperformed
morepoorly thannormalreaderson this task,whereaspho-
nological dyslexics did not. It is clear that the kinds of
impairmentsthat we have hypothesizedto underlie sur-
facedyslexia couldaffectperformanceon theorthographic
choice task. The task involves rememberinghow a par-
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Figure 26. Performanceof normalmodels(Sn), phonologicallyimpairedmodels(Phon),anddelay/surfacemodels
(Delay)at1.5M wordpresentations,andthenormalmodelat0.5M wordpresentations(Yn). Comparewith Figure11.

ticular phonologicalwordform is spelled. The ability to
associatea spoken word with its pronunciationwould be
expectedto dependon factorssuchasamountof reading
experience,ability to learn,andvisualencoding.Thusthe
behavioral geneticdataareconsistentwith the conclusion
that thereare separatephonologicaland nonphonological
impairmentsthat underliephonologicaland surface/delay
dyslexia, respectively.

It should be clear that althoughthe several types of
impairmentsrelatedto readingdelayproducequalitatively
similar effects on exception and nonword reading, they
make different predictions about performanceon other
tasks. For example,it shouldbe possibleto obtain inde-
pendentevidenceas to whethersomechildrenwhoseca-
pacitiesareotherwisenormalmerelyreadlessoften. Such
children would be expectedto greatly benefitfrom inter-
ventionsthat simply provide additionalexperience. Sim-
ilarly, only the childrenwhosedelayedreadingis related
to a learningproblemshouldexhibit this typeof deficit on
othertasks,andthey wouldbeexpectedto benefitlessfrom
additionalexperience. We would also expect only some
childrenwho exhibit the delaypatternto show deficitson
tasksrelatedto perceptualencodingof print. Finally, the
hypothesizedresourcelimitation is harderto independently
establish,giventhatit maybespecificto readingandthere-
fore leaveperformanceonothertasksunaffected.This type
of deficitmightbeimplicatedby excludingtheotherpossi-
bilities. A child who hasadequateperceptualandlearning
abilities who receivesappropriatetraining andexperience
yet exhibits a developmentaldelaymayhave a problemof

this type.

Our simulationsalsoexaminedthe effectsof different
degreesof impairment. Factorsthat affect readingper-
formance,suchasthe quality of phonologicalrepresenta-
tions or computationalcapacity, may vary acrossindivid-
uals. The simulationssuggestthat relatively “pure” cases
of phonologicalor delay dyslexia, in which performance
on only one of the two criteria typesof stimuli is below
normallimits, areassociatedwith relatively mild formsof
impairment.With moresevereimpairments,both typesof
stimuli areaffected,creatinga “mixed” patternthatis most
common. Thesepredictionsareconsistentwith datafrom
the Manis et al. (1996) and Castlesand Coltheart(1993)
studies. At present,we envision only one other way of
creatinga pure pattern: extensive remediationthat heav-
ily emphasizesspecificdecodingstrategies. Remediation
that focuseson masteringspelling-soundcorrespondences
or developingasight-wordvocabularymaycreatedissocia-
tionsbetweenexceptionwordandnonwordreading.These
andotherwaysin whichchildren’sremediationexperiences
maymasktheir underlyingdeficitsarediscussedby Manis
etal. (1996).

The two typesof dyslexia have quite differentunder-
lying sources,andtheir effectsaredifferentin specificre-
spects. However, if one merely looks at the most severe
surfaceandphonologicaldyslexic simulations,bothareim-
pairedonreadingbothnonwordsandexceptionwords.This
raisesa strongcautionarynoteregardingtheclinical diag-
nosisof developmentaldyslexic children. Themodelpre-
dicts that thesemixed casescanarisefrom very different
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Figure 27. Nonword versusexceptionword performancemeasuredthroughouttraining, for surface/delay
dyslexia simulations(left) andphonologicaldyslexia simulations(right). Therelationshipbetweenexception
word andnonword accuracy is similar for thesurface/delayandnormalsimulationsbut not thephonological
andnormalsimulations.

underlyingdeficits.It will benecessaryto obtaindatacon-
cerningperformanceon othertasksto differentiateamong
the many children who exhibit the mixed pattern. This
would seemto be a prerequisiteto implementingremedi-
ation programsthat are relevant to the child’s underlying
problem.Remediationpracticesneedto besensitive to the
differing etiologiesamongdyslexics who exhibit qualita-
tively similar levelsof performanceonsimpletasks.

4. Effectsof Literacy on
PhonologicalRepresentation

Thefinal simulationsexaminedhow phonologicalrep-
resentationsareaffectedby theacquisitionof readingskill.
We have seenthat modelsthat have richer representations
of phonologicalinformationperformbetteron the taskof
learningto mapfrom orthographyto phonology. Themain
impact was on the capacityto generalize,i.e. pronounce
unfamiliar letter strings. This capacityplaysan important
role in becominga skilled readeranddeficitsin thiscapac-
ity areseenin many dyslexics. Theseresultsarecompati-
blewith evidencethatprereaderswhohavedevelopedmore
segmentalrepresentationsof phonologydo betterat learn-
ing to read.

However, other evidencesuggeststhat achieving seg-
mental phonological representationsis the outcome of
learningto readan alphabeticorthography. The evidence
is providedby studiesof literateandilliterate participants
indicatingthatonly literateshavetheability tosegmentspo-
kenwordsinto componentphonemes(Moraiset al., 1979;
Readet al., 1987;Moraiset al., 1986).On thisview, “pho-

nological awareness”taskssuchas phonemecountingor
deletionare highly correlatedwith readingskill because
they requiremanipulatingphonemicrepresentationsandthe
achievementof suchrepresentationsis one of the results
of becominga skilled reader. Therehasbeenconsiderable
controversyastowhethersegmentalphonologicalrepresen-
tationsarea prerequisiteto learningto reador theoutcome
of achieving literacy (Cossu,Rossini,& Marshall, 1993;
Liberman,Shankweiler, Liberman,Fowler, & Fisher, 1977;
Morton& Frith, 1993)

An alternativepossibilitythatwe canexploreusingthe
simulationmodel is that thereis a reciprocalrelationship
betweenthedevelopmentof segmentalphonologicalrepre-
sentationsandlearningto read(Morais,Alegria,& Content,
1987). In the courseof learninga spoken language,chil-
drendevelop representationsof higher-orderrelationships
amongfeaturesthatsupportsegmentalphenomenasuchas
beingableto deletea phonemefrom a word. Childrenwho
have hadmoresuccessat developingsuchrepresentations
arebetterpreparedfor learningto read. The development
of suchrepresentationsis greatlyaccelerated,however, by
exposureto alphabeticwriting systems.

We have alreadyshown (in Section1) that an attrac-
tor network trainedto encodephonologicalrepresentations
of wordsdevelopsknowledgeof relationshipsamongfea-
turesand segments. In Section2 we traineda model to
associateorthographiccodeswith thesephonologicalrep-
resentations.The training procedureinvolved interleaving
readingandlisteningtrials that differedin termsof which
weightswereadjusted. On readingtrials, the model was
trainedto computeaphonologicalcodefor anorthographic
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Figure 28. Residualsfor nonword performanceaspredictedby exceptionword performance.Delaycondi-
tion modelsshow very small residuals;phonologicallyimpairedmodelsshow muchlargerdisparitybetween
predictedandobtainednonword performance.

inputandall weightsweremodified.On listeningtrials the
model was trainedon the patternretentiontask and only
the weightswithin the phonologicalattractorwere modi-
fied. Thus,the weightswithin the phonologicalapparatus
hadto achieve valuesthatallowed thenetwork to perform
both tasks. The fact that theseweightswere affectedby
their role in the readingtaskprovidesthe basisfor effects
of literacy onphonologicalrepresentation.

Pre-andPostLiterateAnalysis

Thedesignof thesesimulationsis very simple: we ex-
aminedthephonologicalattractornetwork beforeandafter
training on the readingtask. The pre-literatemodelcon-
sistedof theattractornetwork trainedasdescribedin Sec-
tion 1. Thepost-literatemodelwasthesameattractornet-
workaftertrainingonthereadingtask.Differencesbetween
the two areeffectsof literacy on phonologicalrepresenta-
tion. We alsoincludeda third conditionasacontrol.Train-
ing on the readingtask involvedadditionallisteningtrials
thatamountedto 10 million extra trials like theonesin the
pre-literatephase. In order to assesswhetherany differ-
encesbetweenthe pre- andpost-literatenetsweremerely
due to the numberof phonologicaltraining trials, a third
conditionwasincluded:theovertrainedilliteratecondition,
which wasthe pre-literatemodel trainedfor an additional
10million listeningtrials.

PatternCompletion. Thepatterncompletiontask(Sec-
tion 1) was repeatedusing the the phonologicalattractor
networksassociatedwith the3 conditionsdescribedabove.
Recall that the procedureon this test involved deleting
one featureof eachphonemein every word and examin-

ing how the model restoredthe patternafter several time
ticks. As before,eightsimulationswereusedin eachcondi-
tion. Theliteratenetwork’soverall sumsquarederror(sse)
in the patterncompletiontask was lower (sse � 0 � 0732)
than either the pre-literatenetwork (sse � 0 � 0824) or the
network that only received additionalphonologicaltrain-
ing (sse� 0 � 0804). This conditioneffect was significant
(F � 2 � 21� � 18, p � 0 � 0001). This resultindicatesthat the
readingtaskallowed the network to learnmoreaboutthe
relationshipsbetweenfeaturesthandid eitherphonological
pretrainingor additionalphonologicaltraining.

SegmentRestoration. The patterncompletiontest as-
sessedthenetwork’s ability to completean individual fea-
turewithin anotherwiseintactword. We now considerthe
model’scapacityto restoreentiresegmentsandshow thatits
performanceis greatlyaffectedby training on the reading
task. The testwasbasedon the phonemerestorationphe-
nomenon(Warren,1970). In suchstudies,the participant
typically hearsawordor sentencewith aphonemereplaced
by an extraneousnoise(e.g.a cough,buzz, or hiss). The
auditoryillusion thatparticipantsreportis thatthedistorted
word wasintact;participantsofteninsistthatthenoisewas
in addition to or outsideof the word (seeWarren,1996,
for anoverview). Someof theserestorationeffectsinvolve
thetop-down useof semanticandpragmaticcontextual in-
formation,phenomenabeyondthescopeof thepresentre-
search.Our testwasmorenarrowly focusedon theextent
to which themodelcouldfill in segmentsof isolatedwords
basedonly on phonologicalknowledge. If a phonemein a
word wasdistortedby noise,how likely was the network
to restorea phonotacticallylegal phoneme,given thecon-
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straintsof thephonologicalenvironment?
Eachof the6 phonemesegmentswastestedin turn. On

eachtrial, a word waschosenfrom thetrainingsetandthe
input units werecorrectly initialized to the word’s phono-
logical form, exceptfor the11 featuresin thedeletedseg-
ment.Thosefeaturesweresetto randomvaluesin therange
� � 0 � 25� 0 � 25� . Thevaluesof all correctly-specifiedfeatures
wereclamped. The 11 initially randomfeatureswereleft
free to be changedby the network. The network wasrun
for thestandard4 ticks,atwhich time thetestsegmentwas
evaluatedaccordingto the nearestneighbormetric. This
testwasrepeatedfor all wordsandall six phonemeposi-
tions.

Datawerescoredin termsof whetherthephonological
outputwasphonotacticallylegal or illegal. Thephonotac-
tic legality of the phonemesbeingrestoredwasdefinedin
termsof onsets,vowelsandcodas:if thephonemethatwas
randomizedwasin theonset,thentheresultingonsetafter
processingwastestedagainstall otheronsetsin thetraining
set. If it resultedin an onsetthat existed in the training
set, then it was scoredas a phonotacticallylegal restora-
tion. For example,if the / � / in the word / ~��Q���� / wasran-
domized,andtheresultingoutputwas/ ~��	���� /, theonset/ ~u� /
wascomparedto all otheronsetsin the trainingset. Since
/ ~�� / exists as an onset,that restorationis a legal one. If,
in contrast,the network restoreda / ~u�_���� /, that would be
scoredasillegal, sincethe onset/ ~u� / doesnot exist in the
trainingset. Similar testswereusedfor restoredsegments
in thevowel/diphthongslots,andthecodaslots.

Figure 29 depictsthe percentageof illegal responses
acrosssegmentfor thephonologicalattractornetwork, the
overtrainedilliterate network andthe literatenetwork. For
all phonemeslots,all networkswereableto producea legal
phonemefrom thelocalenvironmentmostof thetime. The
rangeof phonemesthatconstitutea legal blendin English
is in fact quiteconstraining.If a randomphonemeis sub-
stitutedfor the network’s output,thenacrossall segments
the result is phonotacticallyillegal 72% of the time. The
modelsperformmuchbetterthanchance,indicatingthatthe
phonologicalattractorhasabsorbedknowledgeof English
phonotacticregularities.

Thenetworks thatwerenot trainedon thereadingtask
exhibit imperfectknowledgeof phonotactics;they produce
phonemeblendsthat no humannative speaker of English
wouldmake,particularlyin thecoda.Theliteratenetwork,
however, yielded betterperformancethan either the pre-
literateor overtrainednetworks,asis shown in Figure29.
Noteespeciallytheimprovementin performanceonthesec-
ondvowel positionandcoda,onwhichthenon-literatenet-
works had performedmost poorly. This is an important
resultbecausethe testspecificallyassesseseffectsrelated
to segmentalphonologicalstructure.After training on the
patternretentiontask, the phonologicalattractornetwork
hadatendency to replacemissingsegmentswith otherwell-
formedsegments,but thetendency wasmuchstrongerafter

Table9
Mean Squared Difference in Weight Magnitude
Between Literate and Overtrained Non-Literate
Networks

Connection Squareddifference
within onset 0.067

onset/ cleanup 0.055
onset/ rime 0.020
rime to rime 0.096

rime / cleanup 0.117

trainingon thereadingtask.

MagnitudeandDistributionof Weights

Theweightsin thenetworkswereexaminedin orderto
investigatewhy performanceon the above tasksimproved
in theliteratenetwork. Onefindingwasthatthetheaverage
magnitude(absolutevalue)of theweightsin theliteratenet-
work’s phonologicalcomponent(0.250)was significantly
higherthaneitherthe pre-literatenetwork’s (0.168)or the
overtrainedilliteratenetwork’s(0.199)(F � 2 � 14790� � 681,
p � 0 � 0001).Figure30providesdataaboutdifferencesbe-
tweentheweightsin thepost-literateandovertrainedillit-
erateconditions.Thefigureshowstheaveragesquareddif-
ferencebetweenthe magnitudesof the weightsin the two
nets,averagedover phonemes.Thesix phonemesegments
andthecleanupunit groupareshown in a matrix, with the
“from” connectionsshownasrowsandthe“to” connections
shown ascolumns.

Visually, it appearsthatlargerdifferencesarein therime
(vowel andtrailing consonants).The projectionsfrom the
rime to the cleanupunits andbackunderwentparticularly
largechanges.Thediagonalof Figure30 indicatesthecon-
nectionchangeswithin asegment;thatis, theweightsfrom
a segmentto itself. Thosesectionsunderwentevengreater
changeoverall than the connectionsfrom one part of the
rime to another.

Table 9 provides summarydata concerningdifferent
typesof weights. Thebiggesteffectswereon the weights
betweenrimeandcleanup,theweightswithin therime,and
theself-connections.Theeffectswithin theonsetandfrom
onsetto rime weresmaller. Theseresultssuggestthat the
weightswithin thephonologicalattractorwereaffectedby
literacy in waysthatpreferentiallychangedwithin-segment
weightsover inter-segmentalweights,andwithin-rime and
within-onsetconnectionsoverthosecrossingtheonset-rime
boundary. Theresultsareconsistentwith evidencesuggest-
ing that learningto readresultsin increasedsensitivity to
onsetandrimeunits(Treiman,1992).

RhymeDetection. To testwhetherthe literatenetwork
wasmoresensitive to theonset-rimestructureof words,we
examinedthemodel’s performanceon rhymingwords.All
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segments.Darkareasshow greatestchange.Eachcell is scaledto
magnitude0.5.

pair of wordsin thetrainingcorpusthatrhyme(N= 22,175
pairs)wereidentifiedalgorithmically. As acontrol,anaddi-
tionalsetof 22,175pairsof nonrhymingwordswascreating
by permutingthelist of rhymingwords.For eachwordpair,
the phonologicalunits were initialized and clampedwith
the soundpatternof oneword in the pair. The phonolog-
ical network wasrun for 5 tickswithout influencefrom the
readingcomponent.Theactivity valuesof thecleanupunits
at theendof cycling wererecorded.Thenetwork wasthen
initialized with thesoundpatternof thesecondmemberof
thepair, it wasrun,andtheactivity of thecleanupunitswas
alsorecorded.Thedistancebetweenthecleanupunit activ-
ity for thetwo wordswascomputed.Thiswasdonefor each
of the rhyming andcontrol pairs, for the literateandnon-
literatenetwork. Thesedistanceswereanalyzedin a 2x2
design,usingliteracy of network andpair type(rhymingor
control)asfactors.

Table10
LiterateandIlliter ateNetworkRhymeSimilarities

Pair
Rhyme Control Difference

Literate 4.48(1.76) 10.12(3.11) 5.64
Illiterate 4.74(1.79) 9.96(2.58) 5.22

Note. Meansareshown, with standarddeviationsin parenthesis.
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The resultsaresummarizedin Table10. A strongef-
fectof rhymingwasobtained:wordsthatrhymewereover-
all muchcloserin their cleanupunit activation statethan
werethe controls. Therewasalsoan interactionbetween
literacy andrhymewasalsoobserved(F � 1 � 44348� � 1179,
p � 0 � 0001). The interactionis dueto the fact that the lit-
eratenetrepresentedrhymesmorecloselythantheilliterate
net.

Table11
OrthographicInfluencesonRhymeDetection

Pair
Similar Dissimilar
Rhyme Rhyme Difference

Literate 4.52(1.72) 4.43(1.82) 0.09
Illiterate 4.76(1.72) 4.72(1.87) 0.04

Orthographic 5.28(2.10) 5.61(2.28) -0.33
Presentation

Note. Meansareshown, with standarddeviationsin parenthesis.

The next question is how literacy affected the rep-
resentationof similarly spelled (e.g., KITE-BITE) and
dissimilarly spelled (KITE-NIGHT) rhymes. Our ini-
tial intuition was that the effect of training on the
orthography} phonology taskwould be to causethe pho-
nologicalrepresentationsof dissimilarlyspelledrhymesto
differ morethanthesimilarly spelledrhymes.This predic-
tion wasbasedon a studyof college studentparticipants’
rhyming judgmentsby Seidenberg andTanenhaus(1979).
They foundthat,with auditorypresentationof stimuli, par-
ticipantstook longerto judgethat two dissimilarly-spelled
wordsrhymedthantwo similarly-spelledrhymes.Onein-
terpretationof this resultis that thephonologicalrepresen-
tationsof dissimilarlyspelledrhymesdiffermorethanthose
of thesimilarly spelledrhymesbecauseof the influenceof
orthographicknowledge. The 22,175rhyming pairsused
in thepreviousanalysisweresplit into pairsthatsharethe
sameorthographicword body (12,416)and thosethat do
not (9,759). Thesewordsweretestedfor similarity in the
samemanneras the rhymedetectiontest. The resultsare
summarizedin Table11. Therewasa reliableeffect of or-
thography, but it wasbecausetheliteratenetwork wasrep-
resentingdifferentlyspelledrhymingwordsmore similarly
to eachotherthanthesimilarly spelledwords.

Insteadof pulling the representationsof dissimilarly-
spelledrhymesaway from eachother, thephonologicalat-
tractoris apparentlycompensatingfor theorthographicdif-
ferences. The mappingfrom orthographyto phonology
(i.e., the input to the phonologicalattractornetwork from
orthography)is moresimilar for similarly-spelledrhymes
than dissimilarly-spelledrhymes. Nonetheless,all three
words rhyme. Thus, the effect of learning to read is to
separatedissimilarly-spelledrhymeswhich the phonolog-

ical cleanupunitshaveto counteractfor thenetto converge
on thesamerhymerepresentations.

If this accountis correct,thenthe phonologicaldiffer-
encesbetweensimilarly and dissimilarly spelledrhymes
shoulddependon whetherthey are presentedphonologi-
cally or orthographically. Table11 alsopresentsdatacon-
cerningthe distancesbetweenthe phonologicalrepresen-
tationsof similarly anddissimilarly spelledrhymeswhen
thesecodeswere computedfrom orthography. With or-
thographicinput, similar rhymesarecloserthandissimilar
rhymes.With phonologicalinput,thepatternis theopposite
in boththe literateandilliterate nets;theeffect is larger in
theliteratenet.Thesedataindicatethatphonologicalrepre-
sentationsin theliteratenetareshapedby thefactthatthey
arealsothetargetfor thereadingtask.

Returningto theSeidenberg andTanenhaus(1979)re-
sults, the model suggeststhat the fact that dissimilarly-
spelledrhymesareharderto judgeasrhymesthansimilarly-
spelledrhymesis not dueto differencesin thesimilarity of
theirphonologicalrepresentations.Rather, theeffectseems
to reflect the feedback(“resonance”: Van Orden et al.,
1990)betweenphonologyandorthographythat occursin
a fully interactivesystem.In therhymingtasksparticipants
hearfamiliarstimuli thatrapidlyactivateseveraltypesof as-
sociatedinformation,includingmeaningandspelling.This
informationin turn feedsbackon thephonologicalsystem.
We have not implementedthis feedbackin our model,but
it has beenassumedby this theoreticalframework since
Seidenberg andMcClelland(1989);otherevidencefor this
type of feedbackis provided by Stone,Vanhoy, and Van
Orden(1997).

Discussion

By examiningthephonologicalcomponentof themodel
with andwithouttrainingonthereadingtaskit waspossible
to examinewhetherthereadingtaskchangedtherepresen-
tationof phonologicalinformation.Theweightsin theliter-
atenetwork werelargerthanin theothernetworks,indicat-
ing that it hasdevelopedstrongerphonologicalattractors.
The changesto the weightsproducedbetterperformance
onfeatureandsegmentationrestorationtasksandsharpened
therepresentationof therime. Additionally, rhymingwords
weremoresimilar to eachotherin the literatemodelthan
thenon-literateones.Orthographicinfluenceswereseenon
thephonologicalrepresentation,reflectingthedifferingde-
mandsof thereadingtask: thephonologicalrepresentation
compensatedfor differencesin spellingof rhymingwords.

The resultswe have describedin this sectionarepre-
liminary in that we have not exhaustively examinedall of
the ways in which the readingtaskaffectedphonological
representation.However, this wasthefirst attemptto pro-
vide a computationallyexplicit accountof how phonolog-
ical representationsmight beshapedby their participation
in readingandit openstheway towardaninterestingsetof
issuesthatcanbepursuedin futureresearch.
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5. GeneralDiscussion

We have describedthe resultsof connectionistsimula-
tions addressingseveral issuesconcerningthe representa-
tion of phonologicalknowledgeandits role in learningto
read.Themodelthatweemployedwasbasedontheframe-
work introducedby Seidenberg andMcClelland(1989)and
subsequentlyextendedby Plautet al. (1996). Our further
extensioninvolved usingan attractornetwork as the pho-
nologicalrepresentationandexploringnormalandatypical
developmentof readingskill. Themainresultsof thesimu-
lationscanbesummarizedasfollows:

1. Phonologicalrepresentation.The phonologicalat-
tractor architectureacquiredknowledgeof the segmental
structureandconstraintson sequencesof phonemesbased
on exposureto phonologicalword forms. This knowledge
allowedthemodelto fill in missingfeaturesandsegments
in realisticways. Our primaryinterestin this aspectof the
modelwas in providing a morerealistic target for the or-
thographyto phonologymappingtask;therepresentationis
limited in variousways.It wouldnonethelessbeinteresting
to pursuefurther the useof this type of architectureas a
phonologicalrepresentation.The testsof categorical per-
ceptionthat we have describedwerean initial stepin this
direction.

2. Learningto read.Themainfindingherewasthathav-
ing a phonologicalattractorarchitecturefacilitatedlearn-
ing the orthographyto phonologymappingtask;however,
phonologicalknowledgedid not have to be in placeprior
to readingacquisitionbecauseit could be acquiredvery
rapidly anyway. The simulationsconfirm that the quality
of phonologicalrepresentationsmainly affects the ability
to generalizenot the acquisitionof a finite readingvocab-
ulary, assuggestedby Seidenberg andMcClelland(1990)
andPlautetal. (1996).

3. Developmentaldyslexia. Two typesof developmen-
tal dyslexia weresimulatedby introducingdifferenttypes
of anomaliesin the model. Phonologicaldyslexia derives
from animpairmentin phonologicalrepresentationthathas
agreatereffectonnonwordgeneralizationthanon learning
the trainingvocabulary. We providedanalysesof why this
effect obtained:degradingthephonologicalrepresentation
causestheorthographyto phonologypartof thenetwork to
overfit thetrainingdata,impairinggeneralization.A second
typeof dyslexia representsageneraldelayin theacquisition
of wordprocessingskills. Thesimulationssuggestthatthis
kind of delaycanhave severalcauses,includinga shortage
of computationalresources,lack of experience,or failures
to learnefficiently from experience.Thisbehavioralpattern
hassometimesbeentermed“surfacedyslexia,” but this is a
vestigeof thedual-routetheorythatwehaveabandonedbe-
causeit incorrectlyimplies that the impairmentis specific
to exceptionwords, it missesthe similarity betweenthese
children’sbehavior andthatof youngernormalreaders,and
it doesnotderive from animpairmentto a “lexical” route.

4. Effects of literacy on phonologicalrepresentation.
Finally, we presentedsimulationsin which the acquisition
of skill in translatingfrom orthographyto phonologyhad
an impacton phonologicalrepresentationitself, consistent
with otherevidencethattheformationof segmentalphono-
logical representationsmay result in part from learningto
readanalphabeticorthography.

Conclusions

Thework we have describedis partof anon-goingef-
fort to developa general,computationallyexplicit account
of visualword recognition,normalandatypicalacquisition
of this skill, andimpairmentsthat arecausedby brain in-
jury. Our researchstrategy is to develop modelsthat ac-
countfor importantcharacteristicsof behavior usingtheo-
reticalandcomputationalprinciplesthataregeneralrather
thanspecificto thereadingdomain.Theprinciplesutilized
in thepresentresearcharethesameonesasin Seidenberg
andMcClelland(1989)andPlautetal. (1996).Themodels
haveevolvedaswediscovermoreaboutthenatureof word
recognitionin reading,aboutthepropertiesof connectionist
networks, andaboutthe limitations of implementedmod-
els, but the theoreticalframework hasremainedthe same.
Thepresentwork contributesto understandingreadingac-
quisitionanddyslexia bothby providing a computationally
explicit accountof phenomenathathadbeendescribedby
others(e.g.,effectsof phonologicalimpairmenton reading
acquisition)and by providing new insightsaboutreading
phenomena(e.g.,thecausesof differenttypesof dyslexia).
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