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Phonon-cavity electromechanics
I. Mahboob*, K. Nishiguchi, H. Okamoto and H. Yamaguchi*

Photonic cavities have emerged as an indispensable tool
to control and manipulate harmonic motion in opto/
electromechanical systems1. Invariably, in these systems a
high-quality-factor photonic mode is parametrically coupled
to a high-quality-factor mechanical oscillation mode2–12. This
entails the demanding challenges of either combining two
physically distinct systems, or else optimizing the same
nanostructure for both mechanical and optical properties4–11.
In contrast to these approaches, here we show that the cavity
can be realized by the second oscillation mode of the same
mechanical oscillator13,14. A piezoelectric pump15,16 generates
strain-induced parametric coupling between the first and the
second mode at a rate that can exceed their intrinsic relaxation
rate. This leads to a mechanically induced transparency in the
second mode which plays the role of the phonon cavity17,18, the
emergence of parametric normal-mode splitting19,20 and the
ability to cool the first mode2–11. Thus, themechanical oscillator
can nowbe completelymanipulated by a phonon cavity21.

The dynamical backaction of a photonic cavity that is para-
metrically coupled to a mechanical oscillation mode has recently
led to the realization of a quantized macroscopic mechanical
system10,11,22–24, a long-standing goal in solid-state physics25. The
backaction of the mechanical motion on the cavity has also re-
sulted in the emergence of opto/electromechanically induced trans-
parency, which has great potential for communications technology
and quantum information science17,18,20,26–28.

The success of this approach is leveraged on the requirement
that the mechanical oscillation completes many cycles before the
cavity relaxes, thus enhancing the effectiveness of the dynamical
backaction, or in other words the coupled system is operated in
the resolved sideband regime1,22,23. The parametric coupling in these
systems arises from the harmonicmotion of themechanical element
modifying the cavity’s resonance frequency by means of a change
in either the cavity’s length or capacitance. This has resulted in
exquisitely engineered devices in which the mechanical motion can
bemanipulated by the parametrically coupled photonic cavity1.

In contrast to a photonic cavity, a phonon cavity operated in
the resolved sideband regime should also be able to host dynamical
backaction onto the mechanical element. One approach to this goal
could be realized by physically coupling an additional mechanical
oscillator to the system.Here we show that amore naturalmethod is
to simply couple two different colour mechanical oscillation modes
in the same mechanical system, where the first mode represents the
mechanical oscillation of interest and the second mode affords a
phonon cavity. The key to this approach is a geometric intermodal
coupling, where the motion of the first (second) mode creates
tension that causes a shift in the frequency of the second (first)
mode, that can be parametrically manipulated29,30, which enables
phonon-cavity electromechanics to be realized1,20.

The electromechanical resonator used in this study is shown
in Fig. 1a and described in detail elsewhere15,16. It hosts flex-
ural oscillation modes that are transduced by the piezoelectric
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Figure 1 | The phonon-cavity electromechanical system. a, A false-colour

electron micrograph of the mechanical resonator sustaining a

two-dimensional electron gas (purple) above which Schottky-contacted

gold electrodes (orange) are located. The piezoelectric effect between

them transduces the mechanical motion. Also shown is a simplified

measurement circuit, where the harmonic probe is used to investigate the

first mode or the phonon cavity and the pump which dynamically couples

them. The mechanical-motion-induced piezovoltage is first amplified

on-chip then at room temperature and is measured using either a lock-in or

a spectrum analyser. b, The phonon-cavity electromechanical system,

harmonically probed with an amplitude of 100 µVr.m.s. and 3mVr.m.s.,

reveals the first mode and the second mode (that is, the phonon cavity),

respectively, as function of d.c. bias instead of the pump as depicted in a

(simulated mode profiles are also shown in the insets). The d.c. bias

generates piezoelectric strain which modifies their eigenfrequencies and it

can be exploited to enhance the parametric intermodal coupling. c, A

schematic profile of the phonon-cavity electromechanical system, where

the mechanical motion of interest is given by the first mode ω1, the second

mode ω2 plays the role of the phonon cavity and the anti-Stokes (Stokes)

pump that dynamically couples them when activated at ω−
p (ω+

p ).

effect, where the first mode ω1/2π = 171.3 kHz with damping
γ1/2π = ω1/2πQ1 = 1.1Hz (Q is the quality factor) and the second
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Figure 2 | The phonon-cavity dynamics. a,b, The phonon cavity’s response as a function of the anti-Stokes pump amplitude at ω−
p where all the spectra are

offset for clarity in b. For weak pump amplitudes, phonons are converted from the phonon cavity to the first mode, resulting in a dip in its response (that is,

the phonon cavity has a mechanically induced transparency). By increasing the pump amplitude further, the parametric coupling is enhanced and the

phonon cavity begins to hybridize with the first mode, undergoing parametric normal-mode splitting (note the phonon cavity undergoes a thermal drift for

large pump amplitudes owing to current leakage between the top-gate and the two-dimensional electron gas). c, The coupling rate extracted from a

(points) reveals a linear dependence on the anti-Stokes pump amplitude and is confirmed by a least squares fit (line). d, The numerical solution to

equation (1) for the conditions described in a confirms the experimental result, albeit without the thermal drift. e–g, The spectroscopy of the parametric

coupling via the phonon cavity with the anti-Stokes pump amplitudes Vp = 0.125, 0.25 and 0.5Vr.m.s. respectively. As the coupling between the first mode

and the phonon cavity is increased, it results in the characteristic anti-crossing of strongly coupled systems.

modeω2/2π =470.93 kHz with γ2/2π =ω2/2πQ2 =8.5Hz, which
henceforth will be known as the phonon cavity (see Fig. 1b).
This data indicates ultra-deep resolved sideband operation with an
unprecedented ratio ω1/γ2 ≈ 2×104, which is orders of magnitude
larger than photon-based counterparts1–11,14,22,23.

In the phonon-based system and in contrast to photon-cavity
electromechanical systems, the motion of the first mode induces
tension that can modify the frequency of the phonon cavity,
creating sidebands at ω2 ±ω1, as schematically depicted in Fig. 1c
(ref. 1). The coupling strength G= dω2/dX1 quantifies the degree
of parametric intermodal coupling and is given by the tension-
induced change in the phonon-cavity frequency for a given
displacement of the first mode (see Supplementary Information for
an illustrative example)20,30.

On the other hand, application of d.c. bias also enables
the frequency of the first mode and the phonon cavity to be
manipulated via piezoelectrically induced tension, which yields
δω1/2π =11HzV−1 and δω2/2π =6HzV−1 respectively, as shown
in Fig. 1b (ref. 15). Consequently, if the system is periodically
pumped (ωp) by a sufficiently large bias (Vp) it can not only modu-
late the eigenfrequency of both the firstmode and the phonon cavity
as δωnVpcos(ωpt ), where n=1 or 2 respectively, but it can also drive
the parametric coupling between them. For example, the pump can
induce a change in the displacement of the first mode, which in
turn modifies the tension and thus the frequency and energy of the
phonon cavity. The relaxation time (1/γ2) delayed response of the
phonon cavity results in a backaction force on the first mode via the
same coupling mechanism modifying its oscillation dynamics1,14.

388 NATURE PHYSICS | VOL 8 | MAY 2012 | www.nature.com/naturephysics

© 2012 M acmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys2277
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2277 LETTERS

0 0.69

10–10 A

Anti-Stokes pump amplitude (Vr.m.s.)

Anti-Stokes pump frequency (Hz)

F
re

q
u

e
n

c
y

 (
H

z)

A
m

p
li

tu
d

e
 (

10
–

10
 A

)

10–10 A

Anti-Stokes pump frequency (Hz)

10¬10 A

Anti-Stokes pump frequency (Hz)

0 0.4

10–10 A

Anti-Stokes pump frequency (Hz)

F
re

q
u

e
n

c
y

 (
H

z)

Vp = 0.5 Vr.m.s.

Vp = 0.25 Vr.m.s.

Vp = 0 Vr.m.s.

Anti-Stokes pump frequency (Hz)

1
/

2
π

 (
H

z)

a c

e

g

f

299,610 299,620 299,630

0 0.59

0 0.69

299,610 299,620 299,630

1
/

2
π

 (
H

z)

6

5

4

3

2

1

299,610 299,620 299,630

171,310

171,308

171,306

171,304
299,610 299,620 299,630

299,620299,610 299,630

0 V r.m.s.

0.1 V r.m.s.

0.2 V r.m.s.

0.3 V r.m.s.

0.4 V r.m.s.

0.5 V r.m.s.

γ

ω

d

b

171,310

171,315

171,305

171,300

0 0.1 0.2 0.3 0.4 0.5

171,315

171,310

171,305

171,300

171,315

171,310

171,305

171,300

F
re

q
u

e
n

c
y

 (
H

z)

171,315

171,310

171,305

171,300

F
re

q
u

e
n

c
y

 (
H

z)

171,300 171,305 171,310

Frequency (Hz)

171,315

2

1

0

Figure 3 | The backaction of the phonon cavity on the first mode. a,b, The response of the first mode to the anti-Stokes pump at ω−
p . As the pump

amplitude is increased, phonons are transferred from the first mode to the phonon cavity, resulting in X1 decreasing and γ1 increasing. At the strongest

pump amplitudes the parametric coupling is amplified, resulting in the emergence of normal-mode splitting in the response of the first mode. Note all the

spectra are offset for clarity in b. c–e, The spectroscopy of the phonon-cavity electromechanical system via the first mode as a function of the anti-Stokes

pump detuning and amplitude at 0, 0.25 and 0.5Vr.m.s. respectively reveals its transformation as it is more strongly coupled to the phonon cavity. f,g, γ1

and ω1 as a function of the anti-Stokes pump frequency (points) clearly reveal signatures of the in-phase and quadrature components of the phonon cavity

in the response of the first mode. Also shown are theoretical fits for the dynamical backaction (lines), as described in the main text.

The parametric coupling and the dynamical backaction effects
can be greatly enhanced when ω−

p = ω2 −ω1 (ω
+
p = ω2 +ω1) and

pumping on the anti-Stokes/red sideband (Stokes/blue sideband)
can damp (amplify) the first mode (Fig. 1c)29.

In this configuration, the Hamiltonian of the coupled system
can be expressed as

H =
2

∑

n=1

(

P2
n/2mn +mnω

2
nX

2
n/2

)

−3X2cos(ωst )

−
2

∑

n=1

(

(1nX
2
n/2)cos(ωpt )

)

−gX1X2cos(ωpt ) (1)

where the first two terms are the kinetic and potential energies
respectively, with canonical coordinates Xn and Pn denoting the
position and conjugate momentum of the constituent systems with
mass mn. 3 is the amplitude of the harmonic probe of the phonon
cavity with ωs ≈ ω2. 1n is proportional to the piezoelectric pump

amplitude, where this term arises from piezoelectric frequency
pulling of themechanical resonator, and it results in parametric res-
onance whenωp =2ωn (ref. 15). The combination of the terms with
3 and 12 can also permit degenerate/non-degenerate parametric
amplification and squeezing when ωp ≈ 2ω2 (refs 16,31). The last
term describes the linearized parametric coupling between the first
mode and the phonon cavity20,32, where the coupling rate g ∝GVp,
and this becomes the dominant term when ωp =ω±

p . Thus the term
containing1n can be neglected in the present investigation.

To probe the phonon cavity, a weak harmonic excitation
(3mVr.m.s.) is applied at ωs ≈ ω2 and the system is pumped on
the red sideband at ω−

p whilst the pump amplitude is increased.
In this configuration, the phonons from the pump and in the
phonon cavity are annihilatedwhilst phonons are created in the first
mode to conserve energy29. The numerical solution to equation (1)
(Fig. 2d and Methods) confirms that the phonon cavity transfers
energy to the first mode, and when g ≈ √

γ1γ2 it results in a
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mechanically (that is, phonon) induced transparency in the phonon
cavity17,18,20,27,28. As the pump amplitude is increased further, the
condition g ≥ γ2 ≫ γ1 can be satisfied, and the system enters the
strong-coupling regime. In this limit, the phonon cavity and the first
mode can no longer be considered as distinct entities, but rather as a
composite of their initial eigenmodes, and will undergo parametric
normal-mode splitting; a widely observed phenomenon in strongly
coupled systems19,20,25,32.

The experimental results shown in Fig. 2a,b confirm this
assertion, where the phonon cavity becomes transparent at pump
amplitudes of 0.3Vr.m.s.. As the pump amplitude is increased further
the system exhibits the emergence of parametric normal-mode
splitting and the peak separation given by 2g enables the coupling
rate to be extracted, as shown in Fig. 2c (ref. 20). This reveals g/π
can be linearly increased by the anti-Stokes pump to 8Hz, placing
the system on the cusp of the strong coupling regime19,20.

Alternatively, detuning the anti-Stokes pump frequency and
probing the phonon cavity reveals the presence of the first mode,
as shown in Fig. 2e–g. As the first mode’s sideband approaches
the phonon cavity it acquires its damping rate and becomes
broader. This effect is enhanced as the anti-Stokes pump amplitude
is increased and results in the avoided-crossing characteristic of
strongly coupled systems, namely the first mode and the phonon
cavity. Numerical simulations using equation (1) (see Methods)
can easily reproduce the above spectroscopy and are shown in the
Supplementary Information.

The phonon-cavity electromechanical system can also be ex-
cited by the Stokes pump, where this process creates phonons
in both the phonon cavity and the first mode at the expense
of the pump phonons, and is described in detail in the Supple-
mentary Information33.

The intermodal parametric coupling can be engineered to
control and manipulate the first mode by means of the phonon
cavity. By pumping on the red sideband at ω−

p , the first mode is
probed with a weak (100 µVr.m.s.) harmonic excitation as a function
of the pump amplitude, as shown in Fig. 3a,b. In this configuration,
the phonons from the anti-Stokes pump and in the first mode
are annihilated whilst phonons are created in the phonon cavity.
Consequently, the energy and hence the area associated with the
spectral response of the first mode decreases, as shown in Fig. 4d.
Moreover, as the anti-Stokes pump amplitude is increased, the
enhanced coupling between the first mode and the phonon cavity
results in Q1 being greatly reduced, as shown in Fig. 4c. For the
strongest pump amplitudes, the coupling reaches a point where
parametric normal-mode splitting can even be observed in the first
mode and its behaviour can no longer be characterized by a single
harmonic oscillator response function19.

On the other hand, if the anti-Stokes pump is detuned, the
phonon cavity’s dynamics can be imprinted onto the first mode,
where γ1 and ω1 trace out its in-phase and quadrature components,
as shown in Fig. 3c–g. For a pump amplitude of 0.5Vr.m.s.,
γ1/2π tends to (γ1 + γ2)/4π ∼5Hz; concurrently ω1/2π also
undergoes a 5Hz shift (Fig. 3f,g). From the theory of photon-based
opto/electromechanical systems operated in the resolved sideband
regime, the change inω1 and γ1 can be expressed as 4g

2δ/(γ 2
2 +4δ2)

and 4g 2γ2/(γ
2
2 +4δ2) respectively, where the pump detuning about

ω−
p is given by δ (refs 20,22,23). We find that this formalism is

equally applicable to the phonon cavity realized here and it can
reproduce the experimental response as shown in Fig. 3f,g approxi-
mately using the experimentally determined values for g and γ2.

Invariably, the dynamical backaction of the photonic cavity has
been employed to cool a mechanical oscillation mode1–11,22–24. Here
we show that this concept can also be applied to the phonon
cavity. A white noise voltage corresponding to a displacement
X ′
1 = 0.37 nm (see Methods and Supplementary Information) and

temperature T ′ ≫ 3.6K is injected into the spectral region around
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Figure 4 | Cooling the first mode via the phonon cavity. a, A white noise

displacement X′
1 corresponding to a temperature T′ ≫ 3.6K is injected into

a narrow bandwidth around the first mode. Concurrently, the anti-Stokes

pump is activated at ω−
p , which results in the displacement noise energy

from the first mode being transferred to the phonon cavity, cooling the

fundamental mechanical oscillation in the process. b, The power spectral

density of the first mode as a function of the pump amplitude clearly

reveals its area and, hence, temperature is reduced as it is more strongly

coupled to the phonon cavity. At the largest pump amplitudes, the

emergence of parametric normal-mode splitting can even be observed in

the response of the first mode. Note all the spectra are offset for clarity.

c,d, The corresponding Q1 and T/T′ respectively extracted from the above

measurement as a function of the anti-Stokes pump amplitude (red points).

Also shown are Q1 and the normalized area extracted from Fig. 3a (blue

points), confirming the trends observed in the noise measurement. For a

pump amplitude of more than 0.3Vr.m.s. (shaded region) normal-mode

splitting can be observed in the response of the first mode, resulting in it no

longer being described by a single harmonic oscillator response function.

the first mode, as shown in Fig. 4a,b. Activating the anti-Stokes
pump at ω−

p transfers phonons corresponding to the displacement
noise energy of the firstmode to the phonon cavity, where a stronger
pump amplitude enhances the transfer rate. For the largest pump
amplitude, almost all the displacement noise energy is transferred to
the phonon cavity, resulting in the temperature T and henceX1 and
Q1 of the first mode reducing (Fig. 4c,d). The normalized temper-
ature T/T ′ =

∫

X 2
1 (ω)dω/

∫

X
′2
1 (ω)dω at various pump amplitudes

indicates that the temperature of the first mode can be reduced by
a factor of∼2 by means of the dynamical backaction of the phonon
cavity, as shown in Fig. 4d. The measured response of T and Q1 as
a function of the anti-Stokes pump amplitude can be reproduced
through equation (1) and is detailed in the Supplementary Infor-
mation. The strong pump also results in thermal drift (Fig. 2a) but a
corresponding increase in the noise temperature is not observed, as
it is obscured by the very largeT ′ and by the noise floor temperature
from the room temperature amplifier.

At an ambient temperature of 3.6 K (that is, without the white
noise) the parametric coupling will result in the phonon number,
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Nn = kbT/h̄ωn, where kB is the Boltzmann constant, of the first
mode and the phonon cavity converging to (N1 +N2)/2. This will
result in a first mode temperature of 2.4 K. To achieve cooling
beyond this requires the phonon cavity to be realized at a much
higher frequency, namely N2 ≪ 1. Consequently, even though the
phonon cavity permits dynamical backaction on to the first mode it
is ill-suited to cool it into its quantum ground state, that is, N1 < 1.
This objective ismuchmore successfully served by photonic cavities
which can be initialized in their quantum ground state by virtue of
their higher operation frequencies10,11.

However, the novelty of the present approach lies in the unprece-
dented ability to parametrically manipulate mechanical nonlinear-
ities, as demonstrated previously with the present system15,16,31, to
engineer novel Hamiltonians (equation (1)). Ultimately, this will
enable phonons to be squeezed34 and entangled in two different
colour states13 when the mechanical oscillation modes are operated
in their quantum ground state10,11,25. Indeed, this phenomenon
is not limited only to piezoelectric transducers and it can be
generalized to any scheme that can modulate the eigenfrequencies
of the first mode and the phonon cavity, enabling the intrinsic
intermodal coupling to be exploited. Consequently, this work
opens up a new direction for opto/electromechanical systems that
inherently incorporate phonon cavities, which promises hitherto
unconsidered prospects34.

Methods
Experimental. The electromechanical resonator was fabricated by conventional
micromachining processes from a GaAs/AlGaAs modulation-doped
heterostructure sustaining a two-dimensional electron gas 90 nm below the
surface. The sample was mounted in a high-vacuum insert which was then
placed in a 4He cryostat.

The pump and probe excitations were generated from a single signal
generator with two synchronized outputs (NF Wavefactory 1966). A homodyne
measurement scheme was employed and the electromechanical oscillator’s
response was amplified by an on-chip Si-nano-field-effect-transistor with a
25 dB gain, followed by a transimpedance amplifier (Femto DLPCA-200) with
a gain of 106 VA−1, and measured in a lock-in amplifier (Ametek 7265). A
spectrum analyser with a built-in random noise source was used for the noise
measurements (Agilent 89410A).

Numerical simulations. The equations of motion of the parametrically coupled
modes ω2 and ω1 can be extracted from equation (1) as ∂H/∂Pn = Ẋn and
−∂H/∂Xn = Ṗn, using the identity Pn =mnẊn, giving

Ẍ2 +
ω2

Q2

Ẋ2 +ω2
2X2(1+β2X

2
2 )= 3cos(ωst )+ŴX1cos(ωpt ) (2)

Ẍ1 +
ω1

Q1

Ẋ1 +ω2
1X1(1+β1X

2
1 )= ŴX2cos(ωpt ) (3)

where ωs = ω2 + δs and ωp = ω−
p + δp. Dissipation terms parameterized by Qn,

the Duffing nonlinearity defined by βn and a generic pump amplitude Ŵ in lieu
of g have also been introduced and, for simplicity, the mass of both modes is set
to unity. Equations (2) and (3) are solved in the rotating frames at ω2 and ω1

respectively by decomposing X2 and X1 to

X2(t )= a2(t )sin(ω2t )+b2(t )cos(ω2t ) (4)

X1(t )= a1(t )sin(ω1t )+b1(t )cos(ω1t ) (5)

where a2(t ), b2(t ), a1(t ) and b1(t ) are slowly varying compared with ω2

and ω1 respectively. Using equations (4) and (5), equations (2) and (3) can
thus be expressed as

ȧ2(t ) =
1

2ω2

(

−
ω2

2a2(t )

Q2

−
3

4
β2ω

2
2b2(t )(a

2
2(t )+b22(t ))

+ 3cos(δst )+
Ŵb1(t )

2
cos(δpt )−

Ŵa1(t )

2
sin(δpt )

)

(6)

ḃ2(t ) =
1

2ω2

(

−
ω2

2b2(t )

Q2

+
3

4
β2ω

2
2a2(t )(a

2
2(t )+b22(t ))+3sin(δst )

−
Ŵb1(t )

2
sin(δpt )−

Ŵa1(t )

2
cos(δpt )

)

(7)

ȧ1(t ) =
1

2ω1

(

−
ω2

1a1(t )

Q1

−
3

4
β1ω

2
1b1(t )(a

2
1(t )+b21(t ))

+
Ŵb2(t )

2
cos(δpt )+

Ŵa2(t )

2
sin(δpt )

)

(8)

ḃ1(t ) =
1

2ω1

(

−
ω2

1b1(t )

Q1

+
3

4
β1ω

2
1a1(t )(a

2
1(t )+b21(t ))

+
Ŵb2(t )

2
sin(δpt )−

Ŵa2(t )

2
cos(δpt )

)

(9)

where all the off-resonance coefficients have been neglected. Equations (6)–(9)
are simultaneously numerically solved using the Runge–Kutta method, and the
response of the phonon cavity and the first mode at steady-state can be extracted
from X2 =

√
a22 +b22 and X1 =

√
a21 +b21 respectively. The numerical simulations

using this formalism can reproduce all the experimental results and are shown in
the Supplementary Information.

Noise displacement calibration. The displacement of the first mode is calibrated
by normalizing the output signal amplitude at the onset of nonlinearity to the
critical displacement and is shown in the Supplementary Information15. This yields
the responsivity, that is, the change in the output signal per unit displacement
ℜ=0.04Am−1. In the proximity of the first mode, a current spectral density limited
by the room-temperature amplifier S

1/2
i =0.9 pAHz−1/2 is measured, which yields a

displacement spectral density S
1/2
X1

=S
1/2
i /ℜ=22.5 pmHz−1/2 (ref. 31).

Consequently, white noise corresponding to 1mV injected into the spectral
region around the first mode results in S

1/2
iN

= 14 pAHz−1/2. This yields a noise
displacement X ′

1 = S
1/2
iN

√
γ1/

√
2πℜ= 0.37 nm.
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