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Abstract 

 

We apply first-principles calculations to lead selenide (PbSe) and lead telluride (PbTe) 

and their alloys (PbTe1-xSex) which are potentially good thermoelectric materials, to 

investigate their phonon transport properties. By accurately reproducing the lattice 

thermal conductivity, we validate the approaches adopted in this work. We then compare 

and contrast PbSe and PbTe, evaluate the importance of the optical phonons to lattice 

thermal conductivity, and estimate the impacts of nanostructuring and alloying on further 

reducing the lattice thermal conductivity. The results indicate that: 1) the optical phonons 

are important not only because they directly comprise over 20% of the lattice thermal 

conductivity, but also because they provide strong scattering channels for acoustic 

phonons, which is crucial for the low thermal conductivity; 2) nanostructures of less than 

~10 nm are needed to reduce the lattice thermal conductivity for pure PbSe and PbTe; 3) 

alloying should be a relatively effective way to reduce the lattice thermal conductivity.  



 

I. INTRODUCTION 

 

Thermoelectric materials are of great interest for their potential in converting heat 

into electricity [1-5]. The efficiency of thermoelectric power generators is determined by 

the dimensionless figure-of-merit zT ( kTSzT /2σ= , where S is the Seebeck coefficient, 

σ is the electrical conductivity, σ2S is the power factor and k is the thermal 

conductivity). Semiconducting lead chalcogenides, such as PbSe and PbTe, are attractive 

thermoelectric materials for intermediate temperature (600-800 K) applications [3]. 

Significant efforts have been made to enhance the zT value of PbTe [2-11]. By 

introducing resonant states, Tl doped p-type PbTe resulted in a high zT value of 1.5 at 

773 K [4]. Non-resonant doping can also lead to zT ~1.3 around 700 K in K or Na doped 

p-type PbTe [6]. Through band engineering to converge the valence bands, an 

extraordinary zT  value of 1.8 at about 850 K was reported for doped PbTe1-xSex alloys 

[7]. Heremans et al. [8] observed the enhancement of Seebeck coefficient in PbTe with 

nanograins. As the sister material of PbTe, PbSe has received much less attention 

although Se is more abundant and PbSe may offer an inexpensive alternative to PbTe 

especially for high temperature power generation. A recent calculation by Parker and 

Singh [12], predicted that heavily doped PbSe may reach 2~zT  at 1000 K due to the 

flattening of the valence band. The experiments [13, 14] later reported that the zT  values 

could reach 1.2 and 1.3 at 850 K for heavily doped p-type and Al doped n-type PbSe, 

respectively.  

Past efforts in increasing the zT  of PbTe and PbSe have mostly been based on 

improving the power factor σ2S . Another approach to improve zT  is to reduce the 

lattice thermal conductivity without substantially sacrificing the electronic properties. 

Previous studies [15-17] demonstrated the competence of the nanostructuring in 

suppressing the lattice thermal conductivity and thus improving zT . Most of the recent 

experimental studies on the strong reduction of the lattice thermal conductivity in 

nanostructured PbTe [9, 10] emphasized the importance of dislocations, nanoscale 

precipitates and strain while pointing out that the mere presence of nanostructuring 

cannot sufficiently increase the phonon scattering. He et al. [11] found that not all 



nanostructures favorably scatter phonons. A necessary condition for the nanostructures to 

be effective in scattering phonons is to have their characteristic lengths, such as 

nanoparticle diameter and/or interparticle spacing, to be comparable or less than the 

phonon mean free path (MFP). First-principles calculations on some thermoelectric 

materials show that phonons have a wide MFP distribution, and hence relatively large 

nanostructures can reduce their lattice thermal conductivity [5, 18, 19]. On the other hand, 

recent first principles calculations have shown that the distribution is much narrower for 

PbTe [20], and thus, further characterizations of the distributions and the associated 

detailed heat conduction of lead chalcogenides are important for better material design. 

For example, the extracted MFPs from our calculation can be combined with the Monte 

Carlo sampling of phonon free paths [21] to predict the thermal conductivity of 

nanostructures of lead chalcogenides.  

Besides nanostructuring, alloying may be another approach to reduce the lattice 

thermal conductivity. Previous experimental and theoretical studies on Si-Ge alloys [22-

24] have found dramatic decrease in the lattice thermal conductivity from pure Si and Ge. 

There are still few reports on PbTe1-xSex, and they only cover partial compositions 

(x<0.3). Based on the limited experimental data on bulk PbSe-PbTe alloy [25], p-type 

PbSe-PbTe alloy [7, 26], and PbSe-PbTe nanodot superlattice [27], the reduction is mild 

compared to Si-Ge alloys. The first principles calculation of the lattice thermal 

conductivity for PbSe-PbTe alloys over the whole composition range would allow us to 

better estimate the impacts of alloying. 

Despite the high symmetric rock-salt structure of PbSe and PbTe, the lattice thermal 

conductivities reported in experiments were as low as 1.7-2.2 W/mK at 300 K [3, 13, 28-

30]. The first principles calculations are useful to gain insight into the low heat 

conduction, with the capability of accurately capturing the transport properties of each 

phonon mode, including the optical modes. In most bulk materials, the optical phonons 

are ignored for the lattice thermal conductivity calculation [31]. For instance, the optical 

phonons comprise only 5% of the lattice thermal conductivity in bulk silicon at room 

temperature [19, 32-35]. When the system size reaches the nanoscale, the optical phonons 

can contribute about 20% [36]. Another perspective to examine the importance of optical 

phonons is the acoustic-optical scattering, as described by Ward and Broido [37]. They 



removed optical phonons and observed over three times increase in the lattice thermal 

conductivity for Si. The large anharmonicity of optical phonons was emphasized in PbTe 

to address the low thermal conductivity [38].   

In this work, we explore the detailed phonon transport properties in PbSe and PbTe to 

gain more guidance for the thermoelectric applications. We first calculate harmonic and 

anharmonic force constants from density functional perturbation theory (DFPT) 

calculations [39-41]. The anharmonic phonon lifetimes are then obtained based on 

Fermi's golden rule. The total lattice thermal conductivity is determined under the 

relaxation time approximation by summing up the contribution from each mode. Our 

results are validated by comparing with the reported experimental data. We present 

detailed analysis and quantify contributions from different phonon modes to the thermal 

conductivity for both PbSe and PbTe, and discuss the importance of optical phonons and 

the potential impacts of nanostructuring and alloying on further lattice thermal 

conductivity reduction in both material systems. 

 

II. METHODOLOGY 

 

Accurate interatomic force constants (IFCs) are crucial for the lattice thermal 

conductivity calculation. We adopt the DFPT approaches for both PbSe and PbTe. DFPT 

approaches have demonstrated unparalleled accuracy in reproducing the lattice thermal 

conductivity [22, 43, 44] and are sufficiently computationally affordable for simple rock-

salt structure with only 2 atoms in the primitive cell. More specifically, in our work, both 

the harmonic and anharmonic IFCs are obtained based on DFPT calculations 

implemented in the Quantum Espresso package [45]. In the ground-state calculations, the 

newly developed norm conserving fully relativistic pseudopotentials [46] which 

incorporate the spin-orbit interaction (SOI) effect appropriately are chosen under the 

local density approximation (LDA) for electron exchange-correlation potential. Through 

the sensitivity study of the lattice thermal conductivity with SOI and without SOI, we 

find that for both PbSe and PbTe, SOI effect is important and the fully relativistic 

pseudopotentials are necessary. For example, the phonon lifetimes of all modes are 



noticeably larger with SOI, which results in twice larger thermal conductivity with SOI 

than that without SOI at 300K. 

 

A. Harmonic Properties 

 

The harmonic IFCs are obtained using the primitive cell calculation of 2 atoms. In the 

self-consistent calculation of electronic properties, a Monkhorst-Pack 101010 ××  mesh 

[47] is used to sample electronic states in the first Brillouin zone and an energy cutoff of 

60 Ryd (~816 eV) is used for the plane-wave expansion to ensure the force convergence. 

In the following DFPT calculation, a Monkhorst-Pack 444 ×× q-mesh is used to 

calculate the dynamical matrix at each q grid, which, through inverse Fourier transform 

to real space, gives the harmonic IFCs. The harmonic IFCs allow computation of the 

dynamical matrix at any q point: 
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where Φ  is the harmonic IFC, m  is the atomic mass, 'lR  is the translation vector of the 

unit cell 'l  , η  specifies the η th atom in the primitive cell, and βα ,  are Cartesian 

components. The eigenvalues of the dynamical matrix yield the phonon frequencies and 

the dispersion, from which the phonon group velocities can be calculated. 

 

B. Anharmonic Properties 

 

There are two approaches to calculate the anharmonic IFCs in the reciprocal space. 

The results from both approaches are equivalent. One approach is based on 2n+1 theorem 

[48, 49] that assumes the third order IFCs can be obtained from the first order wave 

function. It is computationally effective since it does not involve the supercell calculation, 

but relatively complicated to implement. The other approach is to calculate the third order 

IFCs from the second order IFCs using finite difference method, which is 

computationally more expensive but simpler to implement. We use the latter approach in 

this study. 



The third order derivatives are determined by taking the derivative of the second order 

IFCs through a central difference scheme as below: 
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where V  is the interatomic potential. We first perform the Γ  point phonon calculation in 

a super cell to generate the harmonic IFCs for two different atomic configurations namely 

involving displacement of an atom along positive and negative Cartesian directions 

around the equilibrium position. All the required cubic IFCs are obtained by sequentially 

changing the atom displaced to be any of the atoms in the primitive cell. To ensure the 

accuracy of the cubic IFCs, we test three values of displacements. We use a Monkhorst-

Pack 444 ××  mesh [47] to sample electronic states with the same energy cutoff of 60 

Ryd (~816 eV).  

The cubic IFCs are needed to compute the three-phonon scattering matrix elements, 

which measure the strength of the scattering events and are given by  
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where is the Planck constant divided by 2π, 0N is the total number of modes in the first 

Brillouin zone, and s  denotes different polarizations.  By applying Fermi’s golden rule to 

the cubic Hamiltonian [50-53], the phonon lifetimes sqτ  due to the normal and umklapp 

three-phonon scattering processes can be expressed as 
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where snq  is the Bose-Einstein distribution )1/(1 / −= Tk
s

Bsen q
q

ω .The conservation of 

momentum requires Gqqq =++ "' , given G  as the reciprocal lattice vector while 

0=G results in the normal process and 0≠G  relates to the umklapp process. The 

choices of "q  are limited by q  and 'q , thus the summation involves only 'q .  



 

C. Lattice thermal conductivity 

 

We compute the lattice thermal conductivity based on the relaxation time 

approximation using the well-known formula 

                                                
T

n
ωτ

ΩN
κ s

s
s

ss ∂
∂

= ∑ q
q

q
qq

2

0

v
3

1                                           (5) 

where Ω  is the volume of the unit cell and sqv is the amplitude of group velocity. We use 

a 303030 ×× q-mesh within the first Brillouin zone to ensure the convergence. 

Comparing the total value with the experimental data serves as a validation of our 

calculations.  

More importantly, decomposition of the total lattice thermal conductivity into each 

mode allows us to account for the contributions from phonons with different MFPs and 

polarizations, which provides insights into the thermoelectric applications. The phonon 

MFP for each mode is defined as  

                                                              sss qqq τv=Λ                                                       (6) 

One way to quantify the contribution from phonons with various MFPs is to evaluate the 

thermal conductivity accumulation with respect to MFPs as described in Ref. [32, 54]. By 

summing the thermal conductivity contribution of modes with MFPs up to Λ , the 

cumulative thermal conductivity can be determined as follows:  
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To separate the contribution among different polarizations, we simply sum the thermal 

conductivity of the modes with certain polarization s as 
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D. Alloy modeling 

 



To take into account the alloy effects, we use the virtual crystal approach, first 

introduced by Abeles [23], where the disordered crystal is replaced with an ordered one 

of the average lattice parameter, atomic mass and force constants according to the 

composition. The mass disorder and anharmonicity are both treated as perturbations. 

Garg et al. [22] has applied this approach to Si-Ge alloys using the force constants from 

DFPT and reached excellent with the experimental data [23, 24].  

The effective phonon scattering rate is defined as the sum of the scattering rate due to 

mass disorder and anharmonicity: 
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While the anharmonic phonon lifetimes pp
s
−

qτ  are calculated in the same way as the pure 

cases except for different input parameters, the harmonic phonon lifetimes due to mass 

disorder follow the equation (12) in Ref. [55] as below:  
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where e is the polarization vector, 2
2 )](/)(1)[()( σσσσ ii

i
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)(σim  are the concentration and the atomic mass of i th isotope of the σ  atom.  

 

 

III. RESULTS AND DISCUSSION 

 

A. Comparison with experimental results 

 

Figure 1 shows the phonon dispersion relations of PbSe and PbTe along the high 

symmetry lines within the first Brillouin zone of the primitive cell with two atoms. There 

are six polarizations: two transverse acoustic (TA), one longitudinal acoustic (LA), two 

transverse optical (TO) and one longitudinal optical(LO) modes. The disperion of PbSe 

agrees reasonably well with the experimental results [56]. The splitting of LO and TO at 

Γ  point, which depends on the Born effective charges and dielectric constants, agrees 

with that in experiment. The dispersion of PbTe matches well with the experiments [57] 



except for the LO branch. The discrepancy at Γ  point comes from the difference in the 

Born effective charges. By setting the Born effective charge to the value obtained in the 

experiment (6.5 e ), the dispersion meets the experimental data while all other modes and 

the total thermal conductivity change by less than 1%. It has also been claimed in 

previous work [18, 20] that the inclusion of the LO-TO splitting has only negligible 

effects. For better comparison in terms of the actual frequency range, we use the tuned 

Born effective charge for the latter discussions.  

Although the frequency of the TO mode at zone center matches perfectly with the 

experimental value measured at room temperature, some uncerntainties exist in the 

calculation of this specific mode. As found in previous studies, the TO mode at the 

Gamma point is soft and directly relates to the ferroelectric ground state [58, 59]. The 

ferroelectric mode is difficult to calculate accurately due to its strong tempearture and 

volume dependences, and different pseudopotentials and lattice constants lead to different 

frequencies [58-60]. However, since we focus on the integrated properties of all the 

phonon modes, the discrepancy of single mode or few modes near the zone center with 

very small or even zero group velocity does not make any noticeable change to our 

conclusions. 

The dispersion relations of PbSe and PbTe are similar but do not scale with the total 

primitive cell mass ratio because they have one element Pb in common. Although the 

frequencies of the optical modes of PbTe drop significantly compared to those of PbSe, 

the differences between the acoustic modes, especially the TA modes, are much smaller. 

We compare the calculated lattice thermal conductivities with experimental results in 

figure 2. For both PbSe and PbTe, the calculations achieve decent agreement with 

experimental values [29, 30]. The small discrepancies of PbSe between 300 K and 400 K 

might come from the impurity or defects scattering in the experimental sample, which 

becomes inferior to three-phonon scattering at higher temperatures. Above 400 K, the 

calculated results lie on top of the experimental data. The agreement for PbTe in the 

whole temperature range is excellent. The good representation bears out the accuracy of 

our approach, and the validity of the relaxation time approximation, and supports our 

following discussions.  

 



B. Comparison between PbSe and PbTe 

 

The calculated lattice thermal conductivity of PbSe is 11% higher than that of PbTe at 

temperatures of 300 K-700 K. The atomic masses of Pb, Se and Te are 207.2, 78.96 and 

127.6, respectively. Se is about 40% lighter than Te, but due to the heavy mass of Pb, the 

mass difference for PbTe and PbSe is only 17%. At the first glance, the mass difference 

seems to fully explain the thermal conductivity difference. Yet how the mass difference 

actually leads to the variance in different quantities is far from the simple deduction, as 

we will show below. 

We show the phonon lifetimes in figure 3. In the low frequency range, the lifetimes 

exhibit 2−ω dependence, in agreement with Klemens’ prediction [61]. The trends of the 

lifetimes with respect to frequencies are similar for PbSe and PbTe. For most of the TA 

modes, the lifetimes of PbSe are substantially larger than those of PbTe, while for LA 

and optical modes, the lifetimes of PbSe are not necessarily higher. This is a nontrivial 

observation since the anharmonicity of PbSe were normally expected to be larger due to 

the larger average Grüneisen parameter reported from experiments [28]. For optical 

modes, the lifetimes of PbTe are obviously larger. 

With heavier mass, PbTe was anticipated to have smaller group velocities in general. 

Nevertheless, figure 4 shows that for TA modes, the group velocities of PbSe and PbTe 

are almost the same because of the closely matched acoustic dispersions. Noticeably, 

these TA modes are fairly soft with maximum value around 2000 m/s. In terms of the LA 

modes, the group velocities of PbSe are moderately higher. Between 1 THz and 2 THz, 

several TO modes of PbTe possess exceptionally high group velocities (>3500 m/s) and 

even higher than the TO modes of PbSe. For LO modes, the group velocities of PbTe are 

perceptibly smaller than those of PbSe. 

Integrating the transport properties over the entire first Brillouin zone, we can obtain 

the polarization dependent thermal conductivities as shown in figure 5. Remarkably, over 

a wide temperature range of 300 K to 700 K, the three acoustic branches contribute 

equally and three optical branches contribute almost evenly to the thermal conductivity of 

PbTe. In the case of PbSe, by contrast, the contribution among acoustic and among 

optical modes are all distinguishable.  



Considering all the differences in phonon frequencies, lifetimes, and group velocities, 

it is impossible to identify the decisive one source of the differences between PbTe and 

PbSe, despite the simple mass difference argument.  

 

C. The importance of optical phonons 

 

The normalized optical phonon contributions can be calculated by adding TO and LO 

modes together. For the whole temperature range considered (300 K-700 K), the 

contributions of optical phonons remain about 25% for PbSe and 22% for PbTe. These 

findings are rather surprising especially considering the simple rocksalt crystal structures 

of these two materials and the fact that only half of the modes are optical phonons. Our 

calculations demonstrate that optical phonons are not always negligible even in simple 

crystalline bulk materials. 

Moreover, optical phonons provide important scattering channels for acoustic 

phonons and are essential for the low thermal conductivity of PbSe and PbTe. By 

removing the acoustic-optical scattering, the thermal conductivity of PbSe/PbTe increases 

dramatically by a factor of six/five over the entire temperature range investigated here 

(300 K to 700 K) as shown in figure 6. This difference is about twice larger than that of 

Si [37]. Due to the softening of the optical phonons, the longitudinal acoustic and 

transverse optical phonons are strongly coupled, as observed in PbTe by Delaire et al. [38] 

in the experiment and by Shiga et al. in the calculation [20], and help lower the lattice 

thermal conductivity.  

 

D. The potential impacts of nanostructuring 

 

The cumulative thermal conductivity with respect to phonon mean free paths (MFPs) 

at 500 K is shown in figure 7. The total accumulation for PbSe keeps increasing as MFPs 

increases while the accumulation for PbTe gradually approaches plateau after MFPs 

reach 10 nm. Phonons with MFPs smaller than 10 nm comprise around 80% of the lattice 

thermal conductivity for PbSe and about 90% for PbTe. In other words, even if the 

interface backscattered all the ballistic phonons, the nanostructuring with length scale 10 



nm would only potentially reduce the thermal conductivity by 20% for PbSe and 10% for 

PbTe at the most. Therefore, to significantly reduce the lattice thermal conductivity in 

these materials, nanostructures with characteristic length smaller than 10 nm are required. 

Therefore, smaller inhomogeneities and alloying might be more effective in reducing the 

lattice thermal conductivity. 

 

E. The potential impacts of PbSe-PbTe Alloying 

 

We plot the lattice thermal conductivity of different composition of PbTe1-xSex alloy 

in figure 8. At 5.0=x , we obtain a maximum decrease of 30% (1.46 W/mK) compared 

to the average lattice thermal conductivity of PbSe and PbTe (2.1 W/mK) at 300 K. There 

is no sharp decrease feature in the dilute alloy limit as reported in Si-Ge alloy [22] due to 

the small difference in acoustic impedance between PbSe and PbTe. As temperature 

increases, the phonon-phonon scattering becomes dominant, and the influence from alloy 

scattering becomes less important. Therefore, comparing 300 K with 500 K, the reduction 

of lattice thermal conductivity is slighter at 500 K.  

The mean free path accumulation of PbTe0.5Se0.5 is plotted in figure 7. The phonons 

with high frequencies and short mean free paths are strongly scattered by mass disorder, 

while the phonons with small frequencies and long mean free paths are much less 

influenced. This leads to redistribution among different mean free paths and consequently 

the shift in the accumulation curve. Since the accumulation curve of PbTe0.5Se0.5 is 

considerably flat above 10 nm, similar to PbSe and PbTe, nanostructuring on alloys could 

not push down lattice thermal conductivity by a significant amount. 

Taking into account the practical difficulty in introducing nanostructures at the scale 

of 10 nm and the potential reduction in the lattice thermal conductivity, the simple 

alloying approach is more promising in reducing the lattice thermal conductivity.  

 

IV. CONCLUSIONS 

 

We perform first-principles calculations to detail the spectral phonon transport 

properties of PbSe and PbTe. We first extract harmonic and anharmonic force constants 



from density functional perturbation theory calculations within a supercell. We then 

extract the phonon lifetimes based on Fermi’s golden rule and compute the thermal 

conductivity under the relaxation time approximation. The total lattice thermal 

conductivities quantitatively agree with the experimental results. Comparison of mode-

dependence properties between PbSe and PbTe suggests that the transport properties of 

these two sister materials are similar in principle but different in specifics. The optical 

phonons not only directly contribute a considerable amount to the total lattice thermal 

conductivity of bulk PbSe and PbTe but also serve as important scattering channels for 

acoustic phonons. Both PbSe and PbTe possess very close lattice thermal conductivities, 

which is attractive for thermoelectric applications. Nanostructuring, however, would be 

difficult to further reduce the lattice thermal conductivity unless their characteristic 

lengths are reduced to less than 10 nm.  Alloying, on the other hand, have advantages 

over nanostructuring in reducing the lattice thermal conductivity. The parallel studies of 

these two materials provide insights into the phonon properties and may help design 

better thermoelectric materials. 
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Fig. 1 Phonon dispersion for PbSe and PbTe: red lines: calculated results; black dots: 

experimental results [56, 57]  
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Fig. 2 Temperature dependent lattice thermal conductivity of PbSe and PbTe, red lines: 

calculated results; black crosses: experimental data [29, 30].  
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Fig. 3 Frequency dependent phonon lifetimes of PbSe (squares) and PbTe (crosses) at 

300 K: (a) TA, (b) LA, (c) TO, and (d) LO.  
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Fig. 4 Frequency dependent phonon group velocities of PbSe (squares) and PbTe (crosses) 

at 300 K: (a) TA, (b) LA, (c) TO and (d) LO. 

 

300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

Temperature[K]

Th
er

m
al

 C
on

du
ct

iv
ity

 [W
/m

K
] PbSe

 

 

300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

Temperature[K]

Th
er

m
al

 C
on

du
ct

iv
ity

 [W
/m

K
] PbTe

 

 
TA1
TA2
LA
TO1
TO2
LO

 
Fig. 5 Thermal conductivity from different polarizations (TA1, TA2, LA, TO1, TO2 and 

LO) versus temperature for PbSe and PbTe 
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scattering: PbSe (black dashed line), PbTe (red dashed line) and with acoustic-optical 

scattering: PbSe (black solid line), PbTe (red solid line). 
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Fig. 7 Cumulative thermal conductivity with respect to phonon mean free path at 300 K 

for PbSe (red dashed line), PbTe (black solid line) and PbTe0.5Se0.5 (blue dotted line) 
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Fig. 8 Composition dependence of the lattice thermal conductivity in PbTe1-xSex at 300 K 

(solid line) and 500 K (dashed line). 

 

 

 

 

 

 

 

 


