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Phonon cooling and lasing with nitrogen-vacancy centers in diamond
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We investigate the strain-induced coupling between a nitrogen-vacancy impurity and a resonant vibrational
mode of a diamond nanoresonator. We show that under near-resonant laser excitation of the electronic states
of the impurity, this coupling can modify the state of the resonator and either cool the resonator close to the
vibrational ground state or drive it into a large-amplitude coherent state. We derive a semiclassical model to
describe both effects and evaluate the stationary state of the resonator mode under various driving conditions.
In particular, we find that by exploiting resonant single- and multiphonon transitions between near-degenerate
electronic states, the coupling to high-frequency vibrational modes can be significantly enhanced and dominate
over the intrinsic mechanical dissipation. Our results show that a single nitrogen-vacancy impurity can provide
a versatile tool to manipulate and probe individual phonon modes in nanoscale diamond structures.
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Diamond has emerged as a promising material for quan-
tum applications, due in part to its optical and mechanical
properties and in part to its addressable quantum defects.
The most widely studied defect is the negatively charged
nitrogen-vacancy (NV) center,1,2 whose electronic spin ex-
hibits exceptionally long coherence times3 and can be pre-
pared and detected optically.4 It has been demonstrated
that the NV electronic spin can be entangled with and via
optical photons,5,6 and significant effort has been devoted
to fabricating nanophotonic structures to create enhanced
NV-photon interfaces7–10 for efficient quantum information
processing and quantum communication. In parallel, diamond
nanostructures can be fabricated with very high mechanical
quality factors,11,12 and it has been proposed theoretically to
exploit the coupling of NV centers to phonons, in addition to
photons, for quantum information processing13–15 or quantum
enhanced magnetometry16 applications.

It is well known that many electronic defects in solids,
including NV centers, are highly susceptible to deformations
of the surrounding lattice. One consequence is the phonon-
induced broadening of optical lines. Recently, there has
been significant interest in exploiting these defect-phonon
interactions in nanomechanical systems or phonon cavities,
where single defects may be strongly coupled to long-lived,
spectrally isolated phonon modes.14–22 This suggests a route
toward cavity quantum electrodynamics using phonons, with
applications ranging from measurement and manipulation of
single mechanical quanta, to the generation of single-phonon
nonlinearities and phonon-meditated coupling of defects. In
view of recent advances in diamond nanofabrication and
demonstrated optical control of NV centers, diamond is a
leading candidate material in which to pursue these directions
in experiments.

In this paper, we consider the strain coupling between a
single NV center and a single resonant mechanical mode of a
diamond nanoresonator, and analyze ground-state cooling23–29

and phonon lasing30–37 techniques for manipulating the
phonon mode in this system. Compared to previous proposals
for using the strain coupling to natural and artificial two-level
defects23,37,38 to achieve this task, we here exploit the rich
electronic structure of the NV center and focus on an approach

involving two near-degenerate electronically excited states.
The presence of this additional third defect state leads to
qualitatively new features, and can be used to resonantly
enhance defect-phonon interactions. These resonances can
significantly increase both cooling and lasing, and are es-
pecially important when the phonon frequency is high—as
is the case in small diamond resonators—in which case the
standard off-resonant approach is inefficient. Our results have
direct implications for ground-state cooling and quantum-state
preparation of phonons in diamond nanoresonators. More
importantly, our approach to phonon lasing enables a new
method for local actuation of high-frequency acoustic modes,
providing a useful tool to measure, control, and characterize
NV-phonon interactions in nanoscale structures.

The paper is structured as follows. In Sec. I we start with a
brief outline of the basic ideas and main findings of this work.
In Sec. II we present a more detailed derivation of the effective
model for describing the NV-phonon coupling, which we then
use in Sec. III and Sec. IV to study cooling and lasing effects
in the off-resonant and resonant regime. Finally, in Sec. V we
discuss signatures of cooling and lasing effects in the excitation
spectrum of the NV center and summarize the main results and
conclusions of this work in Sec. VI.

I. IDEA AND APPROACH

The basic idea of this work is illustrated by the schematic
setup shown in Fig. 1(a), where a single NV center is embedded
in a diamond nanobeam or other vibrating structure. The
negatively charged NV− center in diamond is formed by a
substitutional nitrogen atom and an adjacent lattice vacancy;
by ignoring spin degrees of freedom for the moment, the
electronic level structure of this defect is well described by
a single electronic ground state |g〉 and two optically excited
states |x〉 and |y〉 [see Sec. II for a more detailed discussion].
Due to the C3v symmetry of the NV center, the states |x〉 and |y〉
are degenerate in energy, but can be split by a few GHz in the
presence of static lattice distortions or by applying external
electric fields. At cryogenic temperatures, the linewidth of
the excited states is sufficiently narrow such that they can
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FIG. 1. (Color online) (a) Setup. A single NV− defect center is
embedded in an all-diamond doubly clamped beam. Vibrations of the
beam with frequency ωm modulate the local strain and shift the energy
levels of the electronically excited defect states. (b)–(d) Illustration of
the phonon-assisted optical transitions for the case where the state |y〉
is driven by a laser of frequency ωL and detuning δL = ωL − ωy . The
spacing between the two excited levels is defined as � = ωx − ωy .
(b) Phonons coupled to �‖ only affect the driven state |y〉 and lead to
cooling (heating) effects for a laser detuning δL ≈ −ωm (δL ≈ +ωm).
(c) For phonon-induced transitions between the excited states with
coupling ∼�⊥, a resonant cooling process occurs for � = ωm and
with resonant excitation of the |y〉 state. (d) For an opposite level
ordering, i.e., � = −ωm, the same process leads to resonant phonon
emission, leading to heating and lasing effects discussed in Sec. IV.

be selectively addressed by laser fields of appropriate linear
polarization.5,39

A. NV-phonon interaction

The degeneracy of the excited |x〉 and |y〉 orbitals makes
these states highly susceptible to variation of the local strain
near an NV center. Here, we are interested in the resulting
coupling of the NV center to the quantized strain field
associated with a single resonant vibrational mode of a
diamond structure. In general, the strain field induced by this
mode will break the symmetry of the NV center and cause
energy shifts as well as a mixing of the states |x〉 and |y〉. The
resulting NV-phonon coupling is of the form (h̄ = 1)

HNV−ph � (λ‖�‖ + λ⊥�⊥)(a† + a), (1)

where a and a† are the annihilation and creation opera-
tors for the vibrational mode and �‖ = |x〉〈x| − |y〉〈y| and
�⊥ = |x〉〈y| + |y〉〈x| are the operators associated with a
relative energy shift and a mixing between the excited states,
respectively. For beam dimensions on the scale of ∼μm, the
lowest vibrational modes have mechanical frequencies in the
range of ωm ∼ 0.1–10 GHz and the coupling constants λ‖ and
λ⊥ can reach values of several MHz. This is comparable to
the radiative lifetime � of the excited states and can be even
stronger in smaller structures.15,18 More importantly for the
present work, the strength of the NV-phonon coupling can by
far exceed the mechanical damping rate γm = ωm/Q, which

for realistic mechanical quality factors of Q = 105–106 is in
the kHz regime.

B. Phonon cooling and lasing in the resonant
and off-resonant regimes

The strain coupling given in Eq. (1) describes modulations
of the NV excited-state level configuration by the mechanical
mode. Under laser excitation this gives rise to additional
phonon-assisted processes depicted in Figs. 1(b)–1(d), which
depending on the choice of the laser detuning, reduce (phonon
absorption) or increase (phonon emission) the mechanical
energy. If the rate �̃ associated with these processes substan-
tially exceeds the intrinsic mechanical damping rate γm, the
mechanical mode can be cooled close to the quantum ground
state. On the other hand, in the opposite regime, the mechanical
mode can be actuated and driven into a large-amplitude
coherent state (“phonon lasing”).

In Sec. III and Sec. IV we discuss in detail the cooling
and lasing effects in this system as a function of the driving
laser parameters. From this analysis we find a significant
quantitative difference for processes related to the �‖- and �⊥-
type couplings appearing in Eq. (1). The first case ∼�‖(a + a†)
represents an off-resonant interaction, where only the energy of
the driven excited state is modulated. This situation is similar
to the coupling of nanomechanical systems to quantum dots or
other solid-state two-level systems, where cooling23–26,29 and
lasing32,35,37 have previously been discussed. The resulting
cooling rate is optimized by choosing a laser detuning δL =
−ωm [see Fig. 1(b)] and scales approximately as

�̃‖ ≈ λ2
‖

�

	2

ω2
m

, (2)

where 	 is the Rabi frequency. For this off-resonant coupling,
we see that the phonon sideband transitions are suppressed
at the large mechanical frequencies typical of diamond
nanostructures. In contrast, for the second type of coupling,
∼�⊥(a + a†), the mechanical frequency can be compensated
by matching the frequency spacing � between the states
|x〉 and |y〉, leading to resonant cooling and heating process
indicated in Figs. 1(c) and 1(d). The corresponding rates
are optimized for � = ±ωm and with resonant laser driving,
δL = 0. The resulting scaling is

�̃⊥ ≈ λ2
⊥
�

4	2

�2
, (3)

and shows that the cooling and heating rates can be maximized
independent of the mechanical frequency, by saturating the
excited states, 	 ≈ �. This difference in the scaling has im-
portant practical implication when the laser power is limited by
heating of the sample or by two-photon charging effects.40,41

Therefore, the near-degenerate excited state manifold of the
NV defect could provide a crucial ingredient for a first
experimental demonstration of strain-induced cooling and
lasing effects for nanomechanical systems.

C. Thermometry and probing NV-phonon interactions

The same mechanisms outlined above for manipulating the
state of a mechanical resonator can also be used for readout.
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For example, as discussed in detail in Sec. V, by exciting
the state |y〉 with a y-polarized laser, the total photon flux
Ix of the x-polarized light scattered from state |x〉 is directly
proportional to the phonon occupation number,

Ix(δL) ≈ 4λ2
⊥	2�(

�2 + 4δ2
L

)2 × 〈a†a〉. (4)

This provides an efficient and, ideally, noise-background-free
way to directly measure the effective temperature of the
mechanical mode.

Finally, we emphasize that the manipulation and readout
schemes discussed in this work for a single mechanical mode
can serve as a versatile set of tools for investigating the
still poorly understood nature of NV-phonon interactions.
For example, in Sec. IV C we identify multiphonon lasing
effects which result from the interplay between both �‖-
and �⊥-type interactions. For studies such as this, the strong
coupling to a resonant mode and the ability to amplify the mode
using phonon lasing could provide much cleaner experimental
signatures than looking at similar effects in bulk diamond.39

II. MODEL

We now proceed with a more detailed derivation of the
strain coupling of an NV center to a single vibrational mode,
taking into account the multilevel structure mentioned above.
Similar models of phonon coupling to a single excited state14,15

and direct phonon coupling to the spin sublevels of the
NV electronic ground state manifold16 have been discussed
previously.

A. Level structure and strain coupling
of a NV center in diamond

The negatively charged NV− color center in diamond is
formed by a substitutional nitrogen atom and an adjacent
lattice vacancy. As shown in Fig. 2(a), the center has a C3v

symmetry and the six outer electrons occupy four orbitals
labeled a1(1),a1(2),ex,ey . These are linear combinations of the
“dangling bond” electronic orbitals located at the carbon and
the nitrogen atoms, and they transform as the irreducible repre-
sentations of the symmetry group.42,43 In the ground state, four
electrons occupy the fully symmetric orbitals a1(1),a1(2). The
remaining two occupy the degenerate ex,ey orbitals, forming a
spin triplet which minimizes the electron-electron Coulomb
interactions.42 Equivalently, this state can be described in
terms of two holes occupying the levels ex and ey , indicated
by the empty arrows in the Fig. 2(b). Adopting this hole
representation, the ground state is conventionally denoted by42

∣∣3
A2ms

〉 = |exey − eyex〉 ⊗ |ms〉, (5)

where ms = ±1,0 labels the three possible spin projections
and the degeneracy of states with |ms | = 1 and ms = 0 is
lifted by a zero-field splitting of ∼2.87 GHz due to spin-spin
interactions. The first electronically excited state is 1.95 eV
higher in energy and corresponds to the promotion of one
hole to the a1(2) orbital. This orbital doublet combined with
the spin triplet yields six states in the excited-state manifold
(the ae configuration), labeled by |E1,2〉, |Ex,y〉, and |A1,2〉.
These states are separated in energy by a few GHz due to

)z
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FIG. 2. (Color online) (a) Schematic top view of the NV defect
and its dangling bond representation. The shaded areas depict the
(hybridized) sp3 bonding orbitals (σ1,2,3 for the carbon and σN for
the nitrogen atoms). (b) Ground-state single-particle configuration in
the electron (black) and in the hole (empty arrows) representations.
(c) Energy level diagram of the NV center showing the spin sublevels
of the ground and the first excited triplet state. The relevant three-level
structure used in this work is highlighted in black. (d) Excited-state
energy splitting induced by the nonaxial strain (Refs. 5,42, and 43).

spin-orbit and spin-spin interactions,42,43 and the resulting
level ordering is shown in Fig. 2(c). In this work we are mainly
interested in the two excited states with zero spin angular
momentum

|Ex,y〉 = |aex,y − ex,ya〉 ⊗ |ms = 0〉, (6)

which can be selectively excited by linearly polarized light
from the ms = 0 ground state. Due to their vanishing spin
projection number, |Ex〉 and |Ey〉 are not mixed with the other
levels by spin-orbit interactions and they are degenerate in
the absence of strain or external electric fields. For simplicity,
from here on we will adopt the shorthand notation |x〉 ≡ |Ex〉,
|y〉 ≡ |Ey〉 for the two excited states and |g〉 ≡ |3A20〉 for the
ground state.

B. Strain and NV-phonon interactions

The effect of strain on the electronic states can be described
by a deformation potential coupling Hstrain = Ha + Hna. Here,
the axial part Ha accounts for those lattice deformations which
are totally symmetric (of A type as those belonging to the A1

irreducible representation of the point group), while the
nonaxial part Hna arises from deformations which break the
C3v symmetry (E type).39,44,45 Since in the ground state there is
only a single electronic orbital, the state |g〉 is highly immune
against lattice distortions and the effect of Hstrain on |g〉 can be
neglected (for a higher order effect of strain on the ms = ±1
spin levels see Ref. 16). In contrast, the degeneracy between the
ex and ey orbitals makes the excited states highly susceptible to
external perturbations.42,43 Projected onto our states of interest,
|x〉 and |y〉, the resulting strain coupling is

Ha = εA�A(|x〉〈x| + |y〉〈y|) (7)
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for the axial part and

Hna = εE�E(|x〉〈x| − |y〉〈y|) + ε′
E�′

E(|x〉〈y| + |y〉〈x|)
(8)

for the nonaxial part, respectively. Here �A, �E , and �′
E are

deformation potential constants and εA, εE , and ε′
E denote

the appropriate components of the strain tensor, which can
be derived from group-theoretical considerations.42 While Ha

preserves the symmetry of the electronic states and therefore
only shifts the energy of the excited states relative to the
ground state, the two contributions in Hna account for a
strain-induced splitting of |x〉 and |y〉 relative to each other
as well as a strain-induced mixing between the two excited
states. The displacements, and phonons, that couple in this
way are transverse to the NV axis, and correspond to E-type
symmetry.

We are interested in the strain field associated with the
quantized vibrational modes of the nanobeam. For small
displacements the induced strain at the position of the NV
center is linear in the mode amplitudes and in second
quantization the strain Hamiltonian given in Eqs. (7) and (8)
can be written in the form39

Hstrain = h̄

(∑
n

∑
ν=0,‖,⊥

λn
ν�ν

)
(an + a†

n). (9)

Here an and a
†
n are the bosonic operators for the nth vibrational

mode, and λn
ν are the corresponding coupling constants. The

operators �‖ and �⊥ have been defined below Eq. (1) and
here we have also included �0 = |x〉〈x| + |y〉〈y| to account
for a common shift of the excited states due to axial strain.
In micron-sized diamond structures the mode frequencies ωm

are separated by a few GHz, which in our analysis below
allows us to restrict Eq. (9) to a single near-resonant mode with
a mechanical vibration frequency ωm and bosonic operator
a. The values of the corresponding coupling parameters λ0,
λ‖, and λ⊥ depend on details of the specific experimental
setup, such as the resonator dimensions, the vibrational mode
function of interest, as well as the orientation of the NV center
in the diamond lattice. In the following it is assumed that there
is no “accidental” symmetry and that all the λν are similar in
magnitude.

To estimate the absolute strength of the NV-phonon
coupling we consider a doubly clamped diamond nanobeam of
dimensions (l,w,t) = (2,0.2,0.2) μm. The fundamental bend-
ing mode of this beam has a frequency of ωm/(2π ) ≈ 1 GHz.
For a NV center positioned at distance z0 away from the axis
of the beam, the induced stress per zero-point oscillation a0 is
approximately given by σ = [∂2u(x)/∂x2]Ez0a0, where E ≈
1.2 TPa is the Young’s modulus and u(x) is the displacement
field of the fundamental mode.16,23,46 Measurements of the
NV energy level splitting as a function of applied stress47 give
values around ∂ω/∂σ ∼ 2π × 1 kHz. This corresponds to a
deformation potential coupling of � ≈ 5 eV and λ/(2π ) ≈
6 MHz. Similarly, by considering the lowest order compression
mode (along the long axis of the beam) we obtain a mechanical
frequency of ωm/(2π ) ≈ 4.5 GHz. In this case the stress per
zero-point motion is given by σ = [∂u(x)/∂x]Ea0, where
u(x) = sin(πx/L), and results in a similar coupling constant of
λ/(2π ) ≈ 6.5 MHz. These estimates show that in micron-scale

structures NV-phonon couplings of a few MHz are expected,
while, for example, by using a compression mode, the NV
center is still located sufficiently far from the surface.

C. Laser driving and dissipation

For the cooling and lasing effects discussed below we
assume that the NV center is driven by a near-resonant laser of
frequency ωL. For concreteness we assume that the excitation
laser is linearly polarized along the y axis and detuned from the
state |y〉 by δL. In the frame rotating with the laser frequency
the resulting effective model Hamiltonian for our system is
(h̄ = 1)

H = ωma†a − δL|y〉〈y| − (δL − �)|x〉〈x|
+ 	

2
(|y〉〈g| + |g〉〈y|) + λ�̄(a + a†), (10)

where we have introduced the short notation λ�̄ ≡∑
ν=0,‖,⊥ λν�ν and � = ωx − ωy ∼ 1 GHz is the frequency

splitting between the two excited states |x〉 and |y〉 due to
static lattice distortions. This splitting can be tuned by applying
external electric fields48 and in the following we treat � as an
adjustable parameter.

To account for dissipation due to radiative and mechanical
losses we model the system dynamics by the master equation

ρ̇ = −i[H,ρ] + L�ρ + Lγ ρ, (11)

for the system density operator ρ. The Liouville operator L�

is given by

L�ρ = �

2

∑
ξ=x,y

(2|g〉〈ξ |ρ|ξ 〉〈g| − |ξ 〉〈ξ |ρ − ρ|ξ 〉〈ξ |)

+ �φ

2

∑
ξ=x,y

(2|ξ 〉〈ξ |ρ|ξ 〉〈ξ | − |ξ 〉〈ξ |ρ − ρ|ξ 〉〈ξ |),

(12)

and describes the radiative decay of the excited states with an
approximately equal decay rate �/(2π ) ≈ 15 MHz as well as
an additional broadening ∼�φ of the optical transitions due
to spectral diffusion. In bulk diamond and low temperatures
of T < 10 K, narrow optical lines with �φ ∼ � can be
achieved.49,50 For shallow implanted NVs, surface impurities
induce additional dephasing and significant experimental ef-
fort is devoted to understanding and mitigating this additional
dephasing. For NV centers located a few tens of nanometers
away from the surface, it is expected that sufficiently narrow
lines with �φ � 100 MHz can be reached.

The last term in Eq. (11) describes mechanical dissipation
due to the coupling of the resonant vibrational mode to the
thermal bath of phonon modes in the support. It is given by

Lγ ρ = γ

2
(Nth + 1)D[a]ρ + γ

2
NthD[a†]ρ, (13)

where D[a]ρ = (2aρa† − a†aρ − ρa†a), γ = ωm/Q is the
mechanical damping rate for a vibrational mode of quality
factor Q, and Nth = (eh̄ωm/kBT − 1)−1 is the equilibrium
phonon occupation number for a support temperature T . For
mechanical frequencies ωm/(2π ) ≈ 1 GHz and realistic values
of Q ≈ 105–106,11,12 the corresponding to damping rates are
a few kHz and Nth ≈ 100 at T = 4 K.
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III. COOLING

In Sec. I we have outlined the basic idea, how in the present
system phonon-assisted processes depicted in Figs. 1(b)–1(d)
can lead to cooling and heating. In the following we will
first focus on the cooling effects induced by the ∼�‖- and
∼�⊥-type interactions and evaluate the conditions for ground
state cooling of the mechanical mode.

A. Effective cooling equation

For the parameters of interest λ < � and low mechanical
occupation numbers, the dynamics of the NV center is only
weakly perturbed by the phonon mode. This allows us to
adiabatically eliminate the NV-center degrees of freedom and
derive an effective equation of motion for the mechanical
degrees of freedom only.23,26,28,29,51 To do so, we change into
a frame rotating with ωm and decompose the master equation
(11) into three terms,

ρ̇ = LNVρ + Lλρ + Lγ ρ, (14)

where LNV and Lγ describe the bare dynamics of the NV
center and the intrinsic dissipation of the mechanical mode,
respectively. Finally, Lλ accounts for the coupling between
the NV center and the mechanical mode, which in the rotating
frame is given by

Lλρ = −iλ[�̄(ae−iωmt + a†eiωmt ),ρ]. (15)

In the limit λ → 0, the defect and the phonon mode are
decoupled and the system relaxes into the state ρ(t) �
ρ0 ⊗ ρm(t), where ρ0 is the steady state of the driven NV
center defined by LNVρ0 = 0 and ρm(t) is the reduced density
operator of the mechanical mode. Provided the condition
γNth,λ

√〈n〉 + 1/2 � �,ωm is satisfied, where 〈n〉 is the mean
occupation number of the mechanical mode, the effect of
Lλ can be treated in perturbation theory. Using a projection
operator method we derive an effective master equation for the
mechanical mode26,29,51

ρ̇m = Lγ ρm + �̃
2 (N0 + 1)D[a]ρ + �̃

2 N0D[a†]ρ. (16)

Here we have introduced the cooling rate �̃ =
2λ2{Re[S(ωm)] − Re[S(−ωm)]} and the minimal occupation
number N0 = Re[S(−ωm)]/{Re[S(ωm)] − Re[S(−ωm)]},
which are determined by the equilibrium fluctuation spectrum

S(ωm) =
∫ ∞

0
dt ′〈�̄(t ′)�̄(0)〉eiωmt ′ , (17)

where 〈·〉 denotes the average with respect to the stationary
NV center state ρ0. This spectrum can be evaluated using
the quantum regression theorem52,53 and the main steps of
this calculation and the general result are summarized in
Appendix A.

From Eq. (16), the mean occupation number 〈n〉 = 〈a†a〉
of the phonon mode satisfies

∂t 〈n〉 = −�̃(〈n〉 − nf ), (18)

(a)

(c) (d)

(b)

FIG. 3. (Color online) Density plots of the Lamb-Dicke cooling
rate (in units of λ2/�) as a function of the detuning δL (y axis)
and the frequency difference � of the excited levels (x axis) for four
different values of the Rabi frequency: (a) 	/� = 0.5, (b) 	/� = 1,
(c) 	/� = 2, and (d) 	/� = 5. For all plots it has been assumed
that λ⊥ = λ‖ = λ, λ0 = 0, and �φ = 0.

where for �̃ � γ and Nth � 1 the final occupation number
nf is approximately given by

nf ≈ γNth

�̃
+ N0. (19)

In the following discussion we are mainly interested in the
sideband-resolved regime �,�φ � ωm where N0 � 1 can
be neglected. The final mode occupation number is then
determined by the competition between the optical cooling
rate �̃ and the rethermalization rate γNth.

B. Results and discussion

In Fig. 3 we numerically evaluate the cooling rate �̃ and
plot the result as a function of � and δL and different values
of the driving strength 	. We find regions of strong cooling
around δL ≈ −ωm and around δL ≈ 0, � ≈ ωm, which can
be associated with the two excitation processes indicated in
Figs. 1(b) and 1(c), respectively. In the first case the laser is
tuned on the red sideband of the |g〉 → |y〉 transition and a
mechanical energy of h̄ωm is absorbed to make this transition
resonant. In the second case the laser excites the state |y〉 on
resonance, and by absorbing an additional phonon, the NV
center is further excited to the state |x〉 before it decays. For
large 	 > �, the cooling maximum is separated into two peaks
as a result of the strong Rabi splitting.

Figure 3 shows that while at larger driving powers 	≈ ωm

both cooling mechanisms lead to appreciable rates of �̃ ∼
O(λ2/�), the mechanism related to �0- or �‖-type coupling
is strongly reduced at lower Rabi frequencies. To see this
more explicitly we evaluate the cooling rate �̃ under weak-
driving conditions (	 < �,ωm) and for the two types of
couplings ∼�‖ and ∼�⊥ separately. In the first case we

064105-5



KEPESIDIS, BENNETT, PORTOLAN, LUKIN, AND RABL PHYSICAL REVIEW B 88, 064105 (2013)

obtain

�̃‖ = 4�λ2
‖	

2

�2 + 4δ2
L

[
1

�2 + 4(ωm + δL)2
− 1

�2 + 4(ωm − δL)2

]
,

(20)

in agreement with previous results for phonon-cooling
schemes with two-level systems.29 For sideband-resolved
conditions, � � ωm, this cooling rate is optimized for δL =
−ωm and with a maximal value given by Eq. (2) in Sec. I B.
On the other hand, by considering only the �⊥ coupling we
obtain

�̃⊥ = 4�λ2
⊥	2

�2 + 4δ2
L

[
1

�2 + 4(� − ωm − δL)2

− 1

�2 + 4(� + ωm − δL)2

]
. (21)

Again under sideband-resolved conditions, the maximal rate
in this case occurs for δL = 0 and � = ωm, where the
maximal value is given by Eq. (3) in Sec. I B. We see that
the requirement to maximize the cooling rate is now only
	 ∼ �, which corresponds to a saturation of the state |y〉
on resonance. This is a significant improvement compared
to the much stronger requirement 	 ∼ ωm in Eq. (2) when
the mechanical frequency is high, ωm � �. For example, by
comparing Eqs. (2) and (3) for typical parameters considered
in this work and assuming λ⊥ ∼ λ‖, we find that the optimal
cooling rate for the same 	 is improved by a factor

�̃⊥
�̃‖

≈ 4ω2
m

�2
≈ 104. (22)

In other words, the laser power that is needed to achieve the
same cooling rate can be a factor 104 lower when making use of
the multilevel structure of the NV center. This is an important
practical issue at low temperature where absorbed laser light
might otherwise lead to heating of the entire sample.

C. Ground-state cooling

As mentioned above, the final occupation number nf in
the sideband-resolved regime is mainly determined by the
competition between the cooling rate �̃ and the rethermal-
ization rate γNth � kBT /(h̄Q). Under optimal driving the
maximal achievable cooling rate approaches �̃max ≈ λ̄2/�.
This happens for laser powers 	 ∼ ωm for the �‖-type
coupling and for 	 ∼ � for the �⊥-type coupling. The
minimal achievable occupation numbers are then approx-
imately given by nf ≈ γNth�/λ2. For λ/(2π ) ≈ 5 MHz,
ground-state cooling nf � 1 can be achieved for realistic
mechanical quality factors of Q ≈ 105 and initial temperature
of T = 4 K.

In our analysis so far we have considered the ideal case of
purely radiatively broadened optical lines � > �φ , which is a
realistic assumption in bulk diamond and at temperatures of
a few kelvins. In nanoscale structures, noise processes on the
surface become important and can lead to additional spectral
diffusion of the optical line. For the cooling to remain efficient,
we require that �φ < ωm, such that the phonon sidebands are
still well resolved. Based on rapid progress with shallow-
implanted NVs and expected linewidths of �φ ∼ 200 MHz,
this condition can be realistically achieved for ∼GHz

mechanical modes. Since spectral diffusion broadens the line
without causing dissipation, the cooling rate is reduced by a
factor �̃ ∼ �/(�φ + �). This slightly degrades the cooling,
but does not affect the mechanism itself.

It is important to point out that in our model in Eq. (12) a
simple Markovian line broading ∼�φ is assumed. In practice
the spectral diffusion of the excited states is often better
described by a highly non-Marokvian, slow drift of the
excited-state energies. This can in principle be compensated
by applying additional optical dressing or real-time feedback
schemes to stabilize the optical transitions and a reduction of
the remaining broadening to �φ ∼ � seems feasible.

IV. PHONON LASING

As a second application we now consider the opposite
regime, where the detuning of the optical driving field is chosen
to enhance phonon emission processes. At low driving powers
this simply leads to an increase of the mechanical energy,
but at larger driving strengths the heating can overcome the
intrinsic mechanical damping and drive the resonator into
a large-amplitude coherent state. In analogy to a strongly
pumped optical mode undergoing a lasing transition, this
effect is commonly referred to as “phonon lasing” and has
been investigated in different physical settings.30–37 While
mechanical systems can in principle be driven into a coherent
state by applying a resonant external force, this becomes
increasingly more difficult for high-frequency modes in small
structures. In contrast to the cooling mechanism discussed
above, the phonon-lasing scheme we now discuss amplifies
the mechanical motion, providing an efficient way to probe
NV-phonon interactions.

A. Semiclassical phonon-lasing theory

In the previous section we derived an effective rate equation
for the resonator mode under the assumption λ

√〈n〉 � �.
In the opposite regime of amplification, the mean resonator
occupation 〈n〉 can become very high and nonlinear saturation
effects—which eventually limit the maximal achievable oc-
cupation number—become important. Still assuming λ � �

these effects can be described within a semiclassical
approach,54 where the effect of a large classical phonon
amplitude ∼ λ

√〈n〉 on the NV center dynamics is taken fully
into account.

Here we closely follow the phase-space approach, which
was used in Ref. 29 to model phonon-cooling effects at high
initial temperatures. We introduce a set of quasiprobability
distributions

Pjk(α,t) = 1

π2

∫
d2β eαβ∗−α∗βTr{eβa†

e−β∗aσjkρ(t)}, (23)

where σjk = |j 〉〈k| and j,k = g,x,y. The Pjk(α,t) correspond
to the expectation value of the operator σjk for a fixed
coherent state amplitude α and 〈σjk〉(t) = ∫

Pjk(α,t)d2α. The
function P (α,t) = Pgg(α,t) + Pxx(α,t) + Pyy(α,t) is the usual
Glauber-Sudarshan P representation52–54 of the mechanical
resonator density matrix.

In the frame rotating with ωm, the state of the mechanical
mode changes slowly on the relaxation time scale �−1

of the NV excited states. This allows us to evaluate the
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quasistationary values of Pij (α,t) for a fixed point α in
phase space, and insert the result back into the equation of
motion for the P representation P (α,t). In Appendix B we
use a Floquet expansion to apply this idea for the present
system and derive and effective Fokker-Planck equation for
the mechanical mode,

Ṗ (α,t) � 1

2

(
∂

∂α
αγ (α) + ∂

∂α∗ α∗γ (α)

)
P (α,t)

+ γNth

∂2

∂α∂α∗ P (α,t), (24)

where γ (α) = �̃(α) + γ . In the limit α → 0 the energy-
dependent damping rate �̃(α) ≡ �̃(|α|) reduces to �̃ defined
below Eq. (16), and must be in general evaluated numerically
as described in Appendix B. Note that in Eq. (24) we have
neglected the influence of the NV center on the diffusion term.
This is justified in the current regime of interest, Nth � 1, but
must be taken into account when studying lasing effects at low
thermal occupation numbers Nth ∼ 1.30–32,35

Equation (24) preserves the radial symmetry of the initial
thermal state; thus, by writing α = reiφ , we can rewrite it in
terms of a Fokker-Planck equation for the radial distribution,

Ṗ (r,t) = 1

2

(
∂

∂r
r + 1

)
γ (r)P (r,t)

+ γNth

4

(
∂2

∂r2
+ 1

r

∂

∂r

)
P (r,t). (25)

The steady-state solution of the radial equation is P (r,∞) =
N e−φ(r), where N is a normalization constant such that
2π

∫ ∞
0 rP (r)dr = 1 and

φ(r) = 2

γNth

∫ r

0
r ′γ (r ′)dr. (26)

In the absence of driving, γ (r) = γ and we obtain the
thermal distribution function P (r,∞) = e−r2/Nth/(πNth). For
the cooling schemes described in Sec. III, we obtain �̃(r →
0) = �̃ > 0, but �̃(r) decreases at larger values of r , where
saturation effects set in and limit the cooling effect.29 In the
following, we are mainly interested in detuning such that for
low occupations, γ (r → 0) < 0 and energy is pumped into
the mechanical mode. Again, due to saturation, this heating
decreases at large oscillation amplitudes, where eventually
γ (r → ∞) = γ > 0.

B. From heating to lasing

In the previous section we have shown that resonant
phonon interactions ∼�⊥ provide an efficient way to cool
high-frequency phonons, and in the following we analyze the
reverse process of phonon lasing. To do so, we set � ≈ −ωm

and obtain the inverted level structure shown in Fig. 1(d),
where the driving laser excites the upper state |y〉, which can
undergo a further transition to the lower state |x〉 by emitting
a phonon.

In Fig. 4(a) we present the numerically calculated P
functions for different values of the driving strength 	. For
very low driving, the optical heating rate is still smaller than
the intrinsic mechanical damping rate. In this case the resonator
mode remains in a thermal state, but with a higher effective

(a)

(b)

(c)

FIG. 4. (Color online) (a) The stationary P function P (r,∞) is
plotted for different values of the Rabi frequency 	 given in the
inset. Each curve is rescaled by its maximal value Pmax and the other
parameters used for this plot are (in units of ωm) Nth = 20, γ = 10−6,
λ⊥ = 0.001, � = 0.05, and �φ = 0. (b) The final phonon occupation
number nf is plotted as a function of 	 and other parameters as in
(a). The dashed line indicates the approximate result derived from the
Gaussian P function given in Eq. (31). (c) Under the same conditions
the Fano factor F (solid line) and the correlation function g2(0)
(dashed line) are plotted as a function of the driving strength. In
(b) and (c) the vertical dashed line indicates the position of the
threshold given in Eq. (30).

temperature. Above a threshold driving strength, 	 > 	c, the
P function starts to deviate from a thermal distribution and
reaches its maximum at a finite value r0 > 0. This is the onset
of the lasing transition. By further increasing 	, the maximum
shifts to larger and larger values and the P function displays
a narrow Gaussian shape, which approximates the sharp δ

function, P (r) ∼ δ(r − r0), expected for an ideal coherent
state.

To further characterize the phonon-lasing phenomenon, we
plot in Fig. 4(b) the final phonon occupation number nf as a
function of 	, starting from an equilibrium value of Nth = 20.
We see that around 	c/� ≈ 0.11 the phonon number starts
to increase significantly; for the chosen parameters, it can
reach values up to nf ≈ 104. In Fig. 4(c) we show the
corresponding values for g2(0) = 〈a†a†aa〉/〈n〉2 and the Fano
factor F = 〈n2〉/〈n〉, which also show clear signatures of
the transition from heating to lasing. For 	 < 	c the Fano
factor remains close to F ≈ nf + 1, as expected for a thermal
distribution. Above 	c the Fano factor starts to decrease,
indicating a more Poisson-like distribution. This is even more
apparent by looking at g2(0), which changes from a value
of g2(0) = 2 for a thermal state to g2(0) � 1 of a coherent
state.
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Note that an increase of the driving strength 	 > � leads
to a saturation of the optical transition and therefore also the
lasing effect. In addition, for a very strong driving field 	 �
�, but otherwise fixed detunings, the resulting Rabi splitting
between |g〉 and |y〉 will drive the system out of the resonance
condition and the lasing effect breaks down.

Under weak driving conditions (	 < �,ωm) and assuming a
dominantly �⊥ coupling, we derive an approximate analytical
form for the heating rate, which on resonance (� = ωm, δL =
0) is given by

�̃⊥(r) = −4λ2
⊥�	2

(�2 + 4λ2
⊥r2)2

. (27)

By direct integration of Eq. (26) we obtain

φ(r) = r2

Nth

(
1 − 4λ2

⊥	2

γ�(�2 + 4λ2
⊥r2)

)
, (28)

and the position of the maximum of the P function is found by
solving φ′(r0) = 0,

r0 = 1

2

√
−�2

λ2
⊥

+ 2
√

�	√
γ λ⊥

. (29)

Setting r0 to zero yields the lasing threshold,

	c

�
=

√
�γ

2λ⊥
, (30)

which is indicated in Fig. 4 by the vertical dotted line. Deep in
the lasing regime, where r0 � 1, we can further make a saddle-
point approximation and obtain a Gaussian P distribution of
the form

P (r) ≈ 1

r0σ
√

8π3
exp

[
− (r − r0)2

2σ 2

]
, (31)

where the variance is given by σ 2 = 1/φ′′(r0). From Eq. (27)
we see that the requirement for lasing |�̃⊥(r → 0)| � γ

implies the condition λ2
⊥	2 � γ�3, for which the variance of

the Gaussian distribution is essentially determined by thermal
fluctuations, σ 2 ≈ Nth/4. In this limit, the mean occupation
number nf ≈ r2

0 + 3σ 2 derived from Eq. (31) is approximately
given by

nf ≈ 	

2λ⊥

√
�

γ
+ 3

4
Nth. (32)

Our analytical results are compared to the numerically com-
puted final phonon occupation number in Fig. 4(b), and we
find very good agreement above threshold.

C. Cooling and lasing in the single- and multiphonon regimes

In general, the presence of both �⊥- and �‖-type NV-
phonon interactions can lead to a rich interplay between
cooling and heating mechanisms, as different single- and
multiphonon processes become resonant depending on the
laser detuning δL and the excited-state splitting �. This is
illustrated in Fig. 5, where we evaluate numerically the final
phonon occupation number nf for a large range of detunings δL

and �. The plot shows the same cooling and heating processes
discussed above, corresponding to �⊥-type (maximized for

FIG. 5. (Color online) Numerically evaluated final phonon occu-
pation number nf as function of � and δL and assuming an initial
occupation of Nth = 80. The other parameters used for this plot are
(in units of ωm) 	 = 0.05, � = 0.05, γ = 10−6, λ⊥ = λ‖ = 0.005,
and �φ = 0. The dashed lines indicate the resonance conditions for
single- and multiphonon sidebands.

� = ±ωm, δL = 0) and �‖-type (maximized for δL = ±ωm)
interactions and associated with emission or absorption of
single phonons. In addition, we observe heating and cooling
features at multiple integers of the phonon frequency, i.e.,
under the condition δL − � = ±nωm, indicating multiphonon
processes. These effects are most pronounced in the lasing
regime, where the mechanical mode is highly excited and
higher order phonon processes become relevant. Note that such
multiphonon effects (for example the two- and three-phonon
lasing peaks at � = −2ωm and � = −3ωm) appear only in
the presence of both types of couplings. Similarly, two types
of NV-phonon interactions are thought to be involved in the
NV zero-phonon line broadening and its T 5 scaling.39 In light
of this, studying multiphonon lasing may provide a useful tool
to analyze the detailed nature of NV-phonon coupling.

V. EXCITATION SPECTRUM

In this last section we study the excitation spectrum of the
NV center, which provides a direct way to probe the state of
the mechanical resonator by measuring the light scattered from
the NV center. By considering a polarization-selective photon
detection setup, we calculate the photon flux Iη=x,y(δL) =
�〈σηη〉 emitted from the two excited states and as a function of
the laser detuning δL. According to the definition in Eq. (23)
we obtain

Iη(δL) = �

∫
d2α Pηη(α), (33)

and under the validity of our semiclassical approximation,
Pηη(α) � X0

η(α)P (α,∞). Here X0
η(α) is an energy-dependent

factor, defined in Eq. (B10) in Appendix B, and P (α,∞) is the
stationary P function as evaluated in the previous section.

In Fig. 6(a) we plot Iy(δL) for different driving strengths 	

and with only �‖-type coupling. For clarity, we normalize each
curve to I0 = �	2/(�2 + 	2), which is the scattered photon
flux at resonance and in the absence of the mechanical mode.
At low driving powers, the influence of the NV center on the
mechanical mode is small and the resonator mode remains in
a thermal state, 〈n〉 ≈ Nth. In this case we obtain the familiar
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(a)

(b) (c)

FIG. 6. (Color online) Scattered photon flux Iη=x,y as functions
of the laser detuning δL and normalized to the resonant scattering rate
I0. (a) Photon flux from the |y〉 state and assuming a dominant �‖
coupling of strength λ‖ = 0.05ωm and an equilibrium occupation
number of Nth = 80. At low driving, 	 = 0.001ωm (solid line),
phonon sidebands at δL = ±ωm are of approximately the same height.
At larger probe strength, 	 = 0.01ωm (dashed line), the probe laser
induces cooling and heating effects, which result in a pronounced
asymmetry between the sidebands. The other parameters for this plot
are (in units of ωm) � = 0.1, �φ = 0, γ = 10−6. In (b) and (c) the
scattered photon flux from the |x〉 state is plotted for � = ωm and
� = −ωm, respectively. In (b) the height of the scattered intensity
peak provides a direct measurement of the phonon number 〈n〉. In
(c) the transition to the lasing regime at large 	 results in a phonon-
induced Rabi splitting of the signal proportional to ∼2λ⊥

√〈n〉. For
these two plots a �⊥-type coupling with strength λ⊥ = 0.01ωm has
been assumed and 	 = 10−2.5 (solid lines), 	 = 10−2 (dashed lines),
and 	 = 10−1.5 (dotted lines). The other parameters are as in (a).

phonon sideband spectrum of a two-level defect,55

Iy(δL) ≈ �(	/2)2

(�/2)2 + δ2
L

∞∑
n=−∞

Ane
−(λ‖/ωm)2(2〈n〉+1), (34)

where An = In[2(λ‖/ωm)2√〈n〉(〈n〉+ 1)]×[(〈n〉 + 1)/〈n〉]n/2

and In(x) is the nth-order modified Bessel function. As we
increase the driving strength we find deviations from this de-
pendence: By probing the mechanical sidebands, we simulta-
neously generate significant cooling and heating, and the mean
occupation 〈n〉 ≡ 〈n〉(δL) varies as a function of the detuning.
For example, for δL ≈ −ωm the phonon mode is cooled, which
leads to a reduction of the corresponding phonon peak. In the
opposite case, i.e., δL ∼ ωm, the phonon sideband is amplified
due to heating and lasing effects. The resulting asymmetry
between red and the blue phonon sidebands provides a clear
signature for the backaction of the probing laser on the phonon
modes.

In Figs. 6(b) and 6(c) we plot the scattered light intensity
Ix(δL) from the |x〉 level, still assuming that the NV center
is excited on the |g〉 → |y〉 transition. In this case, there
is no scattered light and Ix(δL) ≈ 0 in the absence of the
mechanical mode, and therefore the measured signal is a
direct consequence of phonon-induced transitions between |y〉
and |x〉. Figure 6(b) shows the signal for cooling conditions,
� = ωm. As above, we see that by probing the resonance with

increasing driving strength, cooling sets in and reduces the
height of the peak. For weak driving, 	 < � and λ

√〈n〉 � �,
the total photon flux is approximately given by Eq. (4) in Sec. I,
and it can be directly used to measure the final occupation
number 〈n〉. Compared to the case of a two-level system
described above, where the phonon sidebands are reduced by
(λ‖/ωm)2, the signal given in Eq. (4) remains significant even
for large mechanical frequencies and provides a practical way
to measure the temperature of high-frequency phonon modes
in experiments.

Finally, Fig. 6(c) shows the excitation spectrum Ix(δL) for
heating conditions, � = −ωm. In this case, the transition to a
lasing state can substantially increase the phonon occupation
number when probing the resonance with moderate laser
power. Similar to cooling, the influence of phonon lasing on
the excitation spectrum can also be used to determine the
mean phonon number: Here, it is no longer provided by the
height of the resonance, but rather the splitting of the resonance
into two peaks by ∼2λ⊥

√〈n〉. This splitting results from
the mechanical system being driven into a large-amplitude
oscillating state, which in turn acts like an additional strong
driving field between the two excited NV states.

VI. CONCLUSIONS

We have described the strain coupling of an NV center
to an isolated vibrational mode of a diamond nanoresonator,
and analyzed ground-state cooling and lasing schemes for
manipulating the state of that mode. In particular, we have
shown that by exploiting resonant phonon transitions between
two near-degenerate electronic states of the NV center, cooling
and lasing effects for phonons in the GHz regime can be
significantly enhanced compared to similar but off-resonant
effects discussed previously for two-level defects. As a result,
the multilevel structure of NV defects provides a versatile tool
for manipulating and probing the state of individual phonon
modes in nanoscale diamond structures.
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APPENDIX A: FLUCTUATION SPECTRUM

To describe the dynamics of the NV center we use
σgg = 1 − σxx − σyy and group the remaining independent
expectation values into a vector, 〈 �χ〉 = (〈σxx〉,〈σyy〉,〈σgx〉,
〈σgy〉,〈σxg〉,〈σxy〉,〈σyg〉,〈σyx〉)T . The expectation values
evolve according to the Bloch equation

〈 �̇χ〉 = M〈 �χ〉 + �V , (A1)
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where �V = (0,0,0, − i	/2,0,0,i	/2,0)T and the matrix M is explicitly given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−� 0 0 0 0 0 0 0

0 −� 0 i 	
2 0 0 −i 	

2 0

0 0 i(δL − �) − �
2 0 0 0 0 i 	

2

i 	
2 i	 0 iδL − �

2 0 0 0 0

0 0 0 0 −i(δL − �) − �
2 −i 	

2 0 0

0 0 0 0 −i 	
2 i� − � 0 0

−i 	
2 −i	 0 0 0 0 −iδL − �

2 0

0 0 i 	
2 0 0 0 0 −i� − �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the evaluation of the cooling rate �̃ and the effective
occupation number N0, we need to calculate the spectrum
S(ωm) given in Eq. (17), which fully determines the cooling
dynamics in the Lamb-Dicke regime. This is done using the
quantum regression theorem,52,53 and we obtain

S(ωm) = −
(

λ0 + λ‖
λ

,
λ0 − λ‖

λ
,0,0,0,

λ⊥
λ

,0,
λ⊥
λ

)

× 1

iωm1 + M
(〈 �χ�̄〉ss − 〈 �χ〉ss〈�̄〉ss). (A2)

The cooling rate and the effective occupation number depend
on the above spectrum as described in the main text.

APPENDIX B: FOKKER-PLANCK EQUATION

Starting from the set of distribution functions defined in
Eq. (23), we use Pgg = P − Pxx − Pyy , and define a vector
�P = (Pxx,Pyy,Pgx,Pgy,Pxg,Pxy,Pyg,Pyx)T , which for λ → 0

evolves according to

�̇P (α,t) = M �P (α,t) + �V P (α,t) + Dγ
�P (α,t). (B1)

The first two terms on the right-hand side correspond to the
dissipative evolution of the NV center and M and �V are defined
in Appendix A. The third term accounts for the mechanical
damping of the oscillator, where

Dγ
�P (α,t) = γ

2

(
∂

∂α
α + ∂

∂α∗ α∗
)

�P (α,t)

+ γNth

∂2

∂α∂α∗
�P (α,t). (B2)

The coupling between the mechanical mode and the NV
center is described by the term ρ̇(t) = −i[Hλ,ρ(t)] in the
master equations, where the interaction Hamiltonian is Hλ =
λ�̄(ae−iωmt + a†eiωmt ) and

�̄ = λ⊥
λ

(σxy + σyx) + λ0 + λ‖
λ

σxx + λ0 − λ‖
λ

σyy. (B3)

This coupling adds the following terms to the equations of
motion for the P functions,

Ṗσjk
= −iλ(αe−iωmt + α∗eiωmt )P[σjk,�̄]

+ iλeiωmt ∂

∂α
P�̄×σjk

− iλe−iωmt ∂

∂α∗ Pσjk×�̄, (B4)

where Pσjk
≡ Pjk . To remove the explicit time dependence we

introduce a Floquet representation

Pjk(α,t) =
∞∑

n=−∞
P n

jk(α,t)e−inωmt , (B5)

and we obtain

Ṗ n
σjk

= iωmnP n
σjk

− iλ
(
αP n+1

[σjk,�̄] + α∗P n−1
[σjk,�̄]

)
+ iλ

∂

∂α
P n+1

�̄×σjk
− iλ

∂

∂α∗ P n−1
σjk×�̄

. (B6)

By replacing in this equation σjk by the identity operator 1, we
get the corresponding equation for the resonator P function,
which by including the mechanical damping is given by

Ṗ n = DλP
n + iωmnP n + iλ

(
∂

∂α
P n+1

�̄
− ∂

∂α∗ P n−1
�̄

)
. (B7)

For the other P distributions we obtain

�̇P n = (M + iωmn) �P n + �V P n + Dγ
�P n

+ iλ(αA �P n+1 + α∗A �P n−1)

+ iλ
∂

∂α
B �P n+1 − iλ

∂

∂α∗ B† �P n−1, (B8)

where the 8 × 8 matrices A and B can be derived from Eq. (B6).
Following Ref. 29 we solve this set of equations by using
λ × ∂/∂α as a formal expansion parameter, while keeping all
orders in λα. To zeroth order, and assuming γNth � �, the
stationary solution of Eq. (B8) is given by

(M + iωmn) �P n + iλ(αA �P n+1 + α∗A �P n−1) = − �V P nδn,0.

(B9)

We can numerically solve this equation by truncating the
maximal value of n and write the result as

�P n(α,t) = �Xn(α)P 0(α,t). (B10)

By inserting this solution back into Eq. (B7) we obtain

Ṗ 0 = Dγ P 0 + iλ

(
∂

∂α
X̄+1 − ∂

∂α∗ X̄−1

)
P 0, (B11)

where

X̄n =
(

λ0 + λ‖
λ

,
λ0 − λ‖

λ
,0,0,0,

λ⊥
λ

,0,
λ⊥
λ

)
�Xn. (B12)

Now, we define parameters �̃(α) and �(α) such
that iλX̄+1 = α[�̃(α) + i�(α)]. Then the above equation

064105-10
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reads

Ṗ 0 = Dγ P 0 + 1

2

(
∂

∂α
α[�̃(α) + i�(α)] + H.c.

)
P 0. (B13)

This is the result given in Eq. (24), where the small
frequency shift �(α) has been neglected. By including

in Eq. (B9) the next order correction ∼λ × ∂P 0/∂α we
would in Eq. (B13) obtain additional correction to the
diffusion terms.29 However, a numerical estimate shows
that these corrections are negligible for the high temper-
atures Nth � 1 and other parameters considered in this
work.
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18Ö. O. Soykal, R. Ruskov, and C. Tahan, Phys. Rev. Lett. 107,
235502 (2011).

19R. Ruskov and C. Tahan, arXiv:1208.1776.
20T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg,

Phys. Rev. Lett. 110, 193602 (2013).
21M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann,

Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and
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1619 (2012).

23I. Wilson-Rae, P. Zoller, and A. Imamoglu, Phys. Rev. Lett. 92,
075507 (2004).

24I. Martin, A. Shnirman, L. Tian, and P. Zoller, Phys. Rev. B 69,
125339 (2004).

25P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204
(2005).

26K. Jaehne, K. Hammerer, and M. Wallquist, New J. Phys. 10,
095019 (2009).

27P. Rabl, P. Cappellaro, M. V. Gurudev Dutt, L. Jiang, J. R. Maze,
and M. D. Lukin, Phys. Rev. B 79, 041302(R) (2009).

28S. Zippilli, G. Morigi, and A. Bachtold, Phys. Rev. Lett. 102, 096804
(2009).

29P. Rabl, Phys. Rev. B 82, 165320 (2010).
30S. D. Bennett and A. A. Clerk, Phys. Rev. B 74, 201301(R)

(2006).
31D. A. Rodrigues, J. Imbers, and A. D. Armour, Phys. Rev. Lett. 98,

067204 (2007).
32J. Hauss, A. Fedorov, C. Hutter, A. Shnirman, and G. Schön, Phys.

Rev. Lett. 100, 037003 (2008).
33K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathiff, T. W.
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