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Abstract: Semiconductor quantum dots are inevitably coupled to the vibrational modes of

their host lattice. This interaction reduces the efficiency and the indistinguishability of single-

photons emitted from semiconductor quantum dots. While the adverse effects of phonons can

be significantly reduced by embedding the quantum dot in a photonic cavity, phonon-induced

signatures in the emitted photons cannot be completely suppressed and constitute a fundamental

limit to the ultimate performance of single-photon sources based on quantum dots. In this paper,

we present a self-consistent theoretical description of phonon effects in such sources and describe

their influence on the figures of merit.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Sources of single indistinguishable photons are key components in optical quantum information

processing [1], and deterministic single-photon sources based on self-assembled semiconductor

quantum dots (QDs) have developed significantly over the past few years. QDs can be grown

with excellent optical properties, and advances in fabrication of photonic nanostructures have led

to demonstrations of bright and coherent single-photon sources [2–5]. However, the inevitable

coupling of the QD to the vibrational phonon modes of the host lattice constitutes a significant

challenge [6], which will only be increasingly important as the performance of the sources is

pushed from the current state-of-the-art towards the high level necessary for realising large-scale

optical quantum computation.

There are several figures of merit that characterise the performance of a single photon source.

Naturally, the photon number statistics of the emitted light is important. The Hanbury Brown

and Twiss second-order correlation function, g(2)(τ), quantifies the probability of simultaneously

detecting two photons when evaluated at τ = 0 [8]. Multiphoton components in the emitted light

leads to a non-zero value of g(2)(0), which can stem from the excitation process [9–11]. Similarly,

the efficiency of the source is the probability of sending a single photon into the detection channel

when the source is triggered [7]. Another important feature, which characterises the coherence

properties of the source, is the indistinguishability of the emitted photons, which is a measure of

the degree to which two photons can interfere. The indistinguishability is measured by sending

the two photons into the two input ports of a beamsplitter. If the two photons are completely

indistinguishable, the Hong-Ou-Mandel effect results in the photons leaving the beamsplitter in

the same output port [12]. This effect is a fundamental necessity for linear quantum computing

schemes, forming the basis for two-photon gates [13]. Alternatively, the quantum dot can be

operated by exciting a biexciton, thereby emitting a polarisation-entangled photon pair [4,14,15].

In this scenario, the entanglement fidelity of the emitted photon pair constitutes an additional

figure of merit of the source. Suppressing phonon-assisted photon emission in these pair-sources

requires individual, polarisation-degenerate Purcell enhancement of the exciton and biexciton

lines, which relies on highly challenging photonic engineering [16].
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The focus of the present paper is the impact of phonons on the efficiency and indistinguishability

in the context of single-photon generation. Phonons influence these figures of merit by 1)

generating detuned, distinguishable photons in a sideband by exchanging energy with the QD

[17–20] and 2) dephasing the QD exciton through scattering of thermal phonons [21–23].

When the QD relaxes from its excited state to its ground state, a phonon wavepacket can be

simultaneously created, thereby leading to the emission of a photon with energy lower than that

of the QD exciton (see Fig. 1(a)). The precise energy of the photon is not known, since it depends

on the energy of the phonon wavepacket, which is lost into the environment. As a result, photons

produced through this phonon-mediated transition are inherently distinguishable. Similarly, if

the temperature is high enough to allow for thermal population of the phonon modes, a phonon

wavepacket can be absorbed, leading to emission of a blue-detuned photon. In the emission

spectrum of the source, these processes are observed as a broad sideband in the vicinity of a

narrow zero-phonon line, corresponding to a phononless |e〉 → |g〉 transition (see Fig. 1(b)).

Furthermore, if the thermal occupation of phonon modes is appreciable, thermal phonons can

interact with the QD and drive virtual transitions to higher excited states. Although such scattering

processes do not induce population transfer, they dephase the dipole moment of the QD during

the photon emission process [21], which also leads to a decrease in the photon indistinguishability

[23]. This effect can be suppressed simply by operating the source at temperatures far below the

characteristic phonon energies.

Fig. 1. a. When a quantum dot decays from its lowest-lying exciton state, |e〉, to its

ground state, |g〉, a phonon wavepacket may be emitted or absorbed. This leads to a broad

sideband (SB) in the photon emission spectrum along with the narrow zero-phonon line

(ZPL), arising from relaxation not involving phonons. b. Emission spectrum showing the

sideband and zero-phonon line. The emission spectrum has been calculated with a polaron

master equation, described in Sec. 3. c. By introducing a cavity with narrow linewidth, the

zero-phonon line can be selectively enhanced through the Purcell effect. Here, the optical

spectral density of a Fabry-Pérot cavity, Eq. (5), is shown.

Naturally, the incoherent photons can be removed by applying a narrow filter around the coherent

zero-phonon line in the spectrum, which is done in most indistinguishability measurements on

single-photon sources, e.g. Refs. [2,5]. Although restoring the indistinguishability, such filtering

will also decrease the efficiency of the source. The fraction of photons emitted into the phonon

sideband can also be reduced by placing the QD in a photonic cavity with a narrow resonance

line that selectively enhances zero-phonon emission processes through the Purcell effect (see

Fig. 1(c)). However, this funneling strategy only works up to the limit where the Purcell regime

breaks down and strong light–matter coupling sets in. In the strong-coupling regime, a relaxation
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from the upper to the lower polariton state can occur by emitting a phonon wavepacket, thereby

reducing the coherence of the system and the indistinguishability of the emitted photons [24].

Furthermore, in the entangled photon pair application, a single broadband Purcell enhancement

[4] covering both the exciton and biexciton lines cannot be used to suppress the phonon sideband.

Here, the funneling strategy would require a twin-cavity approach [16].

The vibrational environment is not the only important noise mechanism that degrades the

single-photon coherence. Another dominant mechanism is the slow charge fluctuations in nearby

crystal impurities [23,25] and fluctuations in the local nuclear spins [26–28]. Since the typical

time scale of these fluctuations can be as slow as a few tens of kHz they do not necessarily degrade

the indistinguishability of photons emitted subsequently from the same source [3]. However,

when multiple single-photon sources are used in combination, the charge fluctuations in two

distinct sources are completely uncorrelated, and thus the photons become distinguishable [29].

An additional source of decoherence is the timing jitter introduced by non-resonant or quasi-

resonant excitation schemes [30,31]. In these excitation schemes, the stochastic relaxation process

from a higher excited state to the lowest-energy exciton via nonradiative processes leads to an

uncertainty in the emission time, which degrades the Hong-Ou-Mandel interference visibility.

However, by using strictly resonant excitation, this problem can be largely overcome [32–34].

In this paper, we focus on the influence of phonon interactions on the emission properties of

QD single photon sources. Further, the effect of a structured electromagnetic environment is

included as a central feature of our analysis. Thus, we will consider a total Hamiltonian of the

form

H = HE + HP + HF + HEP + HEF, (1)
where HE = ~ωeg |e〉〈e| is the free evolution of the emitter (with |g〉 and |e〉 denoting the ground

state and lowest exciton state, respectively, separated by an energy ~ωeg), HF and HP describe the

free evolution of the electromagnetic field and phonon environment, respectively and HEF and

HEP describe the interaction of these environments with the emitter. In the following sections we

will describe all environmental terms in the Hamiltonian in detail and derive the fundamental

properties of light emitted from the system.

2. Properties and numerical model for the photonic structure

To control the light emission and ensure a good coupling to the collection optics, the QD

is typically placed in a photonic structure. Such structures often fall in two categories: A

waveguide or a cavity. A waveguide offers highly directional emission and broadband screening

of the optical radiation modes, which increases the overall efficiency of the source, but not

the indistinguishability due to lack of spectral selectivity. Cavities with linewidths below the

frequency range of the sideband selectively funnels emission into the zero-phonon line, thereby

increasing the indistinguishability. Simultaneously, the efficiency is increased due to Purcell

enhancement.

Many nanophotonic cavities are essentially realized by adding a pair of mirrors to an underlying

waveguide. The waveguide as well as the mirrors can be implemented in various ways and have

different characteristics, but we will here treat the cavity using a unified framework (see Fig. 2(a))

allowing analysis of many different geometries. One example is the micropillar configuration,

where the central cavity section is an unstructured, waveguide, while distributed Bragg reflectors

(DBRs) constitute the mirrors (see Fig. 2(b)). Another example is a line-defect photonic crystal

cavity, where a missing row of air holes constitutes a line-defect waveguide and the re-instated

holes form the mirrors. The waveguide structure is characterised by a spontaneous emission rate

into the fundamental mode, Γ0, and the effective index of this mode, n̄, while the cavity is formed

by adding two mirrors with amplitude reflectivities r1 and r2, separated by a distance L.
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Fig. 2. a. Schematic of cavity model consisting of a waveguiding background medium with

two mirrors. b. Artistic illustration of the micropillar single-photon source geometry. c.

J0(ω) (black) and ΓR(ω) (red) computed using the full model (points) and the single-mode

model, Eq. (5) (solid lines). Both are normalized to the LDOS of a bulk material, Γbulk.

The pillar features 15 (25) DBR layer pairs in the top (bottom) mirror and a diameter of

2.5 µm, see Ref. [41] for further geometrical details. d.–g. Waveguide ΓWG (green solid)

and cavity (orange dotted, plotted as offset from green solid line) contributions to LDOS,

where ∆ = c/(n̄L) is the free spectral range of the cavity. The LDOS from Eq. (5) is plotted

with blue shading. Panels d-g correspond to mirror reflectivities of 0, 0.1, 0.5 and 0.8,

respectively.

2.1. Optical local density of states of a nanocavity

The Hamiltonians describing the free evolution of the electromagnetic field and its interaction with

the emitter are given by HF = ~
∑

µ ωµa
†
µaµ, HEF = ~

∑

µ(hµaµσ
†
+ h∗µa

†
µσ). Here, σ = |g〉〈e| is

the dipole operator of the emitter, aµ and a
†
µ are the bosonic annihilation and creation operators

for the µth electric field mode with frequency ωµ and coupling strength to the emitter hµ. These

coupling strengths depend both on the structure of the electromagnetic field and the position and

orientation of the emitter, and are thus neither an intrinsic property of the field nor the emitter

alone. A central object that characterises the emitter–field dynamics is the projected local density

of states (LDOS) of the electromagnetic field in the optical structure, which is related to the

optical field normal modes uµ(r,ω) as [35,36]

J(r,ω, np) =
∑

µ

[

np ·
(

uµ(r,ω)u∗
µ(r,ω)

)

· np)
]

δ(ωµ − ω). (2)

The projected LDOS depends on the frequency ω, the position r as well as the orientation np of

the emitter dipole. The projected LDOS is related to the spectral density of the electric field in
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the light–matter interaction [35,36],

J(r,ω, np) =
πp2ω

ǫ0~
J(r,ω, np) = 2π

∑

µ

|hµ |2δ(ω − ωµ), (3)

where p is the dipole moment of the emitter. In the remainder of this paper, we assume that the

QD is placed in a field antinode and skip the indices r and np for simplicity, and furthermore we

generally refer to J as defined in Eq. (3) as the LDOS or the spectral density of the field. In the

weak light–matter coupling limit, J(ω) gives the spontaneous emission rate, when evaluated at

the emitter frequency, ωeg. In the strong coupling regime, one needs to identify a discrete cavity

mode from the LDOS, in order to resolve coherent, reversible exchange of energy between the

emitter and the field in the form of vacuum Rabi oscillations.

Exact calculations of the LDOS are numerically demanding, and the wide range of modes µ

generally contributing to J(ω) complicates the analysis of the physics. However, if the QD is

placed in a single-mode waveguide supporting only a single fundamental transverse mode in the

frequency regime of interest, the LDOS can be well described using a single-mode model as the

sum

J(ω) = J0(ω) + ΓR(ω), (4)
where J0(ω) and ΓR(ω) are the contributions from the fundamental mode and radiation modes,

respectively. The contribution ΓR(ω) varies slowly and can be approximated to its value ΓR(ω0)
at the cavity resonance frequency ω0, while J0(ω) is given in a single-mode picture [37] as

J0(ω) = Γ0ℜ
{ [1 + r̃1(ω)][1 + r̃2(ω)]

1 − r̃1(ω)r̃2(ω)

}

. (5)

Here, r̃i(ω) is the frequency-dependent complex fundamental mode reflection coefficient of the

ith mirror, including the propagation phase from the QD to the mirror, and Γ0 is the spontaneous

emission rate into the fundamental mode for a uniform waveguide without mirrors. The model

takes into account the dependence of the spatial position of the dipole emitter through the

reflection coefficients and the position (and orientation) dependent Γ0(r,ω, np) and ΓR(r,ω, np)
[37]. As with ΓR, we shall assume that Γ0 does not vary appreciably over the frequency range

of interest. In the following we assume an emitter placed in the center of the cavity and we

write the complex reflection coefficients as r̃i(ω) = rie
iφi+iβ(ω)L, with φi being the constant

mirror reflection phase and β(ω) = ωn̄/c the dispersion-less propagation factor. The model, Eqs.

(4)–(5), can be applied to a multi-mode waveguide either by including the contributions from

higher-order guided modes to the LDOS explicitly [38] or by simply absorbing them into ΓR(ω).
An example of a single-photon source geometry well described by Eq. (5) is the multi-mode

micropillar geometry illustrated in Fig. 2(b). Spectra for J0(ω) and ΓR(ω) for the micropillar

computed using the single-mode model Eq. (5) as well as from full numerical simulations

are presented in Fig. 2(c). Excellent agreement between the single-mode model and the full

simulation is observed, and the physics of the LDOS can thus be fully understood from the

simple Eq. (5). Our model, Eqs. (4)–(5), can be applied to etalon-type structures, including

photonic crystal waveguides [39], where modal reflection coefficients can be defined. However,

for other classes of resonant modes, e.g. plasmonic resonances [40], the modal reflectivity may

not be well-defined, and in this case, an alternative model based e.g. on a quasi-normal mode

formulation [40] is required.

2.2. Waveguide and cavity contributions to the local density of states

If the reflectivity of the mirrors is sufficiently high, the LDOS J0(ω) in the vicinity of a resonant

frequency can be described by a Lorentzian function corresponding to a single damped cavity

mode. However, as the system reduces to a photonic waveguide for vanishing reflectivity, there
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exists an intermediate reflectivity regime where the LDOS around a cavity resonance cannot be

described by a single Lorentzian cavity mode, but also contains a flat background contribution,

ΓWG [38], as illustrated in Figs. 2(d)–2(g). When calculating the quantum dynamics and emission

properties of the system, one is typically interested in the cavity quantum electrodynamical (cQED)

parameters that characterise the optical structure: The cavity decay rate, κ, the cavity–emitter

coupling strength, g, and the spontaneous emission rate into the underlying waveguide, ΓWG.

All of these properties can be derived from the LDOS, which is described by its corresponding

microscopic parameters: The spontaneous emission rate into the bare waveguide, Γ0, the mirror

reflectivities, ri, the effective index of the guided mode, n̄, and the cavity length, L. The

spontaneous emission rate into the bare waveguide, Γ0, depends strongly on the structure of the

waveguide. For example, a photonic crystal waveguide uses slow-light effects to enhance Γ0

relative to the spontaneous emission into radiation modes, ΓR [42–44]. The mapping between

the microscopic and QED parameters can be performed by requiring that the effective spectral

density generated by the QED system is equivalent to the optical LDOS [38,45]. In Fig. 3, we

show how the QED parameters depend on the mirror reflectivity for three different cavity lengths

and all other parameters kept constant. For vanishing mirror reflectivity, the emitter–cavity

coupling strength approaches zero and the waveguide contribution to the LDOS, ΓWG, approaches

Γ0, consistent with the fact that the optical structure simply becomes identical to the underlying

waveguide. For increasing reflectivities, the waveguide component vanishes, and the coupling

strength saturates at a value, which is proportional to L−1/2. This scaling is essentially linked to

the underlying proportionality g ∝ V−1/2. The cavity decay rate, κ, monotonically decreases with

mirror reflectivity, as expected. Importantly, κ does not diverge as r → 0, but reaches a finite

value. This feature is attributed to causality, meaning that light cannot escape a finite spatial

region infinitely fast.

Fig. 3. a. Emitter–cavity coupling strength, b. cavity linewidth and c spontaneous emission

rate into waveguide as a function of mirror reflectivity for a symmetric cavity, r1 = r2 = r.

The blue, orange and green lines correspond to L = 1 µm, L = 5 µm and L = 10 µm,

respectively. The spontaneous emission rate into the waveguide, ΓWG, is independent of the

cavity length. Parameters: n̄ = 2, ~Γ0 = 1 µeV.

The approximation that the spontaneous emission rates into the fundamental waveguide mode

and the radiation modes are frequency independent might not be fully justified for all parameter

regimes of a given nanocavity structure. However, as discussed above, our analysis in the present

paper qualitatively captures the behaviour of the important optical parameters as the properties

of the underlying structure are varied.

3. Electron–phonon coupling and its signatures in the optical emission

State-of-the-art experiments have demonstrated that electron–phonon processes play a crucial

role in determining the coherence properties of photons emitted from solid-state quantum emitters

[23,46,47]. However, developing a theoretical model to accurately account for such processes
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remains a significant challenge. Phenomenological treatments typically assume a pure dephasing

form for phonon dissipation, that is, an exponential suppression of the off-diagonal elements in

the QD density operator [48]. This is only valid in very particular regimes [49] and misses key

physics necessary to understand phonon processes, while also failing to capture key signatures of

electron–phonon interactions, e.g. the presence of a phonon sideband.

In the following section we will outline how one may go beyond a simple pure dephasing

treatment, introducing a microscopic model for electron–phonon processes in QDs. We will

go on to discuss the polaron formalism, which allows one to capture complex non-perturbative

effects—such as the phonon sideband—while maintaining a simple and intuitive dynamical
description of the QD degrees of freedom.

3.1. Electron–phonon interactions in QDs

The dominant phonon coupling in self-assembled semiconductor QDs is to longitudinal acoustic
(LA) phonons through a deformation potential coupling [50,51]. These phonons are natural
oscillations of the host lattice, and can be approximated as a collection of harmonic oscillators.
In the absence of electron-phonon coupling, the lattice dynamics are described by the free
Hamiltonian HP = ~

∑

k νkb̂
†
k
b̂k, where νk is the frequency of a phonon mode with wavevector k,

and b̂k (b̂†
k
) is the corresponding annihilation (creation) operator.

When the charge configuration of the QD changes, for example, during the creation of an
exciton, the lattice of the host material will reorganise itself in response. If the resulting
displacement of the ions is small, the interaction between the emitter and the phonon environment
is given by HEP = |e〉〈e|(VL + VQ). This interaction consists of two terms corresponding to quite
different phonon mechanisms: VL gives rise to emission/absorption of a phonon wavepacket in
the photon emission process, while VQ describes virtual transitions to higher excitonic levels
generated by thermal phonons (see Fig. 4(a)).

Fig. 4. a. Two phonon-induced processes affect the optical emission properties of QDs:
Emission/absorption of phonon wavepacket during exciton relaxation and virtual transitions
to higher-lying excitonic states through scattering of thermal phonons. b. Emission or
absorption of a phonon wavepacket leads to a broad phonon sideband in the emission
spectrum. c. Virtual scattering of thermal phonons leads to broadening of the zero-phonon
line due to pure dephasing. d. When the QD is placed in an optical cavity, the electromagnetic
LDOS influences the shape of the spectrum by funneling emission into the cavity resonance.
In the strong coupling regime, the phonon scattering leads to an asymmetry between the
polariton peaks [55].
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The first term is linear in phonon operators [52,53]:

VL =

∑

k

~gk(b†k + b−k), (6)

where gk is the linear electron-phonon interaction strength for the kth-phonon mode, and may
be defined in terms of the phonon matrix elements ~gk =

∑

a=e,h M11
a,k, where for deformation

potential coupling, the matrix element takes the form:

M
ij

a,k =

√

~νk

2̺c2
sV

Da

∫

ψ∗
i,a(r)ψj,a(r)eik·r d3r, (7)

reflecting phonon-induced transitions between the ith and jth electronic states. Here, we have
introduced the quantisation volume V and the material parameters: the speed of sound cs,
material density ̺, and the deformation potential for electrons De and holes Dh. The matrix
element is also dependent on the wave function ψi,e/h(r) of the confined electron (e) or hole (h).
The linear phonon coupling describes real (energetically allowed) phonon processes, and can
be interpreted as an exciton-induced displacement of the host lattice, as shown schematically in
Fig. 1(a). This leads to the emergence of the phonon sideband in the emission spectrum (see
Fig. 4(b) and a dephasing rate that depends on the emitter–cavity coupling strength, g.

The second term is quadratic in phonon operators, and takes the form [21–23]:

VQ =

∑

kk′
~fk,k′

(

b
†
k
+ b−k

) (

b
†
k′ + b−k′

)

, (8)

describing phonon mediated virtual (energetically forbidden) transitions between the first exciton
state and higher lying excited states, which have been eliminated perturbatively following Muljarov
and Zimmerman [21]. These transitions are virtual in nature due to significant differences of
energy scales. In a typical QD, the energy gap between the lowest excitonic state (s-shell) and
the next state (p-shell) ∼ 40 meV, is thus orders of magnitude greater than phonon energies at
cryogenic temperatures [23]. With this in mind, we can intuitively understand the quadratic
interaction term as virtual scattering of a phonon from mode k into k′ mediated by the excitonic
state, as shown schematically in Fig. 4(a). This scattering process imparts a random phase kick
to the exciton, the cumulative effect of which is a temperature dependent broadening of the zero
phonon line [54] (see Fig. 4(c)), which is absent when there is only a linear electron-phonon
coupling term. The effective coupling strength for the quadratic coupling may be written in terms
of the matrix elements ~fk,k′ =

∑

a=e,h
∑

j > 1 M
1j

a,kM
j1
a,k′[~ωa

j
− ~ωa

1]−1 and ~ω
e/h
j

is the energy of

the jth electronic state.

3.2. Optical properties of a QD in a photonic environment

Calculating the dynamical and optical properties of a QD including phonon effects constitutes a
challenging theoretical problem. Strong coupling between electronic and vibrational degrees of
freedom means that standard perturbative treatments are insufficient, a fact that is compounded
when the QD is interfaced with a complex photonic environment (e.g. a optical micropillar).
In this section, we will outline the polaron formalism, which allows one to account for strong
electron-phonon coupling in addition to strong coupling to complex photonic structures [55–57].
Numerically exact approaches based on real-time path integrals [58–61], non-equilibrium Green’s
functions [62] and diagonalisation of the Liouvillian [20,24,63,64] have previously been employed
to solve similar problems. In contrast to these computationally demanding approaches, using
perturbation theory in a polaron representation leads to numerically inexpensive implementations,
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and even allow analytical results in certain cases, while maintaining a high accuracy in the
regimes relevant for single-photon sources.

We now consider the full Hamiltonian, Eq. (1), where the electromagnetic environment is
described by a cavity mode with annihilation operator a, coupling strength g to the emitter, and
decay rate κ, as described in Sec. 2.2.

First, a canonical transformation to the polaron frame generated by the unitary U = |g〉〈g| +
|e〉〈e|e−S, with S =

∑

k ν
−1
k

gk(b†k−bk), is applied to total Hamiltonian. This transformation dresses
the system with vibrational modes of the host material, removing the linear electron-phonon
interaction term in the process, and provides an optimised basis for perturbation theory.

In the polaron frame we may derive a 2nd-order master equation for the emitter and cavity
mode which is non-perturbative in electron-phonon coupling strength, taking the form:

Ûρ(t) = −i
[

H′
E, ρ(t)

]

+ γDσ†σ[ρ(t)] + (ΓWG + ΓR)Dσ[ρ(t)] + κDa[ρ(t)] +W[ρ(t)], (9)

where ρ(t) is the reduced density operator of the QD and cavity mode, DA[ρ(t)] = Aρ(t)A† −
[A†Aρ(t) − ρ(t)A†A]/2 the Lindblad superoperator, γ is the total pure-dephasing rate and
H′

E = HE + gB(aσ†
+ a†σ) is the Hamiltonian describing the emitter and discrete cavity mode,

where the coupling rate has been renormalised due to phonons by the factor B, which will be
introduced shortly. The last term in Eq. (9),

W[ρ(t)] = g2
{

[X, ρ(t)Θ†
X
] + [Y , ρ(t)Θ†

Y
] + H.c.

}

, (10)

is an additional phonon-induced dissipator. Here, we have defined the operators X = σ†a + σa†

and Y = i(σ†a − σa†) and Θq =

∫ ∞
0

dτq(−τ)Λq(τ), with q = X, Y , q(−τ) = e−iH′
EτqeiH′

Eτ , where
Λq are the polaronic phonon correlation functions

ΛX(τ) =
1

2
B2[eϕ(τ) + e−ϕ(τ) − 2], ΛY (τ) =

1

2
B2[eϕ(τ) − e−ϕ(τ)]. (11)

The quantities B and φ(τ) characterise the dynamical properties of the phonon environment and
are given by ϕ(τ) = ∑

k ν
−2
k

g2
k
(cos(νkτ) coth(~νk/2kBT) − i sin(νkτ)) and B = e−φ(0)/2.

In the more general case, the background electromagnetic modes that give rise to ΓR and ΓWG

can potentially have a spectral density that varies appreciably over the frequency range of the
phonon sideband. In such cases, phonon interactions renormalise the resulting spontaneous
emission rate [65].

The pure dephasing rate, γ, entering the master equation, contains contributions from
charge/spin noise, γ0, and thermal phonon scattering induced by virtual p-shell transitions, γP

[22,23], such that γ = γ0 + γP. The form of the phonon-induced pure-dephasing rate will be
introduced in the next section.

The master equation Eq. (9) can be written in the compact form Ûρ(t) = Lρ(t), where L is
the Liouvillian superoperator. The two-time correlation function of the emitter dipole can be
numerically calculated using the Liouvillian as

〈σ†(t + τ)σ(t)〉 ≃ GP(τ)Tr[σ†eLτσeLtρ(0)], τ, t > 0, (12)

where GP(τ) = B2eϕ(τ) is the polaronic free-phonon correlation function that accounts for
the transformation from the polaron frame to the natural ’lab frame’. The Fourier trans-
formation of this correlation function gives the two-colour dipole spectrum, S0(ω,ω′) =
∫ ∞
−∞ dtdt′ei(ωt−ω′t′)〈σ†(t)σ(t′)〉. However, since the QD is placed in an optical structure, the

measurable quantity is not the bare dipole spectrum S0(ω,ω′), but the spectrum of the electro-
magnetic field emitted from the structure. This field spectrum S(ω,ω′) is related to the dipole



Research Article Vol. 10, No. 1 / 1 January 2020 / Optical Materials Express 231

spectrum through an optical Green’s function, GE, as

S(ω,ω′) = G∗
E(ω)GE(ω′)S0(ω,ω′) (13)

where, up to an irrelevant phase factor, the Green’s function is given by

GE(ω) =
[1 + r̃1(ω)]t2

1 − r̃1(ω)r̃2(ω)
, (14)

and ti =

√

1 − r2
i

is the mirror transmittivity [38]. This method of linking the dipole spectrum to

the emission spectrum of the electric field through a Green’s function is similar to the approach
in Ref. [66]. We note that although Eq. (13) is nonperturbative in the light–matter coupling
strength, the approach is only valid up to the onset of strong coupling, because the approximation
in Eq. (12) breaks down. Furthermore, we note that in our analysis, it is assumed that the
detected electric field is that carried by the fundamental waveguide mode outside the cavity region,
whereby the detected field becomes independent of the position of the detector, up to an irrelevant
phase factor. The approach can be extended to any general detection scenario by replacing GE

with an explicitly position-dependent Green’s function that describes the propagation of emitted
light to the detector. The two-colour spectrum, S(ω,ω′), is a generalisation of the power spectrum,
S̄(ω) = S(ω,ω). Moreover, it carries information about the coherence properties and thus allows
for calculation of the photon indistinguishability, which in the absence of multi-photon emission
reads [6,30,63]

I =
(

Γ0

2P

)2 ∫ ∞

−∞
dωdω′ |S(ω,ω′)|2. (15)

Here, P is the total emitted energy into the optical structure during the relaxation of the initial QD
exciton, P = (Γ0/2)

∫ ∞
−∞ dωS(ω,ω). Besides from the approximations associated with calculation

of the two-colour spectrum, S(ω,ω′), Eq. (15) is an exact expression for the indistinguishability,
derived from the Fourier transformation of the definition of I based on the Hong-Ou-Mandel
correlation function [30]. The quantum efficiency of the source is then E = P/(P + PR), where
PR = ΓR

∫ ∞
−∞ dωS0(ω,ω) is the total energy emitted into the radiation modes.

To understand the spectral features of the emitted light, we may write the dipole power
spectrum as S̄0(ω) = S̄

zpl

0 (ω) + S̄
psb

0 (ω), with two distinct spectral components that correspond to
the zero-phonon line and the phonon sideband, respectively,

S̄
zpl

0 (ω) = B2
∫ ∞

−∞
dt dτ〈σ†(t + τ)σ(t)〉eiωτ , (16)

S̄
psb

0 (ω) =
∫ ∞

−∞
dt dτ(GP(τ) − B2)〈σ†(t + τ)σ(t)〉eiωτ . (17)

The first contribution, S̄
zpl

0 , describes the spectral features arising from photon emission without
emitting any phonons. The prefactor, B2, to this contribution is the Frank-Condon (FC) factor,
0 < B < 1, which quantifies the fraction of light emitted into the zero-phonon line [67].

The second contribution, S̄
psb

0 , describes photons emitted while a phonon wavepacket is
absorbed or emitted. This spectral component emerges through the linear electron–phonon
coupling. Since the temporal features of the phonon correlation function, GP(τ), are very fast, on
the order of a few ps, the spectral features of S̄

psb

0 are very broad – on the order of a few meV.

3.3. Electron-phonon coupling parameters

In order to calculate the influence of phonons on the optical properties of a QD, it is necessary
to specify the linear and quadratic electron-phonon coupling strengths. To do so, it is clear
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from Eq. (7) that we must first specify the wave function of electrons and holes confined within
the QD. However, calculating exciton wave functions for realistic QDs is a highly non-trivial
task, requiring sophisticated and expensive computational methods [68–70]. Instead, we can
accurately reproduce both the qualitative and quantitative effects of phonons by considering an
idealised model for a QD. Here we assume the QD confinement to be parabolic, spherically
symmetric, and the electrons and holes have the same confinement length [53,64]. Relaxing such
approximations leads to the emergence of complex phonon behaviour, including the quenching of
phonon modes for specific asymmetries between the electron-hole confinement potentials [71].

Using the above approximations we may obtain analytic forms for the polaron frame prop-
agator [55,57] ϕ(τ) = α

∫ ∞
0
νe−ν

2/ν2
c (cos(ντ) coth(~ν/2kBT) − i sin(ντ)), where we have taken

a continuum limit over the phonon modes assuming a linear dispersion relation. We have also
introduced the electron-phonon coupling strength, which may be written in terms of material
parameters α = [4π2

~̺c5
s ]−1(De − Dh)2. Using typical material parameters for GaAs QDs (see

Table 1), we find α = 0.025 ps2. The electron-phonon interaction strength is also determined by
the cut-off frequency νc =

√
2cs/d, where d is the confinement length of the QD.

With the electron-phonon coupling fully characterised, it is worth briefly considering the regime
of validity of the polaron master equation described in Sec. 3.2. The polaron transformation
results in a master equation that incorporates electron-phonon coupling to all orders, with the
light-matter coupling strength becoming the relevant perturbative parameter in the transformed
frame. Following McCutcheon and Nazir [57], the resulting master equation can be found to be
valid in regimes where (2g/νc)2(1 − B4) << 1.

If we assume that the dominant contribution to the quadratic phonon-interaction arises from
virtual transition between the first and second excited states of the QD (i.e. the s- and p-shells),
then we may also find an analytic form for the pure dephasing rate [22,23]:

γP =
αµ

ν4
c

∫ ∞

0
ν10e−2ν2/ν2

c n(ν)(n(ν) + 1)dν, (18)

where n(ν) = [exp(~ν/kBT) − 1]−1 is the bosonic occupation number and µ = ~
2π[De −

Dh]−4(∆−1
e D2

e + ∆
−1
h

D2
h
)2, where ∆e/h is the energy difference between the s- and p-states for the

electron/hole, and naturally depends on the confinement potential of the QD. For a spherically
symmetric, harmonic potential, it is simply given by ∆e/h = ~

2/(d2me/h), where me/h is the
effective electron/hole mass.

Both the FC factor and the pure dephasing rate are dependent on temperature. In the case
of the FC factor, as temperature increases, B decreases due to an increasing fraction of light
being emitted by the phonon sideband rather than by the ZPL. The pure dephasing rate, on the
other hand, increases, as more phonons are available to drive virtual transitions between the
electronic states. Crucially this dephasing rate freezes out at low temperatures owing to the
quadratic dependence of the rate on the phonon occupation, physically this corresponds to an
absence of phonons in the environment available to drive transitions.

Table 3.3 shows realistic parameters for GaAs QDs, which are generally used for calculations
in this paper unless otherwise stated [72,73].

Table 1. Material parameters for GaAs [72,73] used for calculation of electron–phonon coupling
parameters. m0 denotes the free electron mass.

De [meV] Dh [meV] ̺ [g/cm3] cs [m/s] me [m0] mh [m0]
−15.93 −8.77 5.317 4.73 × 103 0.067 0.51
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4. Phonon-induced limitations to single-photon sources

Due to the presence of the phonon sideband in the emission spectrum, a quantum dot–based
single photon source cannot simultaneously have unity efficiency and indistinguishability [67]:
If the emission spectrum is left unfiltered, the indistinguishability is reduced below unity due to
the photons in the sideband, which are uncorrelated with those of the zero-phonon line that have
not undergone phonon scattering. On the other hand, while filtering out the sideband revives
the indistinguishability, it comes with the cost of a reduction in efficiency, corresponding to the
fraction of photons contained in the sideband. By placing the emitter in a photonic cavity with
a narrow resonance line, the emission can be preferentially funneled into the zero-phonon line
via the Purcell effect, thereby simultaneously improving the indistinguishability and efficiency.
However, this strategy only continues to improve the performance as long as the emitter–cavity
system is in the Purcell regime. As soon as the system enters the strong coupling regime, where
the cavity lifetime is long enough for the emitter to re-absorb an emitted photon and the system
undergoes vacuum Rabi oscillations, the phonon environment will drive incoherent transitions
from the upper polariton state to the lower one [63]. This polaritonic relaxation process drastically
degrades the coherence of the emitted light and in turn sets the upper limit for the performance,
as illustrated in Fig. 5, which shows the indistinguishability, efficiency and their product as a
function of cavity linewidth (blue solid lines).

Fig. 5. a. Indistinguishability, I b. efficiency, E, and c. their product, IE as a function
of cavity linewidth. Parameters: ~Γ0 = 1 µeV, ~ΓR = 1 µeV, ~γ0 = 0.5 µeV, ~g =

100 µeV, T = 4 K and QD size d = 10 nm.

In recent reports on broadband (~κ ∼ 10 meV) sources of quantum light based on circular
Bragg gratings, the measured indistinguishabilities of 0.90 [4] and 0.95 [5] are higher than
that predicted in Fig. 5(a). However, here 150 GHz [4] and 5 GHz [5] etalons were used,
leading to improved indistinguishability at the cost of efficiency as discussed above. While the
indistinguishability measured in the absence of a filter is the relevant figure of merit describing
the device performance in the context of scalable optical quantum information technology, it is
only rarely [3] reported.

In the weak light–matter coupling regime, the indistinguishability and effiency can be
approximated by the analytical expressions [6,38]

I = Γtot

Γtot + γtot
[ (ΓWG + Γcav)B2

(ΓWG + Γcav)B2
+ 2Γ0F(1 − B2) ]

2

E = (Γcav + ΓWG)B2
+ 2Γ0F(1 − B2)

(Γcav + ΓWG)B2
+ 2Γ0F(1 − B2) + ΓR

,

(19)

where F is the fraction of the phonon sideband that remains unfiltered by the cavity, Γtot =

Γcav + ΓWG + ΓR is the total population decay rate, Γcav = 4g2/κ is the Purcell-enhanced emission
rate into the cavity and γtot = γ + 4π(gB/κ)2α(2gB)2e−(2gB/νc)2 coth[~gB/(kBT)] is the total
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dephasing rate, accounting for pure dephasing and additional phonon-induced dephasing due to
scattering between the cavity–exciton polaritons.

If one assumes that the emitter–cavity coupling is weak and that phonon effects can be
described by a constant pure dephasing rate, γ, one ends up with a simple model leading to the
result [27]

I = Γtot

Γtot + γ
, E = Γcav + ΓWG

Γtot
. (20)

These expressions for I and E are indicated with dotted green lines in Fig. 5. According to Eq.
(20), the performance will monotonically improve as the cavity Q-factor is increased, due to the
Purcell effect. However, the theory fails to reproduce the correct qualitative and quantitative
behaviour of the efficiency and in particular the indistinguishability. This discrepancy is due to
the neglect of the phonon sideband in the simple model, and due to the fact that Eq. (20) is not
valid in the strong-coupling regime. To illustrate this, we also report the indistinguishability and
efficiency predicted by a cavity QED model that fully accounts for strong coupling but does not
include phonons, as in Refs. [27,48,74,75] (dashed orange lines). The discrepancy between the
phonon-less cQED model and the weak-coupling Purcell-approximation does not arise due to
strong coupling itself, but rather due to the interplay between strong coupling, pure dephasing
and losses. In the strong coupling regime, pure dephasing and losses have a larger impact than
predicted by the weak coupling approximation because the initial excitation of the emitter does
not monotonically decay into the cavity and leaks out, but returns to the emitter in each vacuum
Rabi cycle.

Fig. 6. a. Indistinguishability, I b. efficiency, E, and c. their product, IE as a function
of cavity linewidth, where the blue lines correspond to a temperature of 5 K, the brown
lines to 55 K and the remaining lines spaced regularly in steps of 10 K. d. Frank-Condon
factor, B2, as a function of temperature, with coloured circles indicating the temperatures
of the corresponding coloured lines in panels a-c. e. Phonon-induced pure dephasing
rate of the zero-phonon line as a function of temperature. As for panel e, the coloured
circles correspond to the coloured lines in panels a-c. Parameters: ~Γ0 = 1 µeV, ~ΓR =

1 µeV, ~γ0 = 0.5 µeV, ~g = 100 µeV and QD size d = 10 nm.
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A typical experimental strategy for tuning the emitter into resonance with an optical cavity is to
change the temperature [2]. Figures 6(a)–6(c) presents the single-photon source performance as a
function of cavity linewidth for temperatures in the range 5 − 55 K. With increased temperature,
the thermal phonon population will enhance the fraction of emission into the phonon sideband
(1 − B2) and increase the phonon-induced pure dephasing rate [23,25]. These two effects are
quantified in Figs. 6(d)–6(e), with coloured circles indicating the temperature of the corresponding
lines in Fig. 6(a)–6(c).

The size of the QD also has a strong impact on the emission properties. This is illustrated in
Fig. 7, where the indistinguishability, efficiency and their product is shown for a range of QD
sizes, d. The QD size has an impact on the FC factor, the energy splitting between the excitonic
states and the phonon cutoff-frequency. The FC factor increases monotonically with QD size,
because the cutoff-frequency is inversely proportional with the size. This means that for larger
QDs, the power in the sideband is decreased relative to the zero-phonon line. The splitting
between the s- and p-shell excitons scales as d−2. For this reason, the rate of pure dephasing
induced by virtual scattering of thermal phonons increases as the QD becomes larger, but only for
relatively small QDs. As seen in Eq. (18), the pure-dephasing rate involves a frequency integral
over e−(ν/νc)2 . As the size is increased, the cutoff-frequency, νc, will decrease as d−1, and thus
eventually the pure dephasing rate will decrease with increasing size. It is worth mentioning
that these calculations have been performed under the assumption of a spherically symmetric
QD, and more intricate features might be revealed when the confinement potential mimicks the
shape of a realistic QD more closely. Furthermore, we have taken the spontaneous emission rates,
Γ0 and ΓR, to be independent of the QD size. Strictly speaking, these rates are size-dependent,

Fig. 7. a. Indistinguishability, I b. efficiency, E, and c. their product, IE as a function
of cavity linewidth, where each line corresponds to a different QD size d. Frank-Condon
factor, B2, as a function of QD size, with coloured circles indicating the temperatures of the
corresponding coloured lines in panels a-c. e. Phonon-induced pure dephasing rate of the
zero-phonon line as a function of QD size. As for panel e, the coloured circles correspond
to the coloured lines in panels a-c. Parameters: ~Γ0 = 1 µeV, ~ΓR = 1 µeV, ~γ0 =

0.5 µeV, ~g = 100 µeV, T = 10 K.
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although experiments have shown a very modest variation over the sizes used here [76]. We do,
however, note that care should be taken when going to the large-dot limit, where the light-matter
interaction may be strongly influenced by the QD size [77–79].

5. Outlook

Although this article focuses on intrinsic limitations of quantum dots as single-photon sources,
quantum dots remain among the most promising solid-state emitters for on-demand high-rate
generation of single photons with simultaneous high efficiency and indistinguishability. In
comparison to other leading solid-state quantum emitters, the electron-phonon interaction strength
of QDs is relatively weak, with ∼ 90% of light emitted through the zero phonon line in bulk
at cryogenic temperatures. For example, in contrast, Nitrogen Vacancy centers diamond emit
only ∼ 3% of photons through the zero phonon line [80], while displaying better spin coherence
properties than quantum dots. Furthermore, the natural integrability of QDs in photonic structures
allows to engineer emission properties and may vastly improve the coherence of emitted photons.

Many important properties of quantum dots and their interaction with a photonic environment
remain to be answered. Recent studies investigate the dynamics and limitations of the optical
excitation process [10] and demonstrate how the phonon sideband can be used to increase
the pumping efficiency without sacrificing the photon indistinguishability [11]. Other recent
investigations focus on the properties of light scattered from a solid-state quantum emitter [81,82].
Furthermore, a larger parameter space and a range of new phenomena arise when the Fabry-Perot
cavity is replaced with a non-Lorenzian cavity, which opens up a rich class of dynamics [83,84].
We also note that the topic of phonon effects in quantum dots has recently been reviewed with
focus on optical excitation schemes [85] and in a broader scope, presenting a range of different
phonon-induced phenomena and theoretical modeling techniques [86].
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