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The relative stability of various high-pressure phases of Csl is studied from first principles and ana-
lyzed using the Landau theory of phase transitions. We demonstrate that the cubic-to-orthorhombic
transition recently observed to occur slightly below 20 GPa is driven by the softening of an acoustic pho-
non at the M point of the Brillouin zone. The coupling between this mode and anisotropic strain makes
the transition slightly first order (with a volume variation of the order of 0.1%), and stabilizes the experi-
mentally observed orthorhombic phase with respect to other competing symmetry-allowed structures.

PACS numbers: 62.50.+p

The high-pressure properties of Csl are the subject of
current experimental interest both in conjunction with
band-overlap metallization and also because this cubic
salt undergoes a rather unexpected transition to a low-
symmetry phase at an applied pressure of a few tens of
GPa [1-3]. Until recently, the commonly accepted pic-
ture was that a cubic-to-tetragonal martensitic transition
would occur at a pressure of about 40 GPa. A further
transition from the tetragonal to an orthorhombic phase
at 56 GPa has been reported in Ref. [2], but this finding
has not been confirmed by subsequent experimental [1,3]
nor theoretical [4-7] work. In particular, though the
cubic-to-tetragonal transition has been theoretically pre-
dicted by both semiempirical [4] and first-principles [5,6]
calculations, no evidence of the further orthorhombic dis-
tortion has been found by either methods [7].

Recent experiments [8,9] suggest that CsI undergoes a
continuous transition from the cubic (B2) to an hcp
structure, passing through an orthorhombic phase, C3.,
which is, however, different from the previously proposed
structure [2], D},. In this paper we study the relative
stability of various phases of Csl at high pressure (cubic,
tetragonal, and the newly proposed orthorhombic struc-
ture). We identify the amplitude of a sixfold-degenerate
phonon mode (M5 ) as the relevant order parameter of
the transition in the Landau sense. The frequency of this
phonon is found to vanish at a pressure of =23 GPa,
which is well below the transition from the cubic to the
tetragonal phase. Neglecting the coupling between the
soft mode and anisotropic macroscopic strain, we find
that the transition would be second order from the cubic
to a tetrahedral (7°) phase; the coupling with macro-
scopic strain stabilizes the orthorhombic structure, mak-
ing the transition first order, with a very small volume
change (=0.1%) and a transition pressure (=21 GPa)
slightly below the softening pressure of the Ms phonon.
We also find that the orthorhombic structure is always
favored with respect to the tetragonal structure, up to
pressures of 60 GPa.

The cubic-to-tetragonal transition reported in Refs.
[1-3] was originally thought to be second order. Group-

theoretical considerations show that this transition must
be first order [10], and a discontinuity in the order pa-
rameter, c/a, at the transition was actually found in both
semiempirical [4] and first-principles [5,6] calculations.
Even so, this transition is driven by a dramatic softening
of the shear constant, ¢; =1+ (¢;;1—cy2), which in fact
vanishes at a volume slightly below the transition [4-6].
The shear constant is also proportional to the square of
the sound velocity along the (110) direction for vibrations
polarized along (110). This observation suggests that the
softening of the shear constant could be associated with
the softening of a transverse phonon along the (110)
direction. In fact, the gliding of one of the (110)
planes— which was indicated in Ref. [8] as characterizing
the low-symmetry phase of Csl—represents a lattice dis-
tortion which is very similar to that due to a doubly de-
generate acoustic phonon mode at the M point of the
Brillouin zone (BZ), M5 .

In order to clarify the nature of the transition, we have
performed extensive density-functional-theory (DFT) cal-
culations of the static and vibrational properties of Csl at
high pressure, using the local-density approximation
(LDA), norm-conserving pseudopotentials, and large
plane-wave basis sets. The computational details are
similar to those described in Ref. [6], with the only
difference that we have now used a somewhat larger.
kinetic-energy cutoff (25 Ry): The resulting values of the
equilibrium lattice constant and bulk modulus are 4.44 A
and 15 GPa, respectively. The vibrational properties
have been calculated using the density-functional pertur-
bation theory described in Ref. [11]. In Table I some
phonon frequencies calculated at the equilibrium volume
are compared with experimental data. The agreement is
quite satisfactory, giving confidence in the predictive
power of our calculations.

In Fig. 1 we display the ionic displacements along the
normal coordinates of the Ms acoustic phonon [14], to-
gether with the dependence of the corresponding frequen-
cy upon molar volume. The displacement pattern is simi-
lar to but different from that proposed in Ref. [8] (the
magnitude of the cationic and anionic displacements are
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TABLE I. Comparison between calculated and experimentally observed phonon frequencies
of Csl at zero pressure, at the I’ and M points of the Brillouin zone. Units are THz. The un-
certainty on the last value in the experimental data row is indicated in parentheses.

wTto(I) wLo(I") wta(M) wra(M) oto(M) wLo(M)
Theory 2.09 2.85 1.17 1.30 1.48 2.35
Expt. 1.91(5)° 2.74(1)° 1.29(6) ® 1.34(5) ® 2.26(5)

*Experimental data from Ref. [12].

Experimental data from Ref. [13].

different here, their ratio depending on the actual dynamical matrix of the crystal). The Ms phonon softens at
v=V/Vy=0.64, corresponding to a pressure P = 23 GPa, as a consequence of the incipient softening of the sound veloci-
ty of one of the transverse branches (see inset). The vanishing of the M5 frequency signals the onset of a phase transi-
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FIG. 1. Upper panel: Atomic displacements corresponding
to an Ms acoustic phonon, viewed on the (001) plane. The
magnitude of iodine displacements ur with respect to cesium
displacements uc; is exaggerated for clarity. The solid (dashed)
line indicates the unit cell of the orthorhombic (cubic) struc-
ture. lodine atoms liec on a plane shifted along the z direction
by ¢/2 with respect to the cesium plane. In the cubic structure
one has a =b=+2c¢. Lower panel: Frequency of the Ms pho-
non as a function of molar volume (lower scale, v=V/Vo, where
Vo is the equilibrium volume) and of the pressure (upper scale).
Arrows indicate the softening volume (v*) and pressure (P*).
Inset: The lower portion of the acoustic dispersion along (110)
at equilibrium volume (dashed line), and at volumes slightly
above (solid line) and below (dotted line) the mode softening.
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tion, whose order parameter is the amplitude of the atom-
ic displacements along the phonon normal coordinates
[14]. The small group of the M point—whose coordi-
nates are (£ $0)—is D4, and its star is made of three
equivalent points. The Ms mode transforms according
to the doubly degenerate I's  irreducible representation of
Dyp, so that the order parameter associated with this
mode is six dimensional. According to the Landau theory
[15], the transition can be second order if no third-order
cubic invariants can be constructed with the components
of the order parameter. This is manifestly the case here,
since the I's representation is odd. Assuming that the
sixth- and higher-order terms in the development of the
free energy in powers of the order parameter are positive
in the neighborhood of the high-symmetry phase, the
transition is then first or second order, according to
whether the fourth-order invariants are negative or posi-
tive, respectively. A classification of fourth- and sixth-
order invariants for six-dimensional representations of
space groups is given in Ref. [16]. In our case, there are
five fourth-order invariants whose coefficients have been
determined in the particular case V/V(=0.58 by fitting
their values with DFT calculations done for a few in-
dependent lattice distortions. All these invariants turn
out to be positive, thus indicating that the transition
would be second order. Group-theoretical considerations
considerably restrict the number of possible low-sym-
metry phases. According to Ref. [16], there are seven
distorted crystal structures of ‘‘maximal isotropy” (each
structure corresponds to a different “direction” in the
six-dimensional configuration space of the order parame-
ter). In the present case, an analysis of the crystal energy
reveals that below the transition the only energy
minimum occurs along the so-called “P 11" direction [16]
which corresponds to the simultaneous excitations of all
the six degenerate soft modes. The space group of the
distorted phase is T, whose tetrahedral symmetry cannot
be reconciled with the observed x-ray diffraction patterns
[81.

The above considerations hold in the hypothesis that
the strain state of the crystal is constant across the transi-
tion, except for the isotropic compression due to the ap-
plication of a hydrostatic pressure. We know, however,
that the softening of the M's  phonon mode is closely re-
lated to the softening of the shear constant of the crystal,
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so that a strong coupling between the soft mode and mac-
roscopic strain (i.e., between zone-center and zone-border
acoustic phonons) is to be expected. We consider next
the expression of the Landau enthalpy of the crystal up to
fourth order in the phonon displacements, including the
coupling with the strain [17]. We find that the P11
minimum previously found is unaffected by such a cou-
pling, while four out of the other six maximal isotropy
directional minima are slightly modified, still maintaining
the saddle-point character they would have ignoring the
phonon-strain coupling. This coupling changes instead
the character of the minima along the other two maximal
isotropy directions, P1 and P2, turning them from saddle
points to true minima. The P1 structure corresponds to
the excitation of just one transverse acoustic phonon (see
Fig. 1). When the coupling with strain is neglected, this
structure has a much lower energy than that of the P2
one which corresponds to the simultaneous excitations of
two degenerate soft phonons at the same point of the BZ.
The observed x-ray diffraction pattern from the low-
symmetry phase of CslI [8] is indeed compatible with the
space group of the P1 structure, D3y, which is further-
more geometrically simpler than the P2 one. For these
reasons, in the following we will concentrate on the P1
distortion only.

Along the P1 direction, the power expansion of the
crystal enthalpy reads [17]

Hu,e1,60) =+ ku+au*+ S ciet+ L caaed
+(bre1+bre)du+0w®) (n

where u is the amplitude of the phonon displacement
along (110), €)= % (exx + €,y — 2¢..), and €, =¢y,, €;; be-
ing the strain tensor. By eliminating ¢; and ¢; from Eq.
(1) by the condition dH/d¢; =0H/de, =0, one obtains

bu? bou?
61=———lu ,62=_—2u , )
Cs Ca4
- b} b3
Hw) =t ku+ |a——— - |u*+0w®. )
203 2(‘44

Equation (3) shows that the coupling between the soft
phonon and macroscopic strain renormalizes the fourth-
order coefficient, making it large and negative, whenever
¢s or c44 are small enough. As a result of the ongoing
softening of the shear constant ¢;, we do find that at the
softening pressure the fourth-order coefficient is negative,
and we conclude that the transition must then be first or-
der, occurring at a somewhat lower pressure. A thorough
study of the transition could be performed by considering
the expansion of the crystal energy up to sixth order in
the order parameter, and by fitting the relevant coef-
ficients with first-principles calculations, as was done
when the coupling to the strain was neglected. We have
preferred instead to perform straight energy minimiza-
tions with respect to u and o along the P1 line, in
correspondence to different volumes, so as to directly ob-
tain the equation of state of the crystal in the low-
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FIG. 2. Structural parameters of the orthorhombic phase
(see Fig. 1) of Csl as functions of different values of pressure
and volume. Arrows indicate the transition pressure and
volume. The volume discontinuity at the transition is not visible
on this scale. Pg: indicates the transition pressure, while veu
and von are the volumes of the high- and low-symmetry phases
at the transition, respectively.

symmetry phase. The Maxwell construction gives then a
transition pressure of =21 GPa, corresponding to a
volume in the cubic phase V/Vy==0.64, which is actually
slightly larger than the softening volume of the Ms pho-

non.
In Fig. 2 we report the structural parameters of the or-

thorhombic phase, calculated for different values of the
pressure and volume. All the structural parameters, in-
cluding volume, are discontinuous at the transition pres-
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FIG. 3. Enthalpies of the orthorhombic and tetragonal

phases, relative to the enthalpy of the cubic phase, as functions
of the applied pressure. P and P are the transition pressures
from the cubic to the orthorhombic and tetragonal phases, re-
spectively.
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FIG. 4. Pressure vs volume data calculated in the present
work for different phases of Csl, compared to previous equa-
tions of state (dashed line from Ref. [2] and solid line from Ref.
[8]), fitted to experimental data.

sure as a consequence of its first-order character. The
volume discontinuity is very small (0.1%) and it is not
visible on the scale of the figure. Note also the different
magnitudes of the cesium and iodine displacements, and
the very weak dependence of b/a upon applied pressure.
The different behavior of ¢/a—1 and b/a—1 with
respect to pressure is due to the fact that the former is in-
versely proportional to the nearly vanishing shear con-
stant ¢;, whereas the latter depends on c44 which is regu-
lar in this pressure range [see Eq. (2)].

In Fig. 3 we compare the enthalpy of the new ortho-
rhombic phase (relative to that of the cubic phase) with
that of the tetragonal phase previously conjectured to
occur at higher pressures. The orthorhombic phase turns
out to be more stable all over the explored pressure range.

In Fig. 4 we display our pressure versus volume data
calculated for three different structures (cubic, tetrago-
nal, and orthorhombic) and compare them with the equa-
tions of state fitted to experimental data from Refs. [2,8].
Our data are somewhat intermediate with respect to the
previous equations of state, displaying a consistent de-
crease of the pressure when passing from the cubic to the
tetragonal and orthorhombic phases.

We conclude with a brief comment on the effects of
structural distortions on the optical properties. The gaps
calculated for the tetragonal, cubic, and orthorhombic
phases would close at around V/Vy=0.54, 0.52, and
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0.51, corresponding to pressures of =45, 53, and 55
GPa, respectively. For a given molar volume, the tetrag-
onal distortion tends to lower the gap [6], while the ortho-
rhombic one increases it. It is well known that the LDA
underestimates the optical gaps and we believe that the
metallization pressure calculated using this approxima-
tion is (possibly slightly) underestimated.
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FIG. 1. Upper panel: Atomic displacements corresponding
to an Ms acoustic phonon, viewed on the (001) plane. The
magnitude of iodine displacements u; with respect to cesium
displacements uc; is exaggerated for clarity. The solid (dashed)
line indicates the unit cell of the orthorhombic (cubic) struc-
ture. Iodine atoms lie on a plane shifted along the z direction
by ¢/2 with respect to the cesium plane. In the cubic structure
one has a =b =+2c. Lower panel: Frequency of the M5 pho-
non as a function of molar volume (lower scale, v=V/V,, where
Vo is the equilibrium volume) and of the pressure (upper scale).
Arrows indicate the softening volume (v*) and pressure (P*).
Inset: The lower portion of the acoustic dispersion along (110)
at equilibrium volume (dashed line), and at volumes slightly
above (solid line) and below (dotted line) the mode softening.



