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Phononic band structure in a mass chain 

Samantha Parmley, Tom Zobrist, Terry Clough, Anthony Perez-Miller, Mark Makela, 

and Roger Yu 
Department of Physics, Central Washington University, Ellensburg, Virginia 98926 

(Received 13 February 1995; accepted for publication 24 May 1995) 

The vibrational properties of a finite one-dimensional string-mass chain are studied experimentally 

and theoretically. In the experiment both normal mode analysis and pulse analysis are used to obtain 

the eigenfrequencies of the string-mass chain. The theoretical predictions are made based upon the 

numerical solution to the wave equation. The phononic band structure for a periodically massed 

string as well as Anderson localized gap modes for a disordered system are found. The theoretical 

and experimental results match satisfactorily well. © 1995 American Institute of Physics. 

As a result of the Bloch theory, the eigenstates of an 

electron in a strictly periodic potential are extended and the 

electron energy levels form allowed energy bands separated 

by forbidden energy gaps. The analogy between the elec­

tronic band structure and the optical band structure has been 

explored recently. A three-dimensional face-centered-cubic 

dielectric structure ("photonic crystal") was introduced by 

Yablonovitch et al. 
1 In the photonic crystal, transmission 

bands and gaps were conclusively identified. A mechanical 

wave propagating in a periodic medium also resembles the 

dynamics of an electron in a crystal. More recently, the cal­

culation of an "acoustic" or "phononic" band structure in a 

three-dimensional periodic composite of two materials with 

different elastic properties was carried out by Kushwaha 
et al. 2 

In this letter we report the results of detailed theoretical 

predictions and experimental measurements on the acoustic 

properties of a finite regular and irregular one-dimensional 

string-mass chain. The theoretical predictions are made 

based upon the numerical solution of the wave equation. In 

the numerical simulation the Fourier expansion was used to 

~ansform the differential wave equation into a matrix equa­

hon. With the formalism developed in this research it is pos­

sible to determine the eigenvalues and eigenfunctions to any 

degree of accuracy. There is no restriction on the distribution 

and the magnitude of the masses; they can be completely 

rand0m. Therefore, the approach may be employed to simu­

late not only perfect one-dimensional crystals, but also dis-

0rdered crystals, quasicrystal, and amorphous structures. 

?n the experimental side, techniques of studying the dy­

namical property of a microscopic electronic system or a 

macroscopic mechanical system can be characterized into 
two catego · . . 

_ nes. normal mode analysis (NMA) and pulse 

:alys,s (PA). In the NMA, the transmitted amplitude 

f 
rough the system is recorded while the exciting (driving) 

requency · b · 18 emg swept. The response of the system is ex-
pected to b h 

e en anced when the exciting frequency is near a 
resonant ( . ) 
- f eigen frequency. In the PA, a pulse which is rich 
Ill reque · . 

_ ncy, 1s received by the string system. The subse­
quent v1b t" 
is b . ra ion of the system is recorded. Then the spectrum 

0 tamed b · 
seri Y carrymg out a Fourier transform of the time 

abo e:, ;;iie. spectrum reveals all the important information 

at e~ t e eigenproperties of the system by peaking its value 
igenfrequ . 

enc1es. In the experiments reported here, both 

methods were used and the results are compared. 

We consider the standing (eigen) wave equation 

stretched and clamped string with loaded masses 

( wn)
2

<T(x )un(x) + Toun(x) = 0, 

of a 

(1) 

here, TO is the tension in the string, cr(x) is the mass density 

which takes into account the sizes and positions of loaded 

masses as well as the string, and wn and un(x) are the eigen­

frequencies and eigenwave functions, respectively. The 

above equation was solved numerically using a software 

package in the IMSL Math/Library.
4 

The transient vibra­

tional property of the loaded string can be described by the 

eigenwave functions found above. The time evolution of 

plucked string f (x,t) is expressed by the superposition of 

the eigenstates, Un(x)eiwnl 

f(x,t)= ~ dnun(x)eiw"
1

, (2) 
n 

where, the expansion coefficients d n are determined by the 

initial displacement (plucked form) of the string f(x,O), 

dn= J: f(x,O)un(x)dx. (3) 

The time series f(x,t) for a fixed point x=a, is in general 

quite noisy except when the string is vibrating at a resonant 

frequency. However, the Fourier transform S(w), of f(a,t) is 

rich in physical properties and less difficult to interpret. The 

spectrum S(w) is defined as 

(4) 

By substituting Eq. (2) into Eq. (4), we have 

S( w)="" d ( ) _If +oo e-i(w-w")tdt 
LJ nUn a 21T -oo 

n 

(5) 
n 

It is obvious that spectrum S(w) peaks at resonant frequen­

cies wn . In practice, the damping in the string is not negli­

gible, then the delta function ~ w- wn) is broadened by 

damping. The oscillator strength for each eigenstate depends 

on the initial expansion coefficient dn. 
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FIG. I. (a) and (b) ,how the theoretical and experimental resonant fm.1uen­

cies of the periodic (random) 13-mass string as a function of the ordinal 

number n. 

In the experiment, we use a TekTronix FG 504 Sweeping 

Function Generator to produce a sinusoidal wave, which we 

can either set to specific frequencies, or sweep through a 

variable range of frequencies. The signal is then run through 

an amplifier to an ordinary audio speaker. The string is 

physically attached to the core of the speaker, so that the 

string and the speaker vibrate at the same frequency. We 

have devised two methods, corresponding to the two differ­

ent analyses, for recording the data from the pickups. One is 

to run the ac signal from the pickup through a rectifier to 

produce a de signal. This signal is then run into a Sargent~ 

Welch x-y recorded which will produce a hard copy graph of 

amplitude versus frequency for a range of frequencies swept 

through by the function generator. This method allows us to 

perform eigenmode analysis. The second method of record­

ing the data is based on the use of a computer driven digi­

tizer. The ac signal from the pickup is run through the linear 

amplifier, then through a low-pass filter and into the digitizer. 

The digitized data enable us to analyze the real time series in 

the frequency domain by fast Fourier transformation (FFf). 

The power spectrum will exhibit peaks which can be used to 

identify the eigenfrequencies of the system. This method 

works the best for the pulse analysis, and for simply plucking 

the string. 

We now present the results of ordered and disordered 

systems in a parallel fashion; figures for different systems are 

shown together for comparison. The NMA resonant frequen­

cies, wave functions, and spectrum for a periodic system are 

displayed in Figs. I, 2, and 3, respectively, by parts (a), 

whereas their counterparts for the disordered system are 

shown by parts (b). Thirteen masses are evenly spaced on a 
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FIG. 2. The eigenfunctions of the lowest two bands of the periodic (left­

hand-side column) and the random (right-hand side column) 13-mass string. 

The positions of masses are marked. 

string for the periodic system. About I 0% random variation 

in mass separation is incorporated in the disordered string. It 

can be seen in Fig. I that the NMA data and the theoretical 

prediction match quite well for both systems, especially in 

the lowest bands. The dispersion is especially interesting in 

two limited; i.e., long wave length (small n) and short wave 

length {large n). At the Brillouin zone boundary, n= 13, the 

group velocity of the system, which equals the derivative of 

frequency with respect to the wave vector k (or n), is alm~st 

zero. It is clearly seen in the eigenfunctions shown in Fig. 

2(a) that when n = 13, all the masses are vibrating out of 

phase and the wavelength X. = 2a, so that the wave of the 

system looks more like a standing wave with zero group 

velocity. At the other end of the Brillouin zone boundary 

n = 1, the wavelength X. is large. One can view the sy5te~ 

as a continuum and the string wave becomes an acou5
IIC 

wave.5 In the second band, significant discrepancy between 

the theoretical and experimental data is observed. We at­

tribute the upshift in experimental resonant frequencies to 

the stiffness of the wire. The change in the tension due to 
th

e 

stiffness can be approximated by a simple equation, T(.~! 
=T

0
+(YA/2)(au/Jx) 2

, here Y and A are the Yo~ng 

modulus and the cross-section area of the wire, respectively. 

The second (nonlinear) term of the above equation increases 

the tension, and so shifts the frequency upward. In our theo­

retical calculations the nonlinear effect was neglected. fur-
' has 

ther study of our system using a wire with lower stiffness. 
1 

yielded experimental data much closer to the theoreuca 

Parmley et al. 
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FIG. 3. Spectra for the (a) periodic and (b) random 13-mass string. The 

spectra are obtained by Fourier transforming the time series of vibration at a 

fixed point on the string. 

work. The experimental data in Fig. 1 show a nonzero group 

velocity (finite slope) near n = 14. The structure in the 

middle of the band n = 20, displays a smaller group veloc­

ity. Maynard and his co-workers6 have observed regions of 

low response in the second band in a similar measurement. 

They attributed the effect to the ~ 13% variation in the size 

of the commercial lead masses. We believe that the same 

argument may be applied to our data shown in Fig. 1. 

The dispersion relation for the random system shown in 

Fig. 1 (b) resembles that of the periodic system in ~he lowest 

band. The wave functions of the lowest band for both sys­

tems are all extended [see Figs. 2(a) and 2(b)]. In a disor­

dered system, the wave functions generally have three types 

of ~haracteristics: (i) extended, (ii) localized, and (iii) critical 

which is the combination of (i) and (ii).7 In Fig. 2(b), the gap 

mode (GAP 1) is strongly localized8 whereas the lowest and 
th~ _highest states in the second passing band (n= 14, 27) are 

cr'.tical. The gap mode existing in between the second and 
th

'rd bands (GAP 2) is also highly localized. 
1~ ~he spectrum S(w) [Fig. 3(a)], four frequency bands 

are distmguishable for the periodic system. In the first and 

:.econd band, one can actually see 13 and 14 peaks, respec­

tely, corresponding to 13 and 14 eigenfrequencies in each 

anct, The first passing band weighs more heavily in oscilla-

Appl, Phys. Lett., Vol. 67, No. 6, 7 August 1995 

tor strength than the higher bands, it is because the size of 

the plucked initial wave form is in the same order of magni­

tude as wavelengths of the lowest band. One of the theoreti­

cal (linear theory) predictions for the mechanical system con­

sidered here is that the band width of higher bands become 

narrower, which is just the opposite of an electronic band 

structure. By studying the theoretical wave forms in Fig. 

2(a), we have found that the amplitude of vibration of the 

masses becomes smaller in the higher band. It is clear that 

the less the motion of a point mass, the weaker the coupling 

between the string segments on both sides of the mass; if the 

mass does not move the coupling is zero. As a result of 

weaker coupling, the bandwidth decreases. In contrast, the 

measured frequency bandwidth does not decrease signifi­

cantly because of the upshift in frequencies due to the non­

linearity of the system. 

For the disordered system, three bands are visible in the 

spectrum shown in Fig. 3(b). The distinct feature in the spec­

trum is the active response in the gaps. Immediately above 

the lowest passing band and below the second band, weak 

peaks corresponding to the localized gap mode can be easily 

observed. The gap mode near 750 Hz in the second gap 

[ n = 28 in Figs. 1 (a) and 2(b) J has relatively strong oscillator 

strength because its wave function is localized near the drive 

situated at the left end of the string, therefore this mode is 

more easily excited. 

In summary, we have numerically and experimentally 

studied the vibrational properties of a string loaded with 

masses. For a periodically loaded string we have found that 

the resonant frequencies form bands whose wave functions 

are extended. In contrast to the periodic system, strongly 

localized modes existed in the gaps or near the edges of the 

frequency bands are found in a randomly loaded string. The 

physical properties found in the classical system are reminis­

cent of many important quantum mechanical effects. The ex­

periment presented here provides vivid visualization of those 

effects on a macroscopic scale. 
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