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Phonons and Electron-Phonon Scattering in Carbon Nanotubes
Hidekatsu SUZUURA and Tsuneya ANDO

Institute for Solid State Physics, University of Tokyo
5–1–5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Electron-phonon scattering is studied within an effective-mass theory. A continuum model for acoustic
phonons is introduced and electron-phonon interaction due to modification of band structure is derived as
well as a normal deformation potential. In a metallic nanotube, the deformation potential does not partic-
ipate in electron scattering and a metallic nanotube becomes nearly a one-dimensional ballistic conductor
even at room temperature. A resistivity determined by small band-structure interaction depends on the
chirality at low temperatures. A magnetic field perpendicular to the axis induces electron scattering by the
deformation potential, giving rise to huge positive magnetoresistance.

I. INTRODUCTION

Carbon nanotubes (CN’s) are quasi-one-dimensional
materials made of sp2-hybridized carbon networks.1 Elec-
tronic structure of a single CN has been studied theoret-
ically, which predicted that CN becomes either metallic
or semiconducting depending on its chiral vector, i.e.,
boundary conditions in the circumference direction.2−11

These predictions have been confirmed by Raman ex-
periments12 and direct measurements of local density of
states by scanning tunneling spectroscopy.13−15 Trans-
port properties are particularly interesting because of
their unique topological structures.16 In this paper we
focus on electron-phonon scattering as the main origin
of resistivity and reveal its chirality and magnetic-field
dependence.

For impurity scattering, it was shown theoretically
that there is no backscattering for impurity potentials
with a range larger than the lattice spacing in metallic
CN’s.17 This intriguing fact was related to Berry’s phase
acquired by a rotation in the wave-vector space in the
system described by a k·p Hamiltonian.18 The absence
of backward scattering has been confirmed by numerical
calculations in a tight-binding model.19 There have been
some reports on experiments which seem to support this
theoretical prediction.20,21

Effects of scattering by a lattice vacancy in arm-
chair nanotubes have been studied within a tight-binding
model.22,23 It has been shown that the conductance at
ε = 0 in the absence of a magnetic field is quantized
into zero, one, or two times of the conductance quan-
tum e2/πh̄ for a vacancy consisting of three B carbon
atoms around an A atom, of a single A atom, and of a
pair of A and B atoms, respectively.23 Numerical calcu-
lations were performed for about 1.5×105 different kinds
of vacancies and demonstrated that such quantization is
quite general.24 This rule was analytically derived in a
k·p scheme later.25,26

Phonon scattering is another main origin of the re-
sistivity and gives dominant contributions usually at high
temperature. Phonons contributing to the electron scat-
tering and resistivity are those of long wavelengths which
can be described well by continuum models. Although
electronic properties have been understood by those of
the graphite plane using a periodic boundary condition,
the phonon modes of nanotubes are not simply given
by the zone-folded modes of planes because they fail to
give breathing modes.6 In this paper we shall construct

a continuum model suitable for a correct description of
long-wavelength acoustic phonons.

A lattice deformation gives rise to a diagonal energy
shift called deformation potential in a matrix k·p Hamil-
tonian. In addition to the deformation potential it caus-
es small off-diagonal terms arising from a modification in
the local band structure due to change in the bond-length
between neighboring carbon atoms. In the absence of a
magnetic field, the former deformation potential gives no
backscattering and the resistivity is determined by the
latter band-structure term. A magnetic field changes the
situation drastically and leads to an appreciable amount
of backscattering due to the deformation potential. This
leads to increase of the resistivity in a magnetic field, or
positive magnetoresistance, in metallic CN’s.

In this paper, we shall calculate the phonon-limited
resistance of metallic CN’s and demonstrate a huge pos-
itive magnetoresistance. The case of semiconducting C-
N’s will be touched upon very briefly. In §2 a continuum
model for long-wavelength phonons is introduced and re-
sulting modes are compared with those of microscopic
calculations. In §3 an effective Hamiltonian for electron-
phonon interaction is derived in a k·p or effective-mass
approximation. In §4 the resistivity is calculated and
in §5 the magnetoresistance is calculated. The continu-
um phonon model is derived from a microscopic valence-
force-field model in §6. A discussion and short summary
are given in §§7 and 8, respectively. Very preliminary
account of a part of the results has been published.27,28

II. LONG-WAVELENGTH PHONON
As shown in Fig. 1, we choose the x axis in the

circumference direction, y in the axis direction, and z in
the direction normal to the cylinder surface. The radius
of the nanotube is denoted as R and the circumference
L, i.e., R = L/2π. Acoustic phonons important in the
electron scattering are known to be described well by
a continuum model. Two-dimensional graphites show
isotropic elasticity and the potential-energy functional
for in-plane displacement u(r)=(ux, uy) is written as

U [u] =
∫
dxdy

1
2

(
B(uxx+uyy)2 +µ

[
(uxx−uyy)2+4u2

xy

])
,

(2.1)
with strain tensors

uxx=
∂ux

∂x
, uyy =

∂uy

∂y
, 2uxy =

∂ux

∂y
+
∂uy

∂x
. (2.2)

The parameters B=λ+µ and µ denote the bulk modulus
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and the shear modulus for a graphite sheet (λ and µ are
Lamé constants).

It should be noted that the displacement u(r) is
not identical to that of the atom located at r and this is
important for quantitative evaluation of electron-phonon
coupling although it has not been paid much attention
to. This phenomenological model can be derived also
from a simple valence-force-field model as shown in §6.

For CN’s, in-plane and out-of-plane modes are no
longer separate and the normal component of displace-
ment should be considered on an equal footing. Accord-
ing to the theory of elasticity in the cylindrical coordinate
system,29 the nonzero curvature of the nanotube leads to

uxx =
∂ux

∂x
+
uz

R
, (2.3)

where uz is the displacement perpendicular to the cylin-
der surface. With this correction the potential-energy
functional (2.1) has full continuous symmetry for cylin-
drical geometry and its absence breaks invariance to the
uniform translation in a direction normal to the tube axis
as will be further discussed below.

The effect of a finite curvature of the nanotube can
be derived also from a microscopic valence-force-field mod-
el. What is the key point is to regard R−1 as a small
parameter in perturbative expansions as well as wave-
number. Long but straight-forward calculations reveal
that the curvature effect generates the above expression
of uxx within the second-order perturbation in terms of
wavenumber and R−1.

The corresponding kinetic energy is written as

K[u] =
∫
dxdy

M

2
[
(u̇x)2+(u̇y)2+(u̇z)2

]
, (2.4)

where M is the mass density given by the carbon mass
per unit area, M=3.80×10−7 kg/m2. The corresponding
equations of motion are given by

Müx = (B+µ)
∂2ux

∂x2
+ µ

∂2ux

∂y2
+B

∂2uy

∂x∂y
+

B+µ

R

∂uz

∂x
,

Müy = B
∂2ux

∂x∂y
+ (B+µ)

∂2uy

∂y2
+ µ

∂2uy

∂x2
+

B−µ

R

∂uz

∂y
,

Müz = −B+µ

R

∂ux

∂x
− B−µ

R

∂uy

∂y
− B+µ

R2
uz.

(2.5)
The phonon modes are specified by the wave vector

along the circumference χ(n) = 2πn/L and that along
the axis q as

u(r) = unq exp[iχ(n)x+iqy]. (2.6)

When n=0 and χ=0, in particular, the eigen equation
becomes

Mω2


 ux

uy

uz


=


µq2 0 0

0 (B+µ)q2 −i(B−µ)qR−1

0 i(B−µ)qR−1 (B+µ)R−2





ux

uy

uz


,

(2.7)
which has three eigenmodes called twisting, stretching,
and breathing.

The twisting mode (ux �=0, uy = uz =0) is made of

pure circumference-directional deformation and its ve-
locity vT is equal to that of the TA mode of a graphite
sheet,

ωT (q) = vT q, vT = vG
T =

√
µ

M
. (2.8)

In the long wavelength limit q=0, the radial deformation
uz generates a breathing mode with a frequency

ωB =

√
B+µ

M

1
R
, (2.9)

which is inversely proportional to the radius R. In the
case |qR|� 1, the deformation in the nanotube-axis di-
rection generates stretching modes. When ω� ωB, we
have from the last equation of eq. (2.7)

uz ≈ −iB−µ

B+µ
qRuy. (2.10)

Upon substitution of this into the second equation of eq.
(2.7) for uy, we have

ωS = vSq, vS =

√
4Bµ

(B+µ)M
. (2.11)

The velocity vS is usually smaller than that of the LA
mode of the graphite vG

L =
√

(B+µ)/M . We set vG
L =

21.0 km/s and vG
T =12.3 km/s, and we obtain vS =19.9

km/s, vT =12.3 km/s, and h̄ωB =2.04×10−2 eV, or 237K
for the so-called (10, 10) armchair CN with R=6.79 Å.

The above model is too simple when dealing with
modes with n �=0. In order to see this fact explicitly, we
shall consider the case with q=0. In this case there is a
displacement given by

ux = −u

n
sin

2πnx
L

= −u

n
sin

nx

R
,

uz = u cos
2πnx
L

= u cos
nx

R
,

(2.12)

with arbitrary u. This displacement gives uxx=0 identi-
cally and also uyy =uxy =0, giving rise to the vanishing
frequency. For n=±1, this vanishing frequency is abso-
lutely necessary because the displacement corresponds to
a uniform shift of a nanotube in a direction perpendicular
to the axis. For |n|>1, on the other hand, the displace-
ment corresponds to a deformation of the cross section
of the nanotube as shown in Fig. 2. Such deformations
should have nonzero frequency in actual graphite because
otherwise CN cannot maintain a cylindrical form.

Actually, we have to consider the potential energy
due to curvature change of the nanotube surface. Here,
we introduce a phenomenological potential-energy func-
tional of u(r). There are two types of curvature char-
acterizing deviations from flatness of a surface: mean
curvature and Gaussian curvature.30 The integration of
the Gaussian curvature over entire surface gives a topo-
logical invariant number. Therefore, change of the mean
curvature is a unique candidate for the effective poten-
tial as long as the topology of the nanotube remains fixed
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under lattice deformation.
The mean curvature Hc[u] of a nanotube under de-

formation u is given by

2Hc[u] =
1
R

−
( ∂2

∂x2
+

1
R2

+
∂2

∂y2

)
uz (2.13)

up to the first-order term of displacement, where R−1 is
the mean curvature in the absence of displacement. We
adopt the square of its deviation from the equilibrium
value as a potential and it is written as

Uc[u] =
1
2
a2Ξ

∫
dxdy

[( ∂2

∂x2
+

1
R2

+
∂2

∂y2

)
uz

]2

, (2.14)

where Ξ is a force constant for curvature deviation. For
2D graphites (R→∞), this correctly reproduces the dis-
persion relation of out-of-plane modes. As for nanotubes,
the presence of the term R−2 guarantees that the defor-
mation with n=±1 given in eq. (2.12) has a vanishing
frequency.

This curvature energy is of the order of the fourth
power of the wave vector and therefore is much smaller
than U [u] as long as qR� 1 for n= 0 and ±1 but be-
comes appreciable for |n|>1. After all, three parameters
B, µ, and Ξ are necessary for describing long-wavelength
acoustic phonons in CN’s and, in this paper, those of a
bulk graphite determined by its phonon dispersion rela-
tions are put into use as given in §6.

Figure 3 shows phonon dispersions of a (10,10) arm-
chair CN calculated in this continuum model. The solid
lines show the modes with n=0, i.e., the twist mode with
a linear dispersion, and the stretch and breathing modes
coupled with each other when crossing. When we ignore
curvature effects as shown in Fig. 3(a), there are modes
with frequency ∝ q2 for all nonzero n. When curvature
effects are taken into account as shown in Fig. 3(b), on
the other hand, the frequency of these modes becomes
nonzero at q=0 except for the mode with n=±1.

This mode with n=±1 corresponds to bending mo-
tion of a cylinder and should have a q2 dispersion. The
modes with n = 0 are essentially not affected by cur-
vature effects except when qR  1. The results with
curvature effects are in good agreement with the results
of microscopic calculations.31 The result for the bending
mode given in ref. 31 looks almost linear as a function of
q and are likely to be caused by an inappropriate choice
of force-constant values.

III. ELECTRON-PHONON INTERACTION

A. Deformation Potential

A long-wavelength acoustic phonon gives rise to an
effective potential called the deformation potential

V1 = g1(uxx+uyy), (3.1)

proportional to a local dilation or dilatation ∆(r)=uxx+
uyy. This term appears as a diagonal term in the matrix
Hamiltonian in the effective-mass approximation. The
coupling constant g1 is called the deformation potential
and its very rough value can be estimated in a nearly-free

electron model.
Consider a rectangular area a×a. In the presence

of a lattice deformation, the area S changes into S+
δS(r) with δS(r) = a2∆(r). Therefore, the ion density
changes locally by n0→n0[1−∆(r)]. The electron densi-
ty should change in the same manner due to the charge
neutrality condition. Consider a two-dimensional elec-
tron gas. The potential energy δε(r) corresponding to
the density change should satisfy δε(r)D(εF )=n0∆(r),
where D(εF ) is the density of states at the Fermi level
D(ε) = m/πh̄2 independent of energy, where m is the
free-electron mass. Therefore, n0=D(εF )εF , leading to

δε(r) = εF∆(r). (3.2)

This shows g1 = εF in contrast to g1 =(2/3)εF in three
dimension. In the two-dimensional graphite, the electron
gas model may not be so appropriate but can be used for
a very rough estimation of g1 as the Fermi energy mea-
sured from the bottom of the valence bands (σ bands),
i.e., 20−30 eV. The deformation potential g1 in the bulk
graphite has been known to be about 16 eV.32

B. Bond-Length Change

A tight-binding equation of motion is given by

εψA(RA) = −
∑

l

γRA,RA−�τl
ψB(RA−*τl),

εψB(RB) = −
∑

l

γRB ,RB+�τl
ψA(RB+*τl),

(3.3)

where the energy origin has been chosen at the ener-
gy level of the pz orbital, ψA and ψB are the ampli-
tude at a carbon A site RA and a B site RB , respec-
tively, γRA,RA−�τl

and γRB ,RB+�τl
are the transfer inte-

gral between neighboring atoms, *τ1 = (0, 1/
√

3)a, *τ2 =
(−1/2, 1/2

√
3)a, and *τ3 =(1/2,−1/2

√
3)a. Let uA(RA)

and uB(RB) be a lattice displacement at A and B site,
respectively. Then the transfer integral between neigh-
boring atoms at RA and RA−*τl becomes

γRA,RA−�τl
= γ0 + δγ, (3.4)

with

δγ =
∂γ0(b)
∂b

[∣∣*τl+uA(RA)−uB(RA−*τl)
∣∣ − b

]
= −βγ0

b2
*τl ·

[
uA(RA)−uB(RA−*τl)

]
,

(3.5)

where b= |*τl|=a/
√

3 and

β = − b

γ0

∂γ0

∂b
= −d ln γ0

d ln b
. (3.6)

In the following we shall derive an effective-mass
equation following the procedure given in ref. 33. First,
we should note that for states in the vicinity of the Fermi
level ε=0 of the 2D graphite, the total wavefunction is
written as

ψA(RA) = a(RA)+FA(RA),
ψB(RB) = b(RB)+FB(RB),

(3.7)
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with

a(RA)+ = ( eiK·RA eiηeiK′·RA ) ,
b(RB)+ = (−ωeiηeiK·RB eiK′·RB ) ,

(3.8)

and

FA =
(
FK

A

FK′
A

)
, FB =

(
FK

B

FK′
B

)
, (3.9)

where FK
A , FK

B , FK′
A , and FK′

B are slowly-varying enve-
lope functions.

Introduce a smoothing function g(r) which varies
smoothly in the range |r|<∼ a and decays rapidly for |r|
a. It should satisfy the conditions:∑

RA

g(r−RA) =
∑
RB

g(r−RB) = 1, (3.10)

and ∫
dr g(r−RA) =

∫
dr g(r−RB) = Ω0, (3.11)

where Ω0 is the area of a unit cell given by Ω0 =
√

3a2/2.
The function g(r−R) can be replaced by a delta func-
tion when it is multiplied by a smooth function such as
envelopes, i.e., g(r−R)≈Ω0δ(r−R).

We substitute eq. (3.7) into eq. (3.3). Consider the
first of such equations. Multiply it by g(r−RA)a(RA)
and then sum it over RA. The term in the left hand side
becomes∑

RA

g(r−RA)a(Ra)εψA(RA) = ε

(
FK

A (r)
FK′

A (r)

)
. (3.12)

The term proportional to γ0 in the right hand side be-
comes

− γ0

∑
RA

g(r−RA)a(Ra)
∑

l

ψB(RA−*τl)

= γ

(
eiη(k̂x−ik̂y) 0

0 e−iη(k̂x+ik̂y)

) (
FK

B (r)
FK′

B (r)

)
,

(3.13)
Finally, the term proportional to δγ in the right hand
side of the first equation of eq. (3.3) is calculated as

βγ0

b2

∑
l

(−ωeiηe−iK·�τl 0
0 e−iηe−iK′·�τl

)

× *τl ·
[
uA(r)−uB(r−*τl)

]
FB(r),

(3.14)

where u(r) is the slowly-varying lattice displacement as
a function of the continuous valuable r.

Because uA(r)−uB(r−*τl) involves displacements
of different sublattices, it has a contribution of optical
modes as well as that of acoustic modes and in general
uA(r)−uB(r−*τl) �=u(r)−u(r−*τl). In the long-wavelength
limit, however, we can set∑

l

exp(−iK ·*τl)*τl ·
[
uA(r)−uB(r−*τl)

]
=κ

∑
l

exp(−iK ·*τl)*τl ·
[
u(r)−u(r−*τl)

]
=κ

∑
l

exp(−iK ·*τl)(*τl ·*∇)*τl ·u(r),

(3.15)

where κ is a constant. This κ depends on details of
a microscopic model of phonons and becomes κ ∼ 1/3,
smaller than unity, in a valence-force-field model34 as is
shown in §6. This reduction factor has been pointed out
independently by Woods and Mahan.35 We have κ=0 in
a model in which force constants only for change in the
distance between carbon atoms are nonzero as shown in
§6.

Now, we shall use the identity

∑
l

e−iK·�τl


 (τx

l )2

τx
l τ

y
l

(τy
l )2


 =

ω−1

4
a2


−1

−i
+1


 , (3.16)

and

∑
l

e−iK′·�τl


 (τx

l )2

τx
l τ

y
l

(τy
l )2


 =

1
4
a2


−1

+i
+1


 . (3.17)

Then, we have

3κβ
4

γ0


 eiη

( ∂

∂x
+i

∂

∂y

)(
ux+iuy

)
0

0 −e−iη
( ∂

∂x
−i

∂

∂y

)(
ux−iuy

)

 .

(3.18)
The above quantities are those in the coordinate sys-

tem fixed onto the graphite sheet and become in the co-
ordinate system defined in the nanotube

ux±iuy → e±iη(ux±iuy),
∂

∂x
±i

∂

∂y
→ e±iη

( ∂

∂x
±i

∂

∂y

)
,

k̂x± ik̂y → e±iη(k̂x± ik̂y).

(3.19)

Similar expressions can be obtained for FB and the effective-
mass equations in the presence of electron-phonon inter-
action become

HKF K(r) = εF K(r), HK′F K′
(r) = εF K′

(r).
(3.20)

The Hamiltonians become

HK = γ

(
0 k̂x−ik̂y

k̂x+ik̂y 0

)
+

(
V1 V2

V ∗
2 V1

)
,

HK′ = γ

(
0 k̂x+ik̂y

k̂x−ik̂y 0

)
+

(
V1 −V ∗

2

−V2 V1

)
,

(3.21)
with

V2 = g2e
3iη(uxx−uyy+2iuxy), (3.22)

where

g2 =
3κβ
4

γ0. (3.23)

In the above Hamiltonian the deformation potential has
also been included.

Usually, we have β∼2 for transfer integral between
p orbitals based on the correspondence between a tight-
binding model and a nearly-free-electron model with a
pseudopotential,34 and κ∼ 1/3, which give g2 ∼ γ0/2 or
g2 ∼ 1.5 eV. In ref. 36, β has been calculated to be 3.6,
which gives g2 =2.7 eV. This coupling constant is much
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smaller than the deformation potential constant g1∼30
eV.

IV. RESISTIVITY

In CN’s, the velocity of acoustic phonons is much
smaller than that of electrons and elastic-scattering ap-
proximation is applicable. Then, what should be consid-
ered is only a backward scattering between a right-going
state and a left-going state at the Fermi energy. The
wave function of states in the vicinity of the Fermi level
in metallic nanotubes is given by

F K
sk =

1√
AL

exp(iky)
∣∣∣s, k)

,

∣∣∣s, k)
=

1√
2

(−is(k/|k|)
1

)
,

(4.1)

where s = +1 for the conduction band and −1 for the
valence band, and k > 0 and k < 0 for the right- and
left-going wave, respectively. This wave function corre-
sponds to the state with the vanishing wave vector in
the circumference direction and therefore phonon modes
with n=0 can contribute to the scattering. The matrix
element of the backward scattering is given apart from
the spatial part by

(
s,−|k|

∣∣∣ ( V1 V2

V ∗
2 V1

) ∣∣∣s,+|k|
)

= −iReV2. (4.2)

This means that the diagonal deformation-potential term
does not contribute to the backward scattering as in the
case of impurities17,18 and only the real part of the much
smaller off-diagonal term contributes to the backward
scattering.

We have

ReV2 = g2[(uxx−uyy) cos 3η − 2uxy sin 3η]. (4.3)

In armchair nanotubes with η=π/6, we have

ReV2 = −2g2uxy, (4.4)

and only shear or twist waves contribute to the scatter-
ing. In zigzag nanotubes with η=0, on the other hand,

ReV2 = g2(uxx−uyy), (4.5)

and only stretching and breathing modes contribute to
the scattering.

In this study, we calculate resistivity which is de-
fined as the inverse of the Boltzmann conductivity σ =
4e2γτη/πh̄

2 within the relaxation time approximation,
where the factor 4 comes from the electron spin and the
degeneracy of K and K ′ points. The relaxation time τη

is given by

1
τη

=
2A
h̄γ

〈∣∣∣ 1
AL

∫
dxdy (ReV2)ei2ky

∣∣∣2〉
T

(4.6)

where 〈A[u]〉T denotes the thermal average of the func-
tional A[u] with regards to the phonon system. Because

cross terms ∝2uxy(uxx−uyy) vanish identically for modes
n=0, we have

1
τη

=
1
τA

sin2 3η +
1
τZ

cos2 3η, (4.7)

where τA and τZ are the relaxation time for an armchair
and zigzag CN with same R. This leads to

ρη(T ) = ρA(T ) sin2 3η + ρZ(T ) cos2 3η, (4.8)

where ρA and ρZ are the resistivity of an armchair and
zigzag CN.

In an armchair nanotube the breathing mode does
not contribute to the scattering and therefore we can
safely employ a high temperature approximation for the
phonon distribution function for a whole temperature
range and have

ρA(T ) =
h

e2

1
L

g2
2kBT

2γ2µ
, (4.9)

where kB is the Boltzmann constant. When a high-
temperature approximation is adopted for phonon dis-
tribution function, we have the equi-partition law〈∣∣∣ 1

AL

∫
dxdy(2uxy)ei2ky

∣∣∣2〉
T

=
〈∣∣∣ 1

AL

∫
dxdy(uxx−uyy)ei2ky

∣∣∣2〉
T
,

(4.10)

because (2uxy)2 and (uxx−uyy)2 are equivalent in the
Boltzmann weight if the small potential for curvature
change is neglected. Therefore, at temperatures much
higher than TB = h̄ωB/kB the resistivity of a zigzag nan-
otube becomes same as that of an armchair nanotube
with same R or L, i.e.,

ρZ(T ) = ρA(T ). (4.11)

Therefore, the resistivity of a CN becomes independent
of its chirality at high temperature.

Except in armchair nanotubes, the breathing mode
contributes to the scattering and their Bose-Einstein dis-
tribution starts to manifest itself at temperatures lower
than TB. At a low temperature where the breathing
mode does not contribute to the scattering and therefore
the resistivity of a zigzag nanotube becomes smaller than
that of an armchair nanotube with same radius, i.e.,

ρZ(T ) = ρA(T )
B

B+µ
= ρA(T )

λ+µ

λ+2µ
. (4.12)

Figure 4 shows calculated temperature derivative of
the resistivity. Because of the small coupling constant
g2 the absolute value of the resistivity is much smaller
than that in bulk 2D graphite dominated by much larger
deformation-potential scattering. The resistivity of an
armchair CN is same as that obtained previously except
that κ=1 has been assumed in the expression of g2.37

The mean free path Λ at high temperature is given
by

Λ =
µa2

3kBTκ2β2
L. (4.13)

Using the parameters in this study, we obtain Λ∼ L ×
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6 × 102 at room temperature. The mean free path is
larger than 1 µm for thin (10,10) armchair nanotubes
and increases in proportion to L with the increase of
L. This strongly supports the fact that a metallic CN
becomes a one-dimensional ballistic conductor even at
room temperature.

Doped semiconducting CN’s can also show metallic
behavior, but they have large resistivity dependent on
the Fermi energy. The electron density per unit length
ne determines the Fermi wavenumber as

kF =
πne

4
. (4.14)

For the reason of particle-hole symmetry, the Fermi en-
ergy is assumed to be positive in this paper. The corre-
sponding Fermi velocity is given by

vF =
∣∣∣∂εs(k)
h̄∂k

∣∣∣
kF

=
γ

h̄

3kFR√
1 + (3kFR)2

, (4.15)

as long as the Fermi level lies in the lowest conduction
band. In contrast to metallic CN’s, the diagonal defor-
mation potential g1 causes electron scattering in semi-
conducting CN’s.

Figure 5 shows resistivity of semiconducting CN’s
for systems with different ratio of g1 to g2 in units of the
resistivity of an armchair CN which is always metallic.
At small kFR, resistivity scales as (kFR)−2 as shown in
Fig. 5. This originates from the fact that the resistiv-
ity is inversely proportional to the square of the Fermi
velocity vF (proportional to kFR for small kFR). As
kFR increases, the dispersion of semiconducting CN’s
approaches that of metallic CN’s and so does the wave-
function. Accordingly, the electron scattering due to the
deformation potential becomes smaller with kFR. How-
ever, the result for g1/g2=10 shows that the deformation
potential dominates resistivity and off-diagonal potential
g2 can be neglected completely even if electrons are heav-
ily doped up to the bottom of the next subband.

When we consider only a single band around a Fer-
mi point, kFR should be less than 1 for a metallic CN,
and 1/

√
3 for a semiconducting CN. For larger kFR, it

is necessary to solve the Boltzmann transport equation
taking scattering between subbands into account.38 For
CN’s with electron-phonon scattering, the increase of the
number of conducting modes gives no enhancement of
electronic conduction within the Boltzmann transport
theory, because the inter-subband scattering becomes
increasingly important than the number of conducting
modes. This is the case with the impurity scattering as
shown in ref. 38.

V. POSITIVE MAGNETORESISTANCE
In the presence of a magnetic field H perpendicular

to the tube axis as shown in Fig. 1, we can use the gauge

A =
(
0,

LH

2π
sin

2πx
L

)
, (5.1)

and the effective field for electrons in a CN is given by

the component perpendicular to the surface, i.e.,

H(x) = H cos
(2πx

L

)
. (5.2)

The parameter characterizing its strength is given by

α =
( L

2πl

)2

, (5.3)

where l is the magnetic length defined by l=
√
ch̄/eH.

In the case α� 1, the field can be regarded as a small
perturbation, while in the case α1, Landau levels are
formed on the cylinder surface. Now, plane waves in
a circumference direction are not eigenstates and wave
functions around the K point are written as

F K
sk =

1√
2A

(
FKA

sk (x)
FKB

sk (x)

)
exp(iky). (5.4)

where s = +1 and −1 for the conduction and valence
band, respectively.

The energy levels and wavefunctions are analytically
obtained for ε=0.39

FKA
sk (x) = −is(k/|k|)F−(x),

FKB
sk (x) = F+(x),

(5.5)

with

F±(x) =
1√

LI0(2α)
exp

(
± α cos

2πx
L

)
, (5.6)

where I0(z) is the modified Bessel function of the first
kind defined as

I0(z) =
∫ π

0

dθ

π
exp(z cos θ). (5.7)

The corresponding eigenenergies are given by εs(k) =
sγ|k|/I0(2α), which gives the group velocity v=γ/h̄I0(2α),
and the density of states D(0)=I0(2α)/πγ.

We should note that

I0(2α) ≈
{

1 + α2 + · · · (α�1) ,
e2α/

√
4πα (α1) .

(5.8)

This means that the group velocity for states at ε = 0
decreases and consequently the density of states increases
exponentially with the increase of the magnetic field in
the high-field regime. In high magnetic fields (α 1),
F−(x) is localized around x=±L/2, i.e., at the bottom
side of the cylinder and F+(x) is localized around the
top side x= 0. The wavefunction for the K ′ point can
be obtained in a similar manner.

In the presence of magnetic fields, V1 and ImV2 al-
so contribute to the matrix element of electron-phonon
scattering and, as a result, to the relaxation time. In
this section, we consider high temperature and neglect
the potential for curvature change. In this case, the re-
laxation time and the resistivity become independent of
the chirality. The relaxation time is given by

1
τ

=
kBT

h̄2vF

[g2
1

B

∫
dx

∣∣FKA
s,−kF

(x)∗FKA
s,kF

(x)+FKB
s,−kF

(x)∗FKB
s,kF

(x)
∣∣2
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+2
g2
2

µ

∫
dx

(∣∣FKA
s,−kF

(x)∗FKB
s,kF

(x)
∣∣2 +

∣∣FKB
s,−kF

(x)∗FKA
s,kF

(x)
∣∣2)]

. (5.9)

At εF =0, after analytical solutions are substituted
into the above, we obtain

ρ(H) =
h

8e2

2kBT

γ2L

[g2
1

B

(
I0(4α) − 1

)
+ 2

g2
2

µ

]
. (5.10)

The rapidly increasing function I0(4α) with regards to
the magnetic field clearly shows that huge magnetoresis-
tance is induced by the diagonal electron-phonon scat-
tering potential g1. For the system with nonzero doping
(kFR>0), wavefunctions are numerically solved.

Figure 6 shows resistivity ρ(H) determined by the
diagonal potential g1. Electrons are not backscattered at
all in the absence of a magnetic field but this absence of
backscattering disappears in magnetic fields, leading to
the huge positive magnetoresistance. This is understood
by the analogy with the scattering by the long-range
impurity potential.17 This magnetoresistance decreases
with the increase of the doping.

On the other hand, the resistivity due to the off-
diagonal interaction g2 is independent of the magnetic
field without doping (kFR=0) as shown in Fig. 7. With
the increase of the doping, it starts to exhibit a negative
magnetoresistance. The reduction of scattering in mag-
netic fields for nonzero kF for both g1 and g2 is caused by
the change of the wavefunction at nonzero kF resulting
in the decrease of overlap between the initial and final
states.39,38

In a realistic system, g1 is much larger than g2 as
mentioned in §3. Figure 8 shows the total magnetoresis-
tance for g1/g2=10 in a low magnetic field regime. The
large positive magnetoresistance is apparent particularly
for kFR=0 and decreases gradually with the increase of
kFR.

This behavior in a low magnetic field is understood
from the perturbative expansion in terms of small α =
(R/l)2. Wavefunctions are obtained up to the second
order of α and magnetoresistance is given by

ρ(H) − ρ0

ρ0
= 2

[ µ
B

(g1

g2

)2 − 4(kFR)2
]
α2. (5.11)

Thus, the magnetoresistance decreases as the doping in-
creases because a small negative magnetoresistance ap-
pears for nonzero kFR for the component determined by
g2.

Within the high-temperature approximation, the mag-
netoresistance due to the phonon scattering is indepen-
dent of temperature. However, because the deforma-
tion potential is generated by stretching and breathing
modes, the magnetoresistance becomes dependent on tem-
perature at temperatures comparable to or lower than
TB. This will not be discussed further.

The huge positive magnetoresistance predicted here
can be observed experimentally in multi-wall CN’s. For
example, the condition α = (R/l)2 = 0.25 is realized in
outer shells of the multi-wall CN with R = 26 Å when
H = 25 T. Then, the magnetoresistance reaches about

∆ρ/ρ0 ∼ 1.0 at H = 10 T and ∆ρ/ρ0 ∼ 6.7 at H = 25
T. For a (10,10) nanotube with R=6.79Å, we have α=
(R/l)2 =1.7×10−2 even at H = 25 T and therefore the
magnetoresistance remains almost negligible.

Figure 9 shows magnetoresistance of semiconduct-
ing CN’s with

√
3kFR=0.1, 0.5, and 1.0. Doped semi-

conducting CN’s show positive magnetoresistance which
slightly depends on kFR. Clearly, it is much smaller
than that of metallic CN’s given by the thin line in Fig.
9. This is because the deformation potential scatters
electrons in semiconducting CN’s even without magnet-
ic fields as mentioned in the previous section, and the
magnetic field does not cause such drastic change of s-
cattering as in metallic CN’s.

VI. MICROSCOPIC PHONON MODELS

A. Valence-Force-Field Model

In this section, we derive a continuum model for
long-wavelength phonons of a two-dimensional graphite
sheet based on a valence-force-field model. For a graphite
sheet, in-plane and out-of-plane modes are decoupled.
For in-plane modes, two force constants are introduced
for restoring forces to bond-stretching and bond-angle
change in the simplest approximation.40,35

The equations of motion are given by

MΩ0ω(k)2U(k) = Hph(k)U(k), (6.1)

with

U(k) =




ux
A(k)

uy
A(k)

ux
B(k)

uy
B(k)


 . (6.2)

Here, the dynamical matrix is given by

Hph(k) = Hbs(k) +Hba(k), (6.3)

with

Hbs(k) = K1




3
2 0 h1(k) h2(k)
0 3

2 h2(k) h3(k)
h1(k)∗ h2(k)∗ 3

2 0
h2(k)∗ h3(k)∗ 0 3

2


 ,

(6.4)
and

Hba(k) = K2




h4(k) h5(k) 6h3(k) 2
√

3h2(k)∗

h5(k)∗ h6(k) 2
√

3h2(k)∗ 6h1(k)
6h3(k)∗ 2

√
3h2(k) h4(k) h5(k)

2
√

3h2(k) 6h1(k)∗ h5(k)∗ h6(k)


,

(6.5)
where K1 and K2 are force constants for bond stretching
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and bond-angle change, respectively, and

h1(k) = −3
2
eikya/2

√
3 cos

kxa

2
,

h2(k) = −i
√

3
2
eikya/2

√
3 sin

kxa

2
,

h3(k) = −eikya/
√

3 − 1
2
eikya/2

√
3 cos

kxa

2
,

h4(k) = 7 + sin2 kxa

2
+ 2 cos

kxa

2
cos

√
3

2
kya,

h5(k) = −
√

3ie
√

3ikya/2 sin
kxa

2
+ i

√
3

2
sin kxa,

h6(k) = 9− 3 sin2 kxa

2
,

(6.6)

We expand this matrix Hph(k) in terms of kxa and

kya as follows

Hph(k) = H(0) +H(1) +H(2) + · · · ,
with

H(0) =
3
2
(K1 + 6K2)




1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1


 , (6.7)

H(1) = i

√
3

4
(K1 − 6K2)a




0 0 −ky −kx

0 0 −kx ky

ky kx 0 0
kx −ky 0 0


 ,

(6.8)
and

H(2) = K1a
2




0 0 (1/16)(3k2
x+k2

y) (1/8)kxky

0 0 (1/8)kxky (1/16)(k2
x+3k2

y)
(1/16)(3k2

x+k2
y) (1/8)kxky 0 0

(1/8)kxky (1/16)(k2
x+3k2

y) 0 0




+K2a
2




−(3/4)k2
y (3/4)kxky (3/8)(k2

x+3k2
y) −(3/4)kxky

(3/4)kxky −(3/4)k2
x −(3/4)kxky (3/8)(3k2

x+k2
y)

(3/8)(k2
x+3k2

y) −(3/4)kxky −(3/4)k2
y (3/4)kxky

−(3/4)kxky (3/8)(3k2
x+k2

y) (3/4)kxky −(3/4)k2
x


 . (6.9)

We solve the eigenvalue problem with the perturbative expansion in the long wavelength limit. Then, the following
variables u(r)=(ux, uy) and v(r)=(vx, vy) enable to treat acoustic and optical phonons separately,

ux =
1√
2
(ux

A + ux
B) − κ′a

1√
2

[ ∂

∂y
(ux

A − ux
B) +

∂

∂x
(uy

A − uy
B)

]
+ · · · ,

uy =
1√
2
(uy

A + uy
B) − κ′a

1√
2

[ ∂

∂x
(ux

A − ux
B) − ∂

∂y
(uy

A − uy
B)

]
+ · · · ,

vx =
1√
2
(ux

A − ux
B) − κ′a

1√
2

[ ∂

∂y
(ux

A + ux
B) +

∂

∂x
(uy

A + uy
B)

]
+ · · · ,

vy =
1√
2
(uy

A − uy
B) − κ′a

1√
2

[ ∂

∂x
(ux

A + ux
B) − ∂

∂y
(uy

A + uy
B)

]
+ · · · ,

(6.10)

with

κ′ =
K1 − 6K2

4
√

3(K1 + 6K2)
. (6.11)

This linear transformation gives two sets of eigen-equations up to the second order of wavenumbers,

MΩ0ω(k)2u(k) = Hac(k)u(k),

MΩ0ω(k)2v(k) = Hop(k)v(k),
(6.12)

with

Hac =
1
8
K1a

2

(
k2

x kxky

kykx k2
y

)
+

3
2

K1K2

K1 + 6K2
a2

(
k2

x + k2
y 0

0 k2
x + k2

y

)
, (6.13)

and

Hop = 3(K1 + 6K2)
(

1 0
0 1

)
+

(
− 1

8
K1 +

3
2
K2

)
a2

(
k2

x kxky

kykx k2
y

)

− 3
2
K1 + 3K2

K1 + 6K2
K2a

2

(
k2

x + k2
y 0

0 k2
x + k2

y

)
.

(6.14)

In a real-space representation, we obtain the potential-energy functional for u(r) which is given by eq. (2.1) with
strains defined as eq. (2.2). Lamé constants are defined as

λ =
1

4
√

3
K1 − 6K2

K1 + 6K2
K1,

µ =
√

3
K1K2

K1 + 6K2
.

(6.15)
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B. Electron-Phonon Interaction

As shown in §3, there appears uA(r)−uB(r−*τl) in electron-phonon interaction. According to the valence-
force-field model in the previous subsection, the variable u(r) describing the effective displacement of acoustic modes
includes not only the center-of-mass motion between atoms at different sublattices but also their relative displacement.
Solving eq. (6.10) inversely, we obtain

ux
A =

1√
2
(ux + vx) + κ′a

1√
2

[ ∂

∂y
(ux + vx) +

∂

∂x
(uy + vy)

]
+ · · · ,

uy
A =

1√
2
(uy + vy) + κ′a

1√
2

[ ∂

∂x
(ux + vx) − ∂

∂y
(uy + vy)

]
+ · · · ,

ux
B =

1√
2
(ux − vx) − κ′a

1√
2

[ ∂

∂y
(ux − vx) +

∂

∂x
(uy − vy)

]
+ · · · ,

uy
B =

1√
2
(uy − vy) − κ′a

1√
2

[ ∂

∂x
(ux − vx) − ∂

∂y
(uy − vy)

]
+ · · · ,

(6.16)

and, retaining only contributions from acoustic modes,

ux
A(r) − ux

B(r−*τl) =
1√
2
(*τl · *∇)ux +

√
2κ′a

(∂ux

∂y
+

∂uy

∂x

)
+ · · · ,

uy
A(r) − uy

B(r−*τl) =
1√
2
(*τl · *∇)uy +

√
2κ′a

(∂ux

∂x
− ∂uy

∂y

)
+ · · · .

(6.17)

We have κ=1/
√

2 when only the first terms in the right hand side are taken into consideration. The second terms
make the following contribution to the electron-phonon interaction around the K point

− βγ0

b2
ωeiη

√
2κ′a

∑
l

e−iK·�τl [2τx
l uxy + τy

l (uxx − uyy)]

= −3

√
3
2
βγ0e

iηκ′[(uxx − uyy) + i2uxy

]
,

(6.18)

which gives nothing but a correction to κ. Therefore, eq.
(3.15) is justified and κ is given by

κ =
1√
2
− 4

√
3
2
κ′ =

1√
2

12K2

K1 + 6K2
. (6.19)

Note that this is proportional to the force constant for
bond-angle change and therefore electron-phonon inter-
action vanishes without restoring force to bond-angle
change. This is the case with models containing more
force constants as long as restoring force between atom
pairs for radial displacement are considered and force
constants involving three or more atoms are completely
neglected.

C. Parameter Estimation

In our model, there exist two parameters for in-plane
modes of acoustic phonons. What is necessary for our
continuum elastic model are two elastic constants B and
µ, and it is of no importance which microscopic model is
originally adopted unless optical phonons are concerned.
Such parameters of nanotubes have not yet been settled
by existing studies. They can also be determined by the
velocity of twisting and stretching modes. However, the
sound velocity of such modes has not not been obtained
experimentally and has not uniquely been fixed theoret-
ically, either. Therefore, it seems to be a good idea to
use the data of graphites because our elastic model for
nanotubes is based on that for graphite sheets.

By neglecting inter-layer interactions, we adopt the

following parameters for bulk graphites:41

B/M = 2.90× 108 m2/s2,

µ/M = 1.51× 108 m2/s2,

Ξ/M = 6.19× 106 m2/s2.

(6.20)

Within this model the parameter κ is also given by the
above elastic constants,

κ =
1√
2
µ

B
= 0.369. (6.21)

As has been mentioned in the previous subsection,
this κ cannot be determined by the elastic theory alone
but depends on the original valence-force-field model.
Nonetheless, eq. (6.19) is approximately valid for mod-
els containing higher-order interactions because there is
no correction from the bond-stretching and bond-angle
change for the second-nearest-neighbor atoms at the same
sublattice. In fact, we have K2/K1 = 0.0565 and, as
a result, κ = 0.358 in the model of ref. 42 in which
more force constants were introduced than the present
two-parameter valence-force-field model. Therefore, our
choice κ∼1/3 is likely to be quite reasonable.

An extensive study for phonons of a single graphite
sheet has been given by ref. 43 and the same model with
small corrections due to the curvature has been used to
calculate the phonon dispersion of nanotubes.31 Howev-
er, the obtained sound velocities are not compatible with
the elastic model because they give a negative Poisson
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ratio which is highly improbable.

VII. DISCUSSION

There exist several theoretical studies on the dis-
persion relation of phonons in a CN with small radius
though its experimental observation is still difficult. Our
continuum effective model for acoustic phonons demon-
strates the breathing mode with the energy proportional
toR−1 and the existence of four zero modes which cannot
be reproduced by the zone-folding method to phonon-
s of a graphite sheet. There is a R−2 correction to the
breathing mode from the potential term due to curvature
change, but it is very small even for the (10,10) armchair
CN and negligible for CN’s with large radius. These re-
sults agree with those of the pioneering study in ref. 31.
The energy of the lowest Raman-active mode has been
predicted in ref. 31 to be almost proportional to R−2.
This corresponds to the modes at qR = 0 and n = ±2
with frequency ω/ωB ≈0.12 for the (10,10) armchair C-
N in Fig. 4(b). This nonzero frequency originates from
the potential for curvature change and therefore scales as
R−2, and the absolute value of the frequency also shows
a good agreement.

As mentioned in §2, the dispersion of the bending
modes is proportional to q2 in contrast to the result of
ref. 31. This q2 dispersion is consistent with the elastic
theory for bending of cylinders,29 more recent results of
ab initio calculations,44 and results of a lattice-dynamical
model.45

There are only a few experimental studies report-
ing normal metallic behavior of temperature dependence
of CN’s.46 With the present experimental technique it
seems quite difficult to measure the resistivity of one
metallic single-walled CN for which the chirality is i-
dentified. The resistivity of samples containing various
CN’s shows the temperature dependence of metallic nan-
otubes reflecting the distribution of chirality as long as
Ohmic contact is realized because semiconducting nan-
otubes with large resistivity make little contributions to
electron transport in such samples.

It should be noted that two-dimensional lattice is
thermodynamically unstable.47 For example, 〈u2

x〉T is di-
vergent though 〈(∂ux/∂x)2〉T has a finite value. There-
fore, we should consider some environments with three-
dimensionality or a finite tube length to cut off such a
divergence. In fact, CN’s usually form bundles, mats,
and so on. A single CN used in experiments always has
a finite length and is put on a certain substrate material
or attached to a metallic contact. These effects may dras-
tically change phonon modes with small wavenumber. It
is possible that electron-phonon scattering in a CN with
εF ∼ 0 shows singular behavior. Clarification of such
effects is left for a future study.

VIII. SUMMARY AND CONCLUSION

We have studied electron-phonon scattering in metal-
lic CN’s. A continuum elastic model with only three
constants has been proposed for long-wavelength acous-
tic modes playing a major role in electron-phonon scat-
tering. Electron-phonon interaction has been derived

based on the effective-mass theory for conducting elec-
trons. The conventional diagonal deformation potential
does not contribute to backward scattering and there-
fore gives rise to no resistance in metallic nanotubes in
the absence of a magnetic field. Therefore, we have to
consider a small and chirality-dependent off-diagonal po-
tential due to local modification of band structure.

In metallic CN’s, only the off-diagonal potential s-
catters electrons in the absence of a magnetic field. For
armchair CN’s, only a twisting mode causes scattering.
On the other hand, stretching and breathing modes con-
tribute to scattering for zigzag CN’s, At high temper-
ature, contribution from both modes in a zigzag CN is
equal to that from a twisting mode in an armchair CN.
The breathing mode with finite energy gap is hardly ex-
cited and causes little scattering at temperatures lower
than its energy. As a result the resistivity of a metallic
CN is dependent on the chirality.

In a magnetic field electron scattering is induced
even in metallic CN’s by the diagonal deformation poten-
tial which is much larger than the off-diagonal potential,
leading to a huge positive magnetoresistance. This can
be observed easily in a metallic CN with large radius.
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Figure Captions

Fig. 1. The lattice structure of a 2D graphite. A unit
cell contains two carbon atoms denoted as A and
B and two primitive translation vectors are denoted
as a and b. The coordinate system (x, y) is chosen
in such a way that the y axis is along the tube axis
and the x axis is along the circumference. The chi-
ral vector corresponding to a circumference of the
tube is denoted as L and the chiral angle η is that
between the chiral vector and the x axis fixed on the
2D graphite.

Fig. 2. Some examples of deformation of the cross sec-
tion of CN with n=0, ±1, and ±2.

Fig. 3. Frequencies of phonons for the (10,10) armchair
CN obtained in the continuum model. (a) Without
out-of-plane curvature effect and (b) with out-of-
plane curvature effect.

Fig. 4. Temperature derivative of resistivity of armchair
(solid line), chiral (dotted line), and zigzag (broken
line) nanotubes in units of dρA(TB)/dT which is the
temperature derivative of resistivity of the armchair
nanotube at T = TB, and TB denotes the tempera-
ture of the breathing mode, TB = h̄ωB/kB.

Fig. 5. Electron-density dependence of resistivity for
semiconducting CN’s with g1/g2 = 10 (solid line),
5 (dotted line), and 1 (broken line) in units of ρA

denoting the resistivity of an armchair CN which is
independent of electron density (thin solid line).

Fig. 6. Resistivity with a fixed electron density in mag-
netic fields determined by the diagonal deformation
potential. The unit ρg1 is defined so that ρ(H) be-
comes ρg1[I0(4α)−1] for kFR = 0 as given in eq.
(5.10).

Fig. 7. Resistivity with a fixed electron density in mag-
netic fields determined by the off-diagonal term. The
unit ρ0 is the resistivity at H=0.

Fig. 8. Calculated magnetoresistance in a low-magnetic-
field region.

Fig. 9. Magnetoresistance of semiconducting CN’s with√
3kFR=0.1 (solid line), 0.5 (dotted line), and 1.0

(broken line). The thin solid line shows magnetore-
sistance of an armchair CN with

√
3kFR=1.
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