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The development of a general theoretical framework for
describing the behaviour of a crystal driven far from
equilibrium has proved difficult1. Microfluidic crystals,

formed by the introduction of droplets of immiscible fluid into
a liquid-filled channel, provide a convenient means to explore
and develop models to describe non-equilibrium dynamics2–11.
Owing to the fact that these systems operate at low Reynolds
number (Re), in which viscous dissipation of energy dominates
inertial effects, vibrations are expected to be over-damped and
contribute little to their dynamics12–14. Against such expectations,
we report the emergence of collective normal vibrational
modes (equivalent to acoustic ‘phonons’) in a one-dimensional
microfluidic crystal of water-in-oil droplets at Re ∼ 10−4. These
phonons propagate at an ultra-low sound velocity of ∼100μm s−1

and frequencies of a few hertz, exhibit unusual dispersion
relations markedly different to those of harmonic crystals,
and give rise to a variety of crystal instabilities that could
have implications for the design of commercial microfluidic
systems. First-principles theory shows that these phonons are
an outcome of the symmetry-breaking flow field that induces
long-range inter-droplet interactions, similar in nature to
those observed in many other systems including dusty plasma
crystals15,16, vortices in superconductors17,18, active membranes19

and nucleoprotein filaments20.
To investigate many-body effects of one-dimensional (1D)

hydrodynamic crystals, we built a microfluidic water-in-oil
droplet generator2 (Fig. 1a, Methods section and Supplementary
Information, Movie S1). Water droplets formed at a T-junction
between water and oil channels under continuous flow, emanating
at a constant rate with uniform radii R (10–15 μm) and fixed inter-
droplet distances a (10–200 μm). The thin channel (h = 10 μm)
deformed the droplets into discs, confining their motion to
2D and exerting friction with the floor and ceiling (Fig. 1b).
Owing to friction, the droplets were dragged by the oil at a
velocity ud (150−800 μm s−1) that was slower than that of the
oil (uoil ∼ 5ud). Symmetry was broken by the relative motion of
the oil with respect to the droplet crystal. Thus, we obtained a
flowing 1D crystal of droplets that can move in 2D. The crystal
exhibited visible longitudinal and transversal fluctuations, which
were reminiscent of solid-state phonons (we henceforth term
these normal modes ‘phonons’) (Fig. 1c,d and Supplementary

Information, Movies S2–S4). We explored these modes by
measuring their wave dispersion relations (Fig. 1e–h). This was
done by tracking the positions of droplets in time and applying
a Fourier transform to obtain the power spectrum of vibrations
in terms of the wavevector k and frequency ω (see the Methods
section). We then extracted the dispersion relations of waves in the
crystal, ω(k).

Surprisingly, the dispersion relations reveal the existence of
acoustic phonons that propagate in the crystal at ultra-low
frequencies of a few hertz. Manifestly, at Re∼10−4, collective modes
at such low frequencies cannot arise from inertial effects and are
likely to be due to hydrodynamic interactions within the crystal.
The main feature of the dispersion is an unusual sine-like curve that
spans the Brillouin zone (0 ≤ k ≤ π/a) and has unique properties
(Fig. 1). The linear behaviour of the curve ω(k) = Csk around
k = 0 shows that these waves are acoustic and propagate at a sound
velocity of Cs = (∂ω/∂k)k→0 ≈ 250 μm s−1. This velocity is some
six orders of magnitude slower than sound in common liquids.
Close to the edge of the Brillouin zone, k =π/a, the acoustic waves
travel in the opposite direction at a velocity −Cs/2, with a crossover
between positive and negative group velocities. The longitudinal
(Fig. 1e,g) and transversal (Fig. 1f,h) modes are identical in form
and magnitude but travel in opposite directions ωy(k) = −ωx(k).
Dispersion of modes in the hydrodynamic crystal of droplets is
markedly different from that of a harmonic crystal, where each
wavevector has both symmetric forward and backward waves,
ω(k) = ω(−k), with standing waves at the edge of the Brillouin
zone. In the hydrodynamic crystal, this symmetry is broken by the
flow field of the oil such that waves travel only in one direction
per wavevector. In addition, a standing wave appears at the group-
velocity crossover point within the Brillouin zone. A secondary
feature of ω(k) is a straight line, ω = −udk, where ud is the
velocity of droplets relative to the channel. This simply stems from
droplet deflections owing to stationary defects along the channel
that appear as if moving backwards at −ud, as the camera is moving
in frame with the droplets. As we now explain theoretically, the
unusual dispersion of the moving crystal arises from hydrodynamic
interactions between droplets induced by the symmetry-breaking
flow field.

The motion of each droplet perturbs the flow of the
surrounding oil. This perturbation affects the other droplets in
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Figure 1 Phonons in a 1D crystal of droplets. a, A microfluidic device for generating a 1D flowing crystal of water-in-oil droplets. Uniform droplets form at the T-junction
between water and oil (+surfactant) channels. The channel height was 10μm. The width was 35μm at the T-junction and 250μm along the output channel. b, A droplet as
a rigid disc between two plates, h apart. Oil flows along the x direction. The velocity profile is parabolic along the z direction and a potential flow in the xy plane. c,d, Images
of transversal (c) and longitudinal (d) acoustic waves. Fabrication defects seemed to increase the amplitude of oscillations. e,f, Intensity plots of the logarithm of the power
spectrum of longitudinal (e) and transversal (f) waves as a function of wavevector and frequency (k,ω ). We show negative values of ω in order to reflect the broken
symmetry. Crystal spacing was a= 27μm, droplet radius R= 10μm, droplet velocity ud = 360μm s−1 and oil velocity uoil = 1,730μm s−1. g,h, The dispersion relations,
ω (k ), for longitudinal (g) and transverse (h) waves, are the peaks of the power spectrum (blue dots) showing two branches. (1) A skewed sine-like curve is due to the
hydrodynamic interaction between droplets. The red line marks the theoretical result without adjustable parameters. (2) A straight line ω (k ) = −udk (black) corresponds to
droplet deflections owing to relative motion of defects. All scale bars are 100μm.
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Figure 2 Flow and hydrodynamic interactions between droplets. a, Streamlines
of the flow around a single droplet. The direction of the oil flow is indicated by white
arrows. The orange lines show the dipole velocity field ∇φd. b, Interaction between
droplets (bold arrows): the drag forces exerted on the middle droplet by its two
neighbours. Force is directed along the corresponding dipole field, F∝ ∇φd. c, In
the absence of fluctuations, all interaction forces are directed opposite to the oil
velocity. d, The ‘peloton effect’: a measurement of the velocity of droplets as a
function of crystal spacing a (red circles), for u∞

oil ≈ 1,090μm s−1. The isolated
droplet velocity was u∞

d ≈ 295μm s−1 and the deduced friction coefficient
μ ≈ 24 mg s−1. The solid line shows the theoretical results with no
adjustable parameters.

the crystal and thus mediates hydrodynamic interaction13. As the
droplet is a thin disc (Fig. 2a), the flow around it is that of the
Hele–Shaw cell21,22: the flow is decomposed into a Poiseuille-like

parabolic profile along the z axis14, and a potential flow in the
xy plane, such that the potential satisfies the Laplace equation. By
demanding zero mass flux through the edge of the droplet21, we
find that the potential φ(r) the droplet induces is that of a two-
dimensional dipole22–25:

φd(r) = R2
(
u∞

oil −ud

) rx̂

r2
,

where u∞
oil is the oil velocity far from the droplet and r is the

displacement from the centre of the droplet (see Fig. 2a). We
visualized the oil streamlines u∞

oil x̂ +∇φd with fluorescent micro-
beads and superimposed on them the dipole velocity field ∇φd

(Fig. 2a). Droplets interact with each other through the drag force13,
which is directed along the dipole velocity field (Fig. 2b). The
drag that the jth droplet exerts on the ith droplet is given by
ξd∇φd(ri −rj), a long-range force22–24 that scales as r−2, with a drag
coefficient ξd 	 8πηR2/h (η is oil viscosity). The potential of the
crystal, as a dipole chain26, is approximated by superposition of
the single-droplet potentials φ(r) = u∞

oilrx̂ +∑
j φd(r − rj), where

the droplets are located in their crystal positions rj = jax̂. In these
positions, droplets apply forces on each other that are all directed
opposite to the oil velocity and do not cancel out (Fig. 2c). This is
in contrast to harmonic crystals, where particles have equilibrium
positions at which there is no net force.

Besides the drag force, the droplets are subject to a force of
friction with the channel floor and ceiling. The friction induces
a treadmill flow inside the droplet4 and thus dissipates energy at
a rate ε̇ ∼ η

∫
(∇v)2dV , where v is the water velocity inside the

droplet and V is the droplet’s volume14. If the flow pattern inside
the droplet does not vary much and the only dependence on the
droplet velocity is via scaling of the magnitude of v(r) ∼ ud, the
dissipation rate is proportional to u2

d, ε̇ = μu2
d, where μ is the

friction coefficient. By equating the work done by the friction force,
Ffud, to the dissipation rate, we find that the friction is proportional
to the droplet velocity, Ff = μud. This phenomenological law is
verified by the measured dispersion relations and drag reduction
reported below.

As inertia is negligible, drag and friction must balance out:
μud = ξd(uoil − ud), where uoil is the velocity of oil at the droplet’s
position. This gives ud = (1+μ/ξd)

−1uoil = (u∞
d /u∞

oil)uoil, in which
we calibrated the drag and friction coefficients on an isolated
droplet flowing at velocity u∞

d . The equation of motion of the nth
droplet is, therefore: ṙn = (u∞

d /u∞
oil)

∑
j 
=n ∇φd(rn −rj). Expanding

in small deviations from crystal positions (xn,yn) � a, we find the
wave equations of the crystal:

ẋn = (3Cs/π
2a)

∞∑
j=1

(xn+j −xn−j)/j3

ẏn = −(3Cs/π
2a)

∞∑
j=1

(yn+j − yn−j)/j3
(1)

with the sound velocity Cs 	 (2π2/3)(u∞
d /u∞

oil)(u∞
oil −u∞

d )(R2/a2).
The ultra-low sound velocity reflects the compressibility of the
crystal and is set by the relative velocity of droplets with respect
to the oil. For long wavelengths, equations (1) reduce to simple
first-order wave equations ∂xn/∂t ≈ Cs∂xn/∂x and ∂yn/∂t ≈
−Cs∂yn/∂x. Long-wavelength longitudinal modes move opposite
to the flow, whereas transversal ones move with the flow, both at
Cs. Substituting a plane wave in (1) gives the dispersion relations of
phonons in the crystal:

ωx(k) = −6Cs

π2a

∞∑
j=1

sin(jka)

j3
;ωy(k) = −ωx(k).

These dispersion relations are plotted along with the experimentally
measured ones showing excellent agreement without any adjustable

nature physics VOL 2 NOVEMBER 2006 www.nature.com/naturephysics 745

Untitled-1   3 20/10/06, 4:36:53 pm

Nature  Publishing Group ©2006



LETTERS

a

b

d

e

c

Figure 3 Waves arise from dipole-like hydrodynamic interactions.
a, Subsequent snapshots following a pack of nine droplets—a longitudinal travelling
wave propagating opposite to the velocity of oil (black arrows). The scale bars are
50μm. b,c, Nearest-neighbour interactions along the transversal
direction—transversal forces on the middle droplet cancel out (b), or add up (c),
depending on the triplet configuration. d,e, A triangle-like transversal wave
propagating along the velocity of oil. The three snapshots (e) following a pack of
seven droplets show the propagation of the peak (marked by an arrow). In (d), the
right edge of the triangle moves up and the left edge moves down. As a result, the
peak moves to the right—a travelling wave.

parameters (Fig. 1g,h). The peculiar properties of the dispersion
relations noted above are a result of the symmetry-breaking
flow field. In particular, the skewness of the sine-like dispersion

curve stems from the summation over interactions with distant
neighbours. This proves that the hydrodynamic interactions are
truly long range, extending over hundreds of micrometres. We note
that the acoustic phonons reported here are absent from 1D systems
with inertial forces and a trapping potential, where a non-acoustic
‘sloshing’ mode appears at k → 0. Such systems include colloid
particles trapped within laser beams27,28 and dusty plasma particles
trapped by a static electric field29.

A peculiar consequence of the hydrodynamic interactions
is that, even in the absence of vibrations, the crystal flow
velocity depends on its spacing (Fig. 2d). This effect is quantified
by summing the forces acting on a droplet owing to the
flow field of all the other droplets in the crystal, ud =
(1+μ/ξd)

−1(u∞
oil x̂ +∑

j ∇φd(r−rj)). We find that ud(a) increases
with a as: ud(a) = u∞

d (1+ (π2/3)(R/a)2(u∞
oil −u∞

d )/u∞
oil)

−1.
Hence, with respect to the oil, the crystal moves faster as a
decreases, a result known as collective drag reduction. This is
similar to sedimenting particles as well as to a pack of cyclists
(peloton), where riding closely helps them to reduce drag and
ride faster. This ‘peloton effect’ provides an intuitive explanation
for longitudinal travelling waves. Consider a crystal in which a
pack of droplets are more densely spaced than the remaining
crystal (Fig. 3a and Supplementary Information, Movie S3). Owing
to drag reduction, this pack moves more slowly than the rest.
Droplets behind the pack catch up, whereas droplets ahead of it
escape. The denser part of the crystal, therefore, travels opposite
to the flow. Similarly, we can explain the origin of transversal
waves by considering the dipole force fields of the droplets. When
two droplets neighbouring a test droplet deflect symmetrically,
the forces cancel out, whereas they add up for antisymmetric
neighbouring-droplet deflections (Fig. 3b,c). Therefore, combining
such configurations into a triangular disturbance shows that the
interaction between droplets pushes the two triangle edges in
opposite directions, such that the triangle peak moves along the
flow (Fig. 3d,e and Supplementary Information, Movie S4).

The 1D microfluidic crystal is susceptible to instabilities and
we identified three types of them. In the prevalent type, the
crystal breaks on a local fluctuation that grows in the middle
of the crystal far from the droplet-formation zone (Fig. 4a and
Supplementary Information, Movie S1). The structure of 1 + 3
droplets repeats in many experiments and it is essentially a result
of a nonlinearity, which arises both from the large amplitude
and from the interaction between longitudinal and transversal
modes. A numerical solution of the full equations of motion,
which are not restricted to small amplitudes and allow interaction
between modes, reproduced the observed dynamics (see the
Methods section). The second type of instability occurs at the
droplet-formation zone on abruptly cutting the crystal by stopping
water flow while maintaining oil flow. The drifting crystal then
exhibits a wandering motion in the transversal direction and a
longitudinal pairing wave that advances from the crystal trailing
end (Fig. 4b,c and Supplementary Information, Movie S5). The
third instability, which we term the ‘zigzag mode’, occurs close
to the droplet-formation zone as the crystal bifurcates into two
parallel crystals (Fig. 4d and Supplementary Information, Movie
S6). The propensity to zigzag is enhanced near the droplet-
formation zone where the asymmetry of the crystal causes transient
force imbalance and thus growth of the zigzag amplitude (Fig. 4e,f).
Finally, we note that waves and instabilities at ultra-low Re have
been observed in the context of elastic turbulence30. It requires,
however, the nonlinear response of a non-newtonian polymer
solution, whereas our acoustic phonons occur in simple newtonian
oil. The present two-phase microfluidic system offers an additional
example of pattern formation, in which nonlinear long-range
interactions combine with the inherently linear low-Re flow.
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Figure 4 Crystal instabilities. a, Subsequent images of a local fluctuation (1+3 droplets; marked) that grows and leads to crystal instability (flow direction is from left to
right in all images). b, Instability at the trailing end of the crystal after stopping droplet formation, showing transversal wandering and a pairing wave. Transversal wandering:
a deflection at the last droplet grows because it is pushed in the same direction by all other droplets, with no neighbours behind it to cancel these forces. Concomitantly, the
last droplet pulls the droplet ahead of it off the crystal axis. This deflection advances and the entire crystal drifts aside. The pair formation results from the ‘peloton effect’: the
last droplet has fewer neighbours to slow it down and, therefore, catches up with the droplet ahead to form the first pair. The interaction within the pair slows it down with
respect to the crystal. When the pair lags further behind, the third droplet becomes effectively the last droplet, thus a cascade of pair-formation ensues. c, This instability was
also obtained in simulation. d, Zigzag instability close to the droplet formation area. e, The asymmetry at the trailing end of the crystal makes it a source of zigzag waves. The
scheme shows a small deflection of the trailing (orange) droplet that increases due to transient force imbalance near the formation area. When the next droplet emanates, it
is pushed in the opposite direction, and so on (black arrows mark transversal forces). f, Given a zigzag wave near the formation area, trailing-end asymmetry causes the
zigzag to grow: the droplet at the trailing end (1) is pushed downwards by droplets 2,4,6, . . ., because there are no droplets on the left to cancel out the transversal force
they exert on droplet 1. Following the same logic, droplet 2, in turn, is pushed upwards by droplets 5,7,9, . . ., and so on.

METHODS

DEVICE FABRICATION

The microfluidic device had two inlets and one outlet, all connected at a
T-junction (Fig. 1a and Supplementary Information, Movie S1). Droplets
emanated at a constant rate with uniform radii and inter-droplet distances2.
The channel height was 10 μm. Water and oil inlets were 100 μm in width and
3 mm long. T-junction width was 35 μm and output channel widths ranged
from 175 μm to 500 μm. Output length was either 1 cm or 2 cm. The
microfluidic device was fabricated using a standard soft-lithography
technique31. Reusable moulds were made from SU-8-2010 negative photoresist
(Microchem). Channels were prepared by casting of PDMS elastomer (poly
dimethyl siloxane, Sylgard-184, Dow-Corning) on the mould and curing at
80 ◦C for 40 min. After separating the cured PDMS from the mould and
punching holes at the inlets and outlet, the PDMS was irreversibly attached to a
clean glass that constituted the channel floor. Irreversible sealing was done by
oxidizing both surfaces in a plasma asher (March Plasmod) for 50 s at 150 W

before attachment. We also used devices with a PDMS floor, rather than glass,
which gave similar results.

MATERIALS

We used light mineral oil (Sigma, M5904, viscosity 30 cp) with 2% (w/w)
span-80 surfactant (Sigma) and deionized double-distilled water (Millipore,
18 M� cm). Fluids were kept in 1 ml plastic syringes and connected to the
device by tygon tubes. Fluids were driven by nitrogen pressure typically
between 4 and 20 psig, where water pressure was usually 60–80% of the oil
pressure. Flow was made visible (Fig. 2) by adding fluorescent polystyrene
micro-beads to the oil (diameter 0.4 μm).

EXPERIMENT

The device was mounted on an inverted microscope (Olympus, IX-71) with a
motorized stage (Newport UMR5.25 and CMA-25CC). After oil and water
flows were stabilized to give a uniformly spaced crystal of droplets, the flow was
recorded using a digital camera (PCO, SensiCam-QE). In the ‘peloton effect’
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measurements the device was static. The crystal constant a was set by small
changes in water pressure keeping the oil velocity essentially constant. In the
power-spectrum measurements of the vibrations in the crystal, the sampling
time had to be increased to get a sufficient resolution in ω. This was done by
tracking a pack of droplets in motion by moving the device with respect to the
microscope using the motorized stage. In the experiment shown in Fig. 1, we
followed the motion of a pack of ∼60 droplets for ∼20 s over a distance
of ∼1 cm.

IMAGE PROCESSING

The sequence of images acquired in the experiment was analysed using a
precise tracking algorithm (the Moses–Abadi algorithm, the ‘Abadiscope’;
unpublished), implemented in Matlab. The algorithm locates the droplets in an
image, finds the positions of their centres and tracks the trajectory of each
droplet in time. To extract the spectrum of crystal vibrations, it is crucial to
accurately determine the positions of the droplets’ centres. The algorithm
works, therefore, in two stages. First, the location of the droplet is determined
to low accuracy on the basis of the contrast between the droplet boundary and
the background (binary threshold). Next, the centre is found with higher
accuracy by calculating an optimal fit between the image of the droplet and a
ring with a gaussian intensity profile along its radius. This fit has three
parameters: the two coordinates (x,y) of the centre and the droplet radius. The
width of the gaussian cross-section was determined manually. Using this
method, it is possible to locate the coordinates of the position of a droplet’s
centre to sub-pixel accuracy.

DATA ANALYSIS

The power spectrum of crystal vibrations was calculated from the coordinates
[x(n, t),y(n, t)] of all the droplets n = 1. . .Nd at all times t = 1. . .Nf. To apply
a Fourier transform, the deviations of droplets from their crystal positions need
to be found. In the y direction it is straightforward, because the crystal is, by
definition, at y = 0. In the x direction, however, it is hard to determine the
positions of the moving vibrating crystals. For this purpose we defined a new
x coordinate, which is the difference between adjacent droplets:

ξ(n, t) =
{

0, n = 1
x(n, t)−x(n−1, t) otherwise.

We used a discrete Fourier transform (Matlab) both in space and in time:

X̃(k,ω) =
Nd∑

n=1

Nf∑
t=1

ξ(n, t)e−(2πi/L)(k−1)(n−1)ae−(2πi/T)(ω−1)(t−1)	t

Ỹ (k,ω) =
Nd∑

n=1

Nf∑
t=1

y(n, t)e−(2πi/L)(k−1)(n−1)ae−(2πi/T)(ω−1)(t−1)	t ,

where 	t is the time between adjacent frames, a is the equilibrium distance
between droplets, T = Nf	t is the overall measurement time and L = Nda is
the total length of the subcrystal that we tracked. Note that here k,ω,n and t
are all indices. The wavenumbers and frequencies are 2πk/L and 2πω/T ,
respectively. The longitudinal and transversal dispersion relations of waves in
the crystal, ω(k), were obtained as the peaks of the power spectrum |X̃(k,ω)|2

and |Ỹ (k,ω)|2 of the fluctuations, such that for each k we found the ω that
corresponds to the power-spectrum peak. In this process, we disregarded the
high-intensity lines around the k = 0 and ω = 0 lines in the power spectrum.

SIMULATION

Our simulation is based on a numerical solution of the general equations of
motion for the droplets lattice: ṙn = (u∞

d /u∞
oil)∇φ(rn). This is in contrast to

the linearized form (equation (1)) that is valid only for small fluctuations. For a
lattice of N droplets, we obtain a set of 2N coupled first-order ordinary
differential equations (ODEs):

ẋi =Λ
∑
j 
=i

y2
ij−x2

ij

(x2
ij+y2

ij )
2

ẏi =Λ
∑
j 
=i

−2yij xij

(x2
ij+y2

ij )
2

where Λ≡ R2(uoil −ud)ud/uoil, xij ≡ xi −xj and similarly yij ≡ yi − yj . We
work in a frame of reference in which the crystal is at rest, thus the droplet
formation area moves at velocity −ud. To fully model the experiment, new
droplets are added at the formation area at time intervals a/ud. We start with
an initial lattice of N = 100–200 droplets set at crystal positions
(xi ,yi) = (ai,0) optionally with a superimposed initial perturbation. The
equations are solved using Matlab ODE solver.
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