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Summary

Elevated serum phosphate is a risk factor for vascular calcification and cardiovascular events in

kidney disease as well as in the general population. Elevated phosphate levels drive vascular

calcification, in part, by regulating vascular smooth muscle cell (VSMC) gene expression,

function, and fate. The type III sodium-dependent phosphate cotransporter, PiT-1, is necessary for

phosphate-induced VSMC osteochondrogenic phenotype change and calcification, and has

recently been shown to have unexpected functions in cell proliferation and embryonic

development.
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Introduction

Vascular calcification, the inappropriate deposition of calcium phosphate salts in valvular

and vascular tissue, occurs at high prevalence in aging, diabetes, and renal disease. In blood

vessels, intimal calcification is associated with atherosclerotic plaques and coronary artery

occlusion, whereas arterial medial calcification (AMC) is a non-occlusive process that leads

to stiffening of vessels (1).

There is a heavy burden of cardiovascular disease in the chronic kidney disease (CKD)

population. The prevalence is twice that of the general population, and advances at twice the

rate (2). In the US, the one-year mortality following an acute myocardial infarction is 46%

in CKD patients vs 26% in those without CKD (3). Using electron beam CT imaging, Braun

et al. documented a 2- to 5-fold increase in coronary artery calcification in dialysis patients,

compared with age-matched non-CKD patients with known coronary artery disease (4).

Both intimal and medial calcification occur in the elastic arteries of CKD patients to a

greater extent than in age-matched controls (5).

AMC in particular is an important cause of decreased vascular compliance in aging,

diabetes, and CKD (6). In AMC, hydroxyapatite [Ca10(PO4)6(OH)2] is deposited in the

arterial media (7). Pediatric patients present a unique opportunity to examine vascular

calcification in CKD in the absence of atherosclerotic risk factors (smoking, hypertension,

diabetes, dyslipidemia). Vessels from pediatric dialysis patients show entirely medial

calcification, without evidence of inflammation or atherosclerosis (8). Increased vascular

stiffness translates into increased pulse wave velocity and pulse pressures, both of which are

highly associated with increased mortality in the dialysis population (9). Clinically,
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increased vascular stiffness leads to hypertension, left ventricular hypertrophy, heart failure

and compromised coronary perfusion (10). At the arteriole level, AMC causes the ischemic

skin lesions characteristic of calcific uremic arteriolopathy, a condition observed in dialysis

patients that carries an extremely high mortality rate (11).

Phosphate balance, vascular calcification and cardiovascular disease

Inorganic phosphorus, in the form of phosphate, is a critical mineral found in bone,

phospholipids and nucleic acids; and is required for high-energy phosphate bonds,

intracellular signaling and pH buffering. In humans, 85% of total body phosphorus is in

bone, 14% is intracellular and only 1% is in extracellular fluid (12). The kidney is the major

regulator of phosphate homeostasis, whereby 70% of phosphate reabsorption in the proximal

convoluted tubule occurs via the sodium-dependent phosphate cotransporter (NaPi)- IIa (6).

Two other phosphate transporters, NaPi-IIc and phosphate transporter (PiT)-2, also

contribute to renal phosphate reabsorption (13).

The phosphatonins, or hormonal regulators of phosphate balance, include Vitamin D3,

fibroblast growth factor 23 (FGF-23) with its cofactor klotho, and parathyroid hormone

(PTH) (6). Active vitamin D3 (1,25[OH]2 D3 or calcitriol) is a steroid hormone primarily

synthesized in the kidneys, and is decreased in CKD (14). NaPi-IIb of the duodenal

enterocyte is a transcriptional target of the vitamin D receptor (15), but calcitriol deficiency

in CKD does not result in decreased intestinal phosphate uptake due to passive phosphate

transport through enterocyte paracellular pathways (6). FGF-23/klotho decrease phosphate

reabsorption by the NaPi-IIa transporter, and inhibit vitamin D3 production via suppression

of 1α-hydroxylase (16). Uremic mice with early CKD demonstrate elevated circulating

FGF-23 and are able to maintain normal serum phosphate levels (17). It is suggested that

klotho acts in a paracrine fashion, where the extracellular domain is shed from the distal

convoluted tubule and secreted in the adjacent proximal convoluted tubule where FGF-23 is

expressed. Secondary hyperparathryoidism in CKD is a consequence of decline in calcitriol

production, hypocalcemia and hyperphosphatemia. There is parathyroid hyperplasia and

increased PTH synthesis, with resultant dysregulated bone remodeling (6). FGF-23 and PTH

increase urinary phosphate excretion, however these defense mechanisms are ineffective as

renal function continues to fall in advanced CKD. Hence, hyperphosphatemia in CKD is a

consequence of decreased phosphate excretion as well as disordered bone remodeling (renal

osteodystrophies) (6).

Elevated serum phosphate has emerged as a non-traditional risk factor for cardiovascular

events in CKD (18,19), as well as in the general community (20). In a study of veterans with

CKD, a statistically significant increase in mortality risk was noted with serum phosphate

levels >3.5 mg/dl (21). The high risk of mortality is likely mediated, in part, by increased

vascular calcification in CKD patients. This was demonstrated in prospective, randomized

clinical trials where treatment with a dietary phosphate-binder attenuated vascular

calcification (22,23) and mortality in dialysis patients (23). However, other randomized

trials have not confirmed mortality and quality-of-life benefits with lowering of serum

phosphate in dialysis patients (24,25), emphasizing the complexity of mineral metabolism of

which there is still much to learn.

The role of phosphate in vascular calcification has come under intense investigation in the

past decade. The vascular smooth muscle cell (VSMC) is now known to play a prominent

role in phosphate-induced calcification, and recent data has implicated the involvement of

elastin degradation.
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Mechanisms of phosphate-induced vascular calcification

Regulation of VSMC fate: Osteochondrogenic phenotype change versus apoptosis

When the clinical significance of hyperphosphatemia surfaced in the late 1990s, it spurred

bench research that reinforced phosphate’s role in AMC. In vitro, no matrix calcification

occurs in human VSMCs incubated with 1.4 mM phosphate (physiological level), but dose-

dependent calcification occurs when phosphate levels are increased from 1.6 mM to 3 mM

(26). Subsequently, Giachelli’s group studied phosphate loading using a uremic mouse

whereby a two-step surgery involving partial electrocautery of the right kidney and total

nephrectomy of the left kidney results in moderate to severe uremia (17). Uremic mice fed a

high (0.9%) phosphate diet developed robust AMC without atherosclerosis or inflammation.

Treatment with a dietary phosphate-binder (sevelamer) attenuated phosphate-driven vascular

calcification in this model (unpublished findings), consistent with findings in uremic rats

(27) and in CKD patients (28).

There are two major hypotheses regarding fate of VSMCs in phosphate-induced vascular

calcification. The first invokes a profound transition to a bone-forming phenotype. In vitro

studies have shown that elevated phosphate results in loss of smooth muscle markers (SM

alpha actin, SM22alpha) and expression of osteochondrogenic markers (Runx2/Cbfa1,

osterix, alkaline phosphatase, osteopontin) (26,29). Runx2/Cbfa1 is a transcription factor

that induces the expression of major components of the bone matrix including type I

collagen, osteocalcin, and osteopontin. In addition, ultrastructural analysis of the surface of

VSMCs shows matrix vesicles containing apatite which act as nucleation sites for

calcification (similar to the vesicles that bud from osteoblasts and hypertrophic

chondrocytes), as well as calcifying collagen fibrils (30). Evidence for in vivo VSMC

lineage reprogramming to the bone-forming phenotype has been found in calcified vascular

lesions from animals (17,31,32) and humans (8). The complexity of VSMC phenotype

change was recently underscored using whole-genome expression arrays of uremic rats fed

on a high phosphate diet; the transition from “muscle-related” to “bone-related” gene

expression involved dysregulation of 53 genes (33). Activation of extracellular signal-

regulated kinases (Erks) has been implicated; mouse aortic medial cells treated with high

phosphate demonstrate increase of phosphorylated Erk1/2 levels along with increase of

Runx2/Cbfa1, prior to loss of VSMC lineage markers (32). The canonical Wnt pathway,

known to be important in bone formation, is also likely to be involved in phosphate-induced

vascular calcification. Secreted frizzled related proteins (SFRPs) inhibit the Wnt pathway,

and SFRPs-1, 2 and 4 are upregulated in uremic rats fed on a high phosphate diet

presumably as a defensive response against further ossification (33).

The second hypothesis involves apoptosis-dependent matrix mineralization. Reynolds et al.

cultured human VSMCs in elevated phosphate and calcium conditions, and this led to

calcification of matrix vesicles and apoptotic bodies (34). Arteries from pediatric dialysis

patients show VSMC loss due to apoptosis with release of matrix vesicles from damaged/

dead VSMCs (8). These findings were replicated in a recent study where vessel rings from

pediatric subjects were cultured under various calcium/phosphate concentrations (35).

Vessels from healthy controls were resistant to calcification whereas dialysis vessels

developed dense medial calcification in association with apoptosis, cell loss and deposition

of apatite-containing vesicles. Growth arrest-specific gene 6 (Gas6) is believed to exert anti-

apoptotic effects via the Bcl2-mediated PI3K-AKT pathway (36). Gas6 is markedly

downregulated along with its receptor Axl in phosphate-induced VSMC calcification (37);

phosphorylation inactivates Bcl2 and activates Bad, resulting in caspase-3 activation and

apoptosis (36). Also, bone morphogenetic proteins have been shown to downregulate Bcl2

in pulmonary VSMCs (38).
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These mechanisms are not mutually exclusive, as recently proposed by Shanahan’s group

(8,35). It is likely that VSMCs undergo osteochondrogenic adaptive changes, moving from a

“contractile” to a “secretory” phenotype and deposit matrix vesicles to protect the cell from

the toxic effects of elevated calcium and phosphate. However, when this system becomes

overwhelmed and as matrix calcification propagates, cell death ensues.

Regulation of inducers and inhibitors of hydroxyapatite formation

Phosphate may additionally promote vascular calcification by modulating levels of inducers

and inhibitors of hydroxyapatite formation that are synthesized by VSMCs. For example,

tissue non-specific alkaline phosphatase (TNAP) is an ectoenzyme present on cell surfaces

and in matrix vesicles that is absolutely required for bone formation (7,39). Inorganic

pyrophosphate consists of two molecules of phosphate linked by an ester bond, and is a key

inhibitor of hydroxyapatite formation (7). TNAP cleaves pyrophosphate thus generating

more phosphate, and is upregulated in vitro in phosphate-driven VSMC calcification

(26,29). Rat aortic rings incubated with elevated phosphate calcify only when subjected to

mechanical damage, and express elevated TNAP and decreased pyrophosphate (40).

Upregulation of TNAP occurs in dialysis patients (8,41) and could be partly due to dialysis-

induced VSMC injury (8). TNAP also dephosphorylates osteopontin, another inhibitor of

medial calcification that is upregulated but inactive in uremic conditions (17,26).

Elastocalcinosis

Besides VSMCs, the other major component of the tunica media is the elastic lamellae.

Elastin degradation increases its affinity for calcium (42), facilitating epitactic growth of

hydroxyapatite along the elastic lamellae. Elastin degradation has been implicated in

phosphate-induced AMC by several studies. Uremic mice fed a high-phosphate showed

calcified deposits initiating at sites of elastin degradation (17). Furthermore, Moreau et al.

studied elastocalcinosis in cultured rat aortic rings in the presence of elevated phosphate and

warfarin treatment (43). They found early expression of matrix metalloproteinase MMP-9,

an elastin degrading enzyme, closely followed by TGF-β signaling and osteochondrogenic

phenotype transition of VSMCs. Similarly, treatment of rat VSMCs with alpha-elastin

accelerated phosphate-induced VSMC transformation (44). Simionescu et al. have shown

that peptides derived from elastin degradation bind to elastin laminin receptors (ELRs) on

the surface of adjacent VSMCs, and perpetuate proliferation and osteogenic differentiation

via TGF-β signaling (45). TGF-β upregulates Runx2/Cbfa1, the major osteoblastic

transcription factor (46,47). Of note, MMP knockout mice are resistant to elastin

degradation and calcification (48). Finally, expression of matrix metalloproteinases MMP-2

and 9, two key elastase enzymes, are upregulated in arteries from diabetic CKD patients and

correlate with vascular stiffness (49).

Role of PiT-1 in phosphate-induced vascular calcification

Phosphate transport into cells is primarily mediated by NaPi cotransporters, of which there

are 3 types. The type I and II NaPi cotransporters in kidney and intestinal epithelium play

important roles in whole body phosphate homeostasis; they are also present in other tissues

including liver and brain (50,51). The type III NaPi cotransporters, PiT-1 and PiT-2, are

ubiquitously expressed. Real-time PCR detects similar RNA levels of PiT-1 and PiT-2 in rat

VSMCs, and there is no expression of type I nor type II NaPi cotransporters (52). In

contrast, PiT-1 is the predominant NaPi cotransporter in human VSMCs (53).

PiT-1 (also known as gibbon ape leukemia virus receptor 1 [Glvr-1], leukemia virus receptor

1 homolog, solute carrier family 20 member 1 [SLC20A1]) has been identified as a pivotal

transporter in phosphate-induced VSMC calcification. Jono et al. reported that phosphate
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uptake in human VSMCs was dependent on a sodium gradient, and treatment with

phosphonoformic acid (PFA, a competitive inhibitor of NaPi transport) inhibited phosphate

uptake and VSMC osteochondrogenic differentiation (26). Real-time PCR and Northern blot

analysis suggested that the NaPi cotransporter involved was PiT-1 (26). Further

investigation was done using PiT-1 specific small interfering RNAs (siRNAs) (53). PiT-1

knockdown in human VSMCs suppressed phosphate-induced mineralization, and

subsequent overexpression of mouse PiT-1 rescued phosphate transport and VSMC

osteochondrogenic changes. Neither phosphate loading of matrix vesicles nor apoptosis was

mediated by PiT-1. Taken together, these findings demonstrate that PiT-1 is required for

phosphate-induced calcification of human VSMCs in vitro. Of note, it was recently shown

that PFA prevents calcification by direct inhibition of hydroxyapatite formation (inhibits

nucleation in a similar way to pyrophosphate and bisphosphonates (54)) and is a poor

inhibitor of type III NaPi co-transporters (55). Future mechanistic studies involving this

class of transporters should therefore be cautious with the use of PFA.

Interestingly, PiT-1 is upregulated by inducers of calcification including BMP-2 (56,57),

calcium (58), and platelet-derived growth factor PDGF (59,60). Suzuki et al. exposed

MC3T3-E1 osteoblast-like cells to BMP-2 and found an increase in the V(max) of Na-

dependent phosphate transport (57). The aforementioned study by Jono et al. showed

increasing phosphate uptake by human VSMCs as extracellular phosphate was raised from

0.5 mM to 3 mM (26). In contrast, Villa-Bellosta et al. found that PiT-1 and PiT-2

transporters in rat VSMCs are saturated under physiological phosphate concentrations (52).

Indeed, this group has used membrane protein biotinylation to demonstrate that PDGF

treatment of rat VSMCs increased PiT-1 abundance at the endoplasmic reticulum and not at

the cell surface (59), discussed further in the next section. These disparate findings may be

due to species variation. Overall, PiT-1 in vascular calcification likely involves more

complex pathways beyond phosphate transport, as described in more detail below.

PiT-1 signaling involves Erk activation

As noted previously, treatment of calcifying mouse VSMCs with high phosphate results in

increased phosphorylation of Erk 1/2 in conjunction with VSMC osteochondrogenic

transdifferentiation (32). Inhibition of Erk phosphorylation by the MEK inhibitor U0126

prevented upregulation of Runx2/Cbfa1 and promoted VSMC lineage markers (32). Other

studies have implicated Erks in VSMC regulation and osteoblast differentiation (61–63). Erk

1/2 signaling is also activated by the calcification inducer BMP-2 (61) and by platelet-

derived growth factor-BB-mediated modulation of VSMC proliferation (62,64). PiT-1 may

also exert effects at the endoplasmic reticulum level. Rat aortic VSMCs treated with PDGF

show increased PiT-1 expression in the endoplasmic reticulum, as evidenced by co-

localization with markers such as ERp46 and Derlin-1 (59). From these findings, Villa-

Bellosta et al. hypothesize that PiT-1 may promote vascular calcification via modulation of

anti-calcification proteins (such as MGP) or modification of kinases that phosphorylate

secreted matrix proteins (such as osteopontin) (59).

Figure 1 outlines the putative roles of PiT-1 and the VSMC changes that occur in phosphate-

mediated vascular calcification.

Other roles of PiT-1

The type III NaPi cotransporters were originally described as retroviral receptors with

multiple membrane-spanning regions in the early 1990s (65,66). It later emerged that they

were important for phosphate transport in mammalian cells (67,68). Besides mediating

vascular calcification, PiT-1 and PiT-2 may be involved in important physiological

pathways in bone, parathyroid glands, kidney, and intestine (69). Given that AMC mimics
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bone formation, it is not surprising that PiT-1 has been implicated in bone development and

mineralization. PiT-1 can be detected in 17-day old murine embryos in hypertrophic

chondrocytes that are initiating mineralization (70). In osteoblast-like cells, PiT-1 expression

increases during differentiation and correlates with mineralization (57).

PiT-1 and cell proliferation

Many processes and structures in the cell require phosphate. These include the

phospholipids in the cell membranes, DNA, ATP production, and phosphorylation of

proteins. Recently, Beck et al. demonstrated that knockdown of PiT-1 in HeLa and HepG2

cells resulted in decreased cell proliferation (71). Interestingly, the regulation of cell

proliferation via PiT-1 did not depend on phosphate transport, as a PiT-1 protein defective in

Pi transport rescued the proliferation defect in these cells (71). Thus, PiT-1 may have

important roles in addition to cellular phosphate homeostasis.

Knockout of NaPi transporters

Genetic knockouts of various phosphate transporters have been used to understand the

physiological role of these transporters. The double knockout of mouse NaPi-IIa and NaPi-

IIc is viable, but synergistically results in severe hypophosphatemia and rickets, while the

single gene knockouts do not (72). Murine NaPi-IIb knockout results in lethality between

embryonic day (E) 8.0 and 10.5 and display defects in growth, somitogenesis, angiogensis,

and failure of the chorionic trophoblasts to form the labyrinth layer in the placenta (73).

Considering the role of PiT-1 in VSMC calcification in vitro, interest has developed in also

studying the role of PiT-1 in an in vivo system. To that end, PiT-1 knockout mice have been

recently created by two different groups. Surprisingly, like the NaPi-IIb mice, PiT-1

knockout was embryonic lethal, though at a different stage. PiT-1 null embryos arrested

between E11.5 and 13.5 and displayed severe anemia (74,75). Anemia might be due to

increased apoptosis and reduced proliferation of the fetal liver (75), but a fundamental defect

in hematopoesis has not yet been ruled out. In addition, one group observed abnormal

vascular development of the yolk sac (74), though this was not observed by the second

group (75). Though the role of PiT-1 in bone development or calcification cannot be

addressed in these knockout null embryos, the use of PiT-1 conditional alleles (74,75) will

be invaluable to create tissue-specific knockouts and the use of the hypomorphic allele (75)

will allow for the analysis of subtle phenotypes where the expression level of PiT-1 is

critical. No PiT-2 knockout mice have yet been reported.

Conclusions

Serum phosphate has emerged as a non-traditional risk factor for vascular disease and

mortality in CKD. The VSMCs from dialysis vessels are particularly susceptible to

calcification due to prolonged exposure to the CKD milieu. Awareness of the importance of

calcium-phosphate balance has led to renewed interest in comparing phosphate clearance of

various dialysis modalities (76–78), and in patient education on dietary phosphorus content

(79,80). More data is needed regarding oral phosphate binders (see (81) for review). The

biology of the arterial tunica media is greatly altered in elevated phosphate conditions; there

is VSMC transition to bone phenotype and apoptosis, inactivation of local anti-calcification

factors, and elastin degradation. The PiT-1 phosphate transporter appears to be a key

mediator in phosphate-induced VSMC osteochondrogenic differentiation, and was recently

discovered to be important in cell proliferation and embryonic development, indicating more

functions for this protein than previously thought.
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Figure 1.

Proposed mechanisms of phosphate-induced vascular calcification include vascular smooth

muscle cell (VSMC) phenotype change, VSMC apoptosis, elastin degradation, and

dysregulation of pro- and anti-calcification mediators. TNAP cleaves pyrophosphate to

generate two molecules of phosphate, perpetuating elevated phosphate conditions. PiT-1 is

necessary to induce VSMC osteochondrogenic differentiation, and may additionally play a

role in protein modulation at the endoplasmic reticulum that results in inactivation of anti-

calcification mediators such as osteopontin and matrix Gla protein, though evidence for this

is needed. Whether PiT-1 is required for phosphate-driven apoptosis and/or elastin

degradation is not yet known. ER endoplasmic reticulum; MMPs matrix metalloproteinases;

PiT-1 type III sodium-dependent phosphate cotransporter 1; PPi pyrophosphate; TNAP

tissue non-specific alkaline phosphatase.
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