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Abstract 

Plants need phosphorus for many physiological activities in a form of phos-
phate anions. Three different bacterial strains (Bacillus subtilis PH, Serratia 
marcescens PH1, and Serratia marcescens PH2), recently isolated from toma-
to plant rhizosphere, have high phosphate solubilization index (SI from 2.8 to 
3.2) on Pikovskaya agar medium (which contains calcium phosphate).  
Moreover, phosphate release from calcium in Pikovskaya broth over 5 days is 
increasing with cell growth for the different isolates. The most efficient phos-
phate solubilization case is the mixed culture of the 3 strains (OD475 is almost 
1). On the other hand, pH values decreased dramatically with time due to or-
ganic acids secretion and the maximum acidification level is recoded for Ser-
ratia marcescens PH2 (pH = 1.94). Interestingly, the isolates are resistance to 
important pesticides (oxamyl, thiophanate methyl, and captan) that are 
commonly used in the sampling area. This resistance is very favorable and in-
creases the persistence of the phosphate solubilizing bacteria in contaminated 
soils. The isolates are therefore plant symbionts and growth promoting agents. 
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1. Introduction 

Phosphorus plays a key role for all life forms [1]. It is essential for several plant 
physiological activities like photosynthesis, cell division, and others [2]. Its defi-
ciency leads to brown and small leaves, weak stem and slow development [3] [4]. 
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Accordingly, phosphorus is one of the major plant nutrients that limits plant 
growth [5]. It remains insoluble in the soil like other essential nutrients [6]. 
Phosphate chemical fertilizers are commonly applied to the soil to increase 
phosphate availability to plants. Unfortunately, soluble inorganic phosphate in 
such fertilizers is rapidly immobilized and becomes unavailable to plants [3]. To 
overcome this serious problem, farmers apply phosphate fertilizers in many fold 
excess [7]. On the other hand, excessive fertilizers use results in contamination 
of soil with heavy metals [8]. Therefore, an environmentally friend release of 
fixed and insoluble phosphorus forms is a necessary for increasing the availabil-
ity of soil phosphorus to plants [9] [10] [11].  

Natural phosphate solubilization by different microorganisms [12] [13] [14] 
[15] is therefore an important phenomenon [16]. The predominant microorgan-
isms that naturally solubilize mineral phosphates are bacteria [17] [18]. Phos-
phate solubilizing bacteria (PSB) which is associated with plant roots is one of 
the most significant alternatives for inorganic phosphate fertilizers [19] [20] [21] 
[22]. This group of bacteria is termed plant growth promoting rhizobacteria [23] 
[24] which includes many genera such as Serratia, Rhizobium, Pseudomonas, 
Paenibacillus, Flavobacterium, Erwinia, Enterobacter, Burkholderia, Bacillus, 
Azospirillum, Arthrobacter, Acinetobacter, and Alcaligenes [25] [26] [27]. These 
bacterial genera are then significant biofertilizers for agricultural improvement. 
Besides, PSB play a key role in cycling of biogeochemical phosphorus in aquatic 
and terrestrial environment [28]. PSB transform phosphates into soluble forms 
by secreting enzymes such as phosphatases and/or organic acids [28] [29]. 

In this study, three different bacterial strains, isolated from tomato plant rhi-
zosphere, were selected for their high phosphate solubilization index and mole-
cularly identified using the 16S rDNA sequencing. The strains ability to release 
phosphate in Pikovskaya broth was also tested as well as resistance against some 
commonly used pesticides. 

2. Materials and Methods 

2.1. Bacterial Isolation and Purification 

Roots of tomato plant (found in a farm located at Nubarya, Beheera governorate, 
Egypt, in May-2017) were washed with sterile distilled water. Washing water was 
diluted and plated in nutrient agar (Oxoid, England) plates. The plates were in-
cubated for 24 h at 30˚C. Bacterial colonies were carefully examined and predo-
minant phenotypes were randomly selected and purified.  

2.2. Detection and Efficiency Estimation of Phosphate Solubilizing  
Bacteria 

Predominant colonies were selected and tested for production of halozones on 
Pikovskaya agar (Techno Pharm Chem, Haryana, India) plates to detect phos-
phate solubilizing bacteria [25]. In 48 h of incubation at 30˚C, colonies showing 
halozones were selected to test their solubilization index (SI). However, colonies 
with the highest SI values were chosen for further experiments. Phosphate SI was 
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determined by measuring both colony and halozone diameters using Edipre-
mono et al. [30] formula: 

Phosphate SI = (colony diameter + halozone diameter)/colony diameter 

Quantitative analysis of phosphate solubilization by bacterial isolates was 
performed in vitro using Pikovskaya broth. Conical flasks containing that broth 
medium were inoculated with separate and mixed bacterial cultures in triplicates 
at 30˚C for 5 days on a rotary shaker at 150 rpm. After regular intervals, cultures 
were centrifuged at 5000 rpm for 10 min and available soluble phosphate was 
measured in supernatants spectrophotometrically at 475 nm using phosphomo-
lybdate method [31]. In this method, quantification of phosphorous requires the 
conversion of the phosphorus to dissolved orthophosphate followed by colori-
metric determination of dissolved orthophosphate. Ammonium molybdate and 
antimony potassium tartrate react in an acid medium with diluted solutions of 
orthophosphate to form an intensely colored antimony-phospho-molybdate 
complex. This complex is reduced to an intensely blue-colored complex by as-
corbic acid. The color is proportional to the phosphorus concentration. 

Besides, cultures optical densities at 550 nm were measured before centrifuga-
tion and pH values were also recorded. 

2.3. Morphological Characterization and Pesticides Resistance 

Some morphological features of the isolates were determined such as colony 
color, cell shape, and Gram stain reaction. Besides, isolates resistance to some 
commonly used pesticides (oxamyle, thiophonate methyl, and captan) was also 
tested. Oxamyl is a nematocide (Medmac, Jordon), thiophonate methyl is a fun-
gicide (Wuxi xinan pesticides Co. Ltd., China), and captan is also a fungicide 
(Arysta Life Science, France). The resistance test was performed using nutrient 
agar plates supplemented with different pesticides concentrations. Plates were 
then incubated for 48 h at 30˚C.  

2.4. 16S rDNA Sequencing and Analysis 

For bacterial identification, the 16S rDNA partial sequencing (approx 900 pb) 
was performed using the universal and specific primers listed in Table 1 at Ma-
crogen incorporation, Soul, Korea. Sequencing was performed using Big dye 
terminator cycle sequencing kit (Applied Biosystems, USA). Sequencing prod-
ucts were then analyzed on an Applied Biosytems model 3730XL Automated 
DNA Sequencing System (Applied Biosystems, USA). Finally, sequences were 
analyzed at DDBJ (DNA Data Bank of Japan) using BLASTN program [32]. Af-
ter deposition in the GenBank, sequences accession numbers were obtained and 
listed in Results. 

3. Results and Discussion 

Predominant colonies in soil that is directly attached to tomato roots were se-
lected and tested for production of halozones on Pikovskaya agar plates to detect 
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phosphate solubilizing bacteria. Accordingly, solubilization index (SI) values 
were measured for all of them (data not shown). However, three isolates (C2, T1, 
and T5) were found to have the highest SI values and therefore were selected for 
further experiments. Firstly, the three unique isolates were subjected to molecu-
lar identification by partial sequencing of the 16S rDNA gene and the accession 
numbers of the sequences were listed in Table 2. The strains are found to be Ba-
cillus subtilis strain PH (C2), Serratia marcescens strain PH1 (T1), and Serratia 
marcescens strain PH2 (T5). Secondly, the phosphate solubilization ability of the 
strains was qualified on Pikovskaya plates. The three strains are potent phos-
phate solubilizers and the halozone diameter is almost double of the colony di-
ameter (Table 3). Values of solubilization index, SI, are relatively close to each 
other among the isolates. Similar results have been obtained by Paul and Sinha, 
2017 [4]. They recorded a SI of 2.85 for their bacterium, Pseudomonas aerogi-
nosa KUPSB12, using Pikovskaya agar plates. These clear zones around colonies 
are due to the solubilization of phosphate found in Pikovskaya medium. Phos-
phate solubilization may be due to the production of organic acids, polysaccha-
rides or phosphatases [33] [34]. Uma Maheswar and Sathiyavani, 2012, [35] re-
ported that B. subtilis and B. cereus are forming halozones in Pikoviskaya agar 
medium due to solubilization of calcium phosphate. In addition, Widiastuti, 
2008, [36] stated that the ratio of clearing zone to colony diameter for two dif-
ferent Serratia marcescens isolates were approximately 2.1 and 1.9.  
 
Table 1. Primers used in amplification and sequencing. 

Primer Primer sequence (5’-3’) Amplification Sequencing 

27F AGAGTTTGATCMTGGCTCAG •  

1492R TACGGYTACCTTGTTACGACTT •  

518F CCAGCAGCCGCGGTAATACG  • 

800R TACCAGGGTATCTAATCC  • 

 
Table 2. Accession numbers of the new bacterial isolates. 

code strain Accession number 

T1 Serratia marcescens PH1 LC335898 

C2 Bacillus subtilis PH LC335897 

T5 Serratia marcescens PH2 LC335899 

 
Table 3. Phosphate solubilization index (SI) for the bacterial isolates. 

Isolate 
code 

Strain 
Colony diameter 

(cm) 
Halozone diameter 

(cm) 
SI 

T1 Serratia marcescens PH1 0.5 ± 0.03 1.1 ± 0.05 3.2 

C2 Bacillus subtilis PH 0.5 ± 0.02 1 ± 0.1 3 

T5 Serratia marcescens PH2 0.5 ± 0.05 0.9 ± 0.05 2.8 
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Thirdly, some morphological traits for the recent isolates are illustrated in 
Table 4. Interestingly, Serratia marcescens has a red color in nutrient agar me-
dium and loses the pigment in Pikovskaya plates. It is obvious that medium 
composition affects pigment production by Serratia marcescens [37]. This is 
may be due to the difference in nitrogen source. Pikovskaya medium contains 
inorganic nitrogen (ammonium sulphate) while the nutrient agar contains or-
ganic nitrogen (beef extract and peptone) [36]. However, the red pigment, pro-
digiosin, results from secondary metabolism of Serratia marcescens [37]. 

For more characterization of the recent isolates, resistance against some pesti-
cides (captan, Thiophonate methyl, and oxamyl) is also tested and the results are 
recorded in Table 5. Generally, the isolates showed relatively high resistance 
against captan and Thiophonate methyl. Lower resistance was detected against 
oxamyl. However, both of Serratia marcescens strains scored the highest resis-
tance levels against captan. On the other hand, Bacillus subtilis PH is the most 
resistant against thiophonate methyl. Resistance against pesticides, which are 
commonly used at the sampling area, is an advantage for phosphate solubilizing 
bacteria because it means more persistence in that harsh environment.  

Finally, cell growth patterns and phosphate release of the three newly isolated 
strains as well as pH changes with time are clearly shown in Figures 1(a)-(d). 
Obviously, phosphate release which is in a direct proportion with OD475 and 
cell growth are increasing with days for all of the isolates. However, the mixed 
culture of the 3 isolates is the most efficient case in phosphate release (Figure 
1(d)). On the other hand, pH is decreasing with time due to the secretion of or-
ganic acids into the medium for solubilization of calcium phosphate found in Pi-
kovskaya broth [3]. The maximum drop in pH values was parallel with increased 
 
Table 4. Morphological characterization of the new isolates. 

Characteristic 
Isolates 

S. marcescens PH1 B. subtilis PH S. marcescens PH2 

Colony color in  
nutrient agar 

Dark red White Slight red 

Colony color in  
Pikovskaya agar 

White White White 

Gram reaction Negative Positive Negative 

Cell shape Rods Rods Rods 

 
Table 5. Resistance of the isolates against some commonly used pesticides. 

Isolate 
Pesticide concentration in ppm 

Captan Thiophonate methyl Oxamyl 

Serratia marcescens PH1 2000 1000 150 

Bacillus subtilis PH 200 2000 150 

Serratia marcescens PH2 2000 500 150 
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Figure 1. Bacterial growth in Pikovskaya broth medium and phosphate release 
represented by the optical densities, OD, at 550 and 475, respectively, and culture pH 
values of the three strains ((a), (b), and (c)) and the mixed culture (d). 

 
phosphate solubilization levels. The maximum acidification level was recorded 
for Serratia marcescens strain PH2 (pH = 1.94). However, in the mixed culture 
medium, pH dropped dramatically to 1 in 5 days from an initial point of 7. 
Phosphate solubilizing bacteria are usually produce lactic, gluconic, isobutyric, 
ketogluconic, oxalic, acetic, and citric acids. Besides, the mechanism of mineral 
phosphate solubilization is due to production of organic acids and/or phospha-
tases [38] [39] [40]. However, inorganic phosphate is solubilized by both organic 
and inorganic acids of phosphate solubilizing bacteria. Carboxyl and hydroxyl 
groups in these acids chelate Ca, Fe, and Al cations [41]. Usually, calcium phos-
phates (including rock phosphate ores) are insoluble in soil [41]. Gerretsen [42] 
reported that when pure cultures of soil bacteria are added to the soil, plant 
phosphate nutrition is increased throughout increased calcium-phosphate solu-
bility. Soil pH is decreased in parallel and therefore phosphate solubilization is 
the net result of both pH decrease and acids production [43]. In other words, 
carboxylic and hydroxylic anions produced by phosphate solubilizing bacteria 
have high calcium affinity and therefore can solubilize more phosphorus than 
acidification alone [44]. Accordingly, there is a symbiotic relationship between 
plants and phosphate solubilizing bacteria [45] [46], as bacteria provide the so-
luble phosphate and plant roots provide carbon compound such as sugars [47]. 
The net result of this relationship is crop production enhancement [48] [49]. 
The most significant solubilizers of phosphate are mainly belonging to Bacillus 
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spp. such as B. subtilis, B. cereus, B. polymyxa, B. circulans, B. circalmous and B. 
megaterium [50]. Patil, 2014, [51] has reported that B. subtilis is a powerful 
phosphate solubilizer that tolerates soil salinity. Besides, phosphate solubilizing 
Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and 
amino acids contents to promote Mustard plant growth [52]. 

In 2008, Widiastuti [36] reported phosphate solubilization in Pikovskaya me-
dium by Serratia marcescens and stated the relationship between phosphate so-
lubilization and red pigment production. Previous studies reported the produc-
tion of organic acids by Serratia marcescens [53]. Others proved the presence of 
genes such as pqq and gdh which are coding for phosphatase activity in Serratia 
marcescens [54] [55] as well as Pseudomonas [56]. Moreover, Lavania and Nau-
tiyal [57] recorded that the soil isolate S. marcescens NBRI1213 is an efficient 
phosphate solubilizer and a potential plant growth promoting agent. Besides, 
Behera et al., and others [1] [58] [59] [60] [61] stated acid phosphatase produc-
tion by Serratia. In addition to phosphate solubilization, Serratia and Alcaligenes 
faecalis have an antagonistic activity against plant pathogens [62] [63] [64] and 
can produce hydroxyl apatite [65]. In our research, the maximum phosphate so-
lubilization efficiency was recorded in 5 days for the mixed culture followed by 
Serratia marcescens PH1. Previous studies recorded different periods to reach 
maximum phosphate solubilization. For instance, some researchers have re-
ported 3, 4, 10, and even up to 15 days [66]. 

4. Conclusions 

In the present study, three different tomato rhizosphere bacterial strains are used 
for phosphate solubilization in Pikovskaya medium. These isolates are characte-
rized by: 

1) High phosphate solubilization index. 
2) Increasing ability to release mineral phosphate over days with a dramatic 

decrease in pH values. 
3) Resistance to pesticides that are commonly used in the sampling location. 
All of these advantages make the bacterial isolates suitable as plant growth 

promoting symbionts that persist contamination conditions and make free 
phosphate anions available for plants. 
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