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Abstract Heavy metal pollution of soils is of great con-

cern. The presence of the toxic metal species above critical

concentration not only harmfully affects human health but

also the environment. Among existing strategies to reme-

diate metal contaminates in soils, phytoremediation

approach using metal accumulating plants is much con-

vincing in terms of metal removal efficiency, but it has

many limitations because of slow plant growth and

decreased biomass owing to metal-induced stress. In

addition, constrain of metal bioavailability in soils is the

prime factor to restrict its applicability. Phytoremediation

of metals in association with phosphate-solubilizing bac-

teria (PSB) considerably overcomes the practical draw-

backs imposed by metal stress on plants. This review is an

effort to describe mechanism of PSB in supporting and

intensifying phytoremediation of heavy metals in soils and

to address the developmental status of the current trend in

application of PSB in this context.
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Introduction

Soil is one of the most important natural resource on which

lives of all plants, animals and microorganisms directly or

indirectly dependent. In soils, different microorganisms

thrive on abundantly present nutrients therein and through

various interactions play a pivotal role in cycling of

nutrients and pedogenesis (Ahemad and Khan 2013).

Alteration or disturbance in soil ecosystem by added pol-

lutants leads to substantial changes in functional activities

of these important soil microorganisms (Swain and Ab-

hijita 2013). Among pollutants, enormous amounts of toxic

heavy metals such as chromium, cadmium, copper, zinc,

mercury and lead contaminate soils through various geo-

genic, anthropogenic and technogenic activities (Ahemad

2012; Liu et al. 2013; Waterlot et al. 2013; Chodak et al.

2013). Due to non-biodegradable nature, metals in soils

persist longer and pose a risk to human health through food

chain because of their carcinogenicity, mutagenicity and

teratogenicity (Ahemad and Malik 2011; Ali et al. 2013;

Ahemad and Kibret 2013a). In addition, metals exceeding

threshold limit affect microbial diversity and soil fertility

(Huang et al. 2009). Thus, remediation of such metal-

stressed soils is of paramount significance as they are

rendered inappropriate for agricultural application.

Many physicochemical technologies are already in

practice to clean up the metal-contaminated soils (Hashim

et al. 2011). However, these conventional technologies are

generally too costly to be applied to decontaminate the

metal-polluted sites. Moreover, they generally adversely

affect the texture and organic components, which are

important to sustain the fertility of soils (Rajkumar et al.

2010). In view of sustainability issues and environmental

ethics, bioremediation, the exploitation of biological pro-

cesses for the cleanup of contaminated sites, is a promising,

benign and ecologically sound alternative to chemical

technologies (Hashim et al. 2011; Gillespie and Philp

2013). Among different bioremediation approaches, phy-

toremediation (utilizing metal accumulating plants to

detoxify and extract contaminants in polluted soils) is
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gaining wide acceptance due to being cheap and environ-

mentally safe but the major drawback of this technique is

that it is time-consuming and high levels of metals decease

the remediating efficiency of plants (Ali et al. 2013).

Interestingly, interactions between plant and metal resistant

bacteria have shown better remediation of heavy metals,

and this synergism not only expedites the remediation

process by ameliorating phytostabilization (reduction in

metal toxicity through metal immobilization) and phy-

toextraction (metal accumulation as a result of metal

mobilization) of metal species but also accelerate the plant

growth and development (Khan et al. 2009).

Since last decades, several phosphate-solubilizing bac-

teria (PSB) exhibiting both heavy metal detoxifying traits

and plant growth promoting activities have been explored

and have been implicated in phytoremediation of metal-

liferous soils (He et al. 2010; Misra et al. 2012; Oves et al.

2013; Ahemad and Kibret 2013b). This review is an effort

to emphasize how the beneficial association between plants

and PSB can be used to remediate the metal-stressed soils

efficiently. In this review, mechanism of PSB mediation in

supporting and intensifying phytoremediation process is

discussed in detail.

Phytoremediation: an overview

Currently, several physicochemical and biological tech-

niques are in practice to remediate the metal-contaminated

soils. Of them, remediation processes based upon the

physicochemical parameters are very costly and also affect

the soil properties, biodiversity and fertility. Different

remediation technologies have been compared in Table 1

in terms of cost. It is obvious from the enlisted remediation

approaches that phytoextraction (phytoremediation type) is

one of the most cost effective method to remediate the

metal-polluted soils (Padmavathiamma and Li 2007).

Phytoremediation occurs only at marginal cost, which is

due to harvesting and field management, e.g., weed control.

In addition, the resulting biomass of phytoremediating

plants can be used for heat and energy production in spe-

cialized facilities (Peuke and Rennenberg 2005). Unlike

physicochemical processes, phytormediation is an eco-

friendly and comprehensive strategy having no side effects

on soil texture and health (Suresh and Ravishankar 2004).

In phytoextraction, metals are accumulated in plant

biomass from moderately contaminated soils. On the other

hand, phytostabilization is a long-term, in situ approach

applicable in polymetallic soils wherein concentration and

the area of metal contaminant are so extensive that phy-

toextraction cannot work; therefore, metals are not allowed

to enter plants but are captured in situ through biosorption,

precipitation or reducing toxicity (de-Bashan et al. 2012).

Plants selected for phytostabilization must be metal-toler-

ant (metallophytes) and should not accumulate metals into

root tissues. Despite having mechanisms to evade metal

translocation in shoot tissues, considerable amount of

metals may be found in the shoot parts. Metal accumula-

tion in plants can measured in terms of (1) bioconcentration

factor (BF)/accumulation factor (AF) which is the ratio of

metal concentration in the shoot tissue to the soils and (2)

translocation factor (TF) which is the ratio of metals in

shoot to those in root. For better phytostabilization, these

values should preferably be �1 while the values must be

�1 in addition to higher plant biomass for an ideal phy-

toextracting plants (Peuke and Rennenberg 2005; Mendez

and Maier 2008).

Phosphate-solubilizing bacteria

After nitrogen, phosphorus (P) is the second essential

macronutrient for plant growth and development. Gener-

ally, substantial amount of phosphorus (P) occurs in soil

ranging from 400 to 1,200 mg/kg of soil, either in mineral

forms, e.g., apatite, hydroxyapatite and oxyapatite, or

organic forms such as, inositol phosphate (soil phytate),

phosphomonoesters, phosphodiesters and phosphotriesters

(Ahemad et al. 2009). However, the concentration of sol-

uble forms of P in soil is usually *1 mg/kg or less

(Goldstein 1994). In addition, it has a very limited bio-

availability to growing plants due to high reactivity of

phosphate ions in soils. To circumvent this deficiency,

phosphatic fertilizers are applied in soils. But most of the

applied P in the forms of fertilizers is precipitated; conse-

quently, a very small fraction is available for absorption by

plants. As an eco-friendly and economical alternative to

provide substantial amount of soluble P to plants for

growth promotion is the exploitation of P solubilization

and mineralization traits of PSB.

Additionally, PSB not only protect plants from phyto-

pathogens through the production of antibiotics, HCN,

phenazines and antifungal metabolites, etc. (Upadhayay

and Srivastava 2012; Singh et al. 2013), but also promote

plant growth through N2 fixation (He et al. 2010),

Table 1 Cost of different remediation technologies

Process Cost
(US$/ton)

Other factors

Vitrification 75–425 Long-term monitoring

Land filling 100–500 Transport/excavation/monitoring

Chemical treatment 100–500 Recycling of contaminants

Electrokinetics 20–200 Monitoring

Phytoextraction 5–40 Disposal of phytomass

Source: Glass (1999)
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siderophore production (Ahemad and Khan 2012a, b),

phytohormone secretion (Misra et al. 2012; Oves et al.

2013) and lowering ethylene levels (Jiang et al. 2008;

Kumar et al. 2009) (Fig. 1).

Mechanisms of PSB-assisted metal phytoremediation

Although decontamination of metal-polluted soils using

plants (phytoextraction/phytostabilization) has shown

encouraging results, this approach has limitations in case of

the polluted sites wherein metal concentration is extremely

elevated (Gamalero and Glick 2012). Under high metal

stress, their physiological activities are hampered; growth

and development are severely impeded; and resistance

mechanisms are weakened, and in turn, they become prone

to phyto-pathogen attacks (Ma et al. 2011c). Further, their

metal phytoremediating efficiency is depressingly affected,

and the process of metal decontamination is proportionally

impeded depending upon several factors (Martin and Ruby

2004). Intended to overcome the noxious level of metals

that significantly decline the plant growth, PSB with mul-

tiple plant growth promoting traits (Table 2; Fig. 1) and

concurrent metal detoxifying potentials (Fig. 2) may

increase the phytoremediation competence of plants by

promoting their growth and health even under hazardous

levels of different metals. As adjuncts with plants, PSB

remediate metal-contaminated soils largely through facili-

tating either phytostabilization (decreasing metal toxicity

by transforming metal species into immobile forms) or

phytoextraction (metal mobilization and accumulation in

plant tissues) (Fig. 3). Various plant growth promoting

traits of PSB, such as organic acid production, secretion of

siderophores, IAA production and ACC deaminase activ-

ity, contribute in enhancing the phytoremediation capabil-

ity of plants.

Organic acids

In most of the metalliferous soils, metals are strongly

adhered to soil particles; therefore, they are not easily

available for uptake by phytoextracting plants (Gamalero

and Glick 2012). In this context, PSB are very promising

agents since they solubilize the insoluble and biologically

unavailable metals such as Ni (Becerra-Castro et al. 2011),

Cu (Li and Ramakrishna 2011) and Zn (He et al. 2013) by

secreting low molecular weight organic acids; thus, they

facilitate metal bioavailability for plant uptake (Becerra-

Castro et al. 2011). A number of organic acids such as

lactic, citric, 2-ketogluconic, malic, glycolic, oxalic, ma-

lonic, tartaric, valeric, piscidic, succinic and formic have

been identified, which have chelating properties (Panhwar

et al. 2013). Moreover, metal bioavailability in metal-

stressed soils can be further increased by inoculating bio-

surfactant producing PSB as the bacterial biosurfactants aid

in metal release from soil particles (Gamalero and Glick

2012; Singh and Cameotra 2013).

Insoluble P

AuxinsRegulation of root development and tissue 

growth, and act as signaling molecules

Siderophores

Release of trace elements by 

solubilization of mineral salts 

ACC deaminase
Degradation of ACC into NH3

and α-ketobutyrate 

Antioxidants

Antibiotics, 

antifungal 

metabolites, HCN, 

NH3

Phosphate solubilizing 

Bacteria

Acidification by Organic acids

Available N

Nitrogen fixation

Soluble P

Stress alleviation 

Inactivation of plant produced ROS

Alleviation of pesticide 

mediated phytotoxicity

Biological control

Fig. 1 Mechanisms of
phosphate-solubilizing bacteria-
mediated plant growth
promotion. ROS reactive
oxygen species, ACC
1-aminocyclopropane-1-
carboxylate, NH3 ammonia,
HCN hydrogen cyanate, IAA
indole-3-acetic acid,
P phosphate
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Siderophores

Generally, iron occurs mainly as Fe3? and forms insoluble

hydroxides and oxyhydroxides, thus is not easily available

to both plants and microorganisms (Ahemad and Kibret

2013b). Under iron-limiting conditions to acquire iron,

bacteria secret low molecular weight siderophores, which

are iron chelators with exceptionally strong affinity for

ferric iron (Fe3?) (Schalk et al. 2011). Despite their pref-

erential affinity for Fe3?, they can also chelate several

other metals such as, magnesium, manganese, chromium

(III), gallium (III), cadmium, zinc, copper, nickel, arsenic

and lead, and radionuclides, including plutonium (IV) with

variable affinities (Nair et al. 2007; Rajkumar et al. 2010;

Schalk et al. 2011). Supply of iron to growing plants under

heavy metal pollution becomes more important as bacterial

siderophores help to minimize the stress imposed by metal

contaminants (Gamalero and Glick 2012). For instance,

siderophore overproducing mutant NBRI K28 SD1 of

phosphate-solubilizing bacterial strain Enterobacter sp.

NBRI K28 not only increased plant biomass but also

enhanced phytoextraction of Ni, Zn and Cr by Brassica

juncea (Indian mustard) (Kumar et al. 2008).

Indole acetic acid

Phytohormone, indole-3-acetic acid (IAA) whose biosyn-

thesis requires L-tryptophan as a precursor, is the most

important auxin, which regulates several morphological

and physiological functions in plants (Glick 2012).

Although it has been implicated in stimulation of root

growth, alleviation of salt stress, plant-pathogen interac-

tions, legume-rhizobia interactions and eliciting induced

systemic resistance against various diseases, it primarily is

involved in stimulating the proliferation of lateral roots in

plants, thereby root surface area is increased and they

absorb more water and soil minerals (Egamberdieva 2009;

Lugtenberg and Kamilova 2009, Ahemad and Kibret

2013b). Many phosphate-solubilizing bacterial genera (He

et al. 2010; Ahemad and Khan 2011a, 2012b; Misra et al.

2012; Oves et al. 2013) in soils have been reported to secret

IAA that is absorbed by plant roots to increase the

endogenous pool of plant IAA (Glick et al. 2007). How-

ever, effects of variable IAA concentrations vary among

different plant species. Moreover, optimum concentration

of bacterial IAA has stimulatory effect, while high con-

centration (supra-optimal) of those is inhibitory to root

growth (Glick 2012).

Generally, bacterial IAA facilitates adaptation of host

plants in metal-contaminated sites through triggering

Table 2 Plant growth promoting substances released by phosphate-
solubilizing bacteria

PGPR Plant growth
promoting traits

References

Pseudomonas aeruginosa
strain OSG41

IAA, siderophores Oves et al.
(2013)

Pseudomonas sp. IAA, HCN Singh et al.
(2013)

Acinetobacter

haemolyticus RP19
IAA Misra et al.

(2012)

Pseudomonas putida IAA, siderophores,
HCN, ammonia

Ahemad and
Khan (2011c,
2012b, c)

Pseudomonas fluorescens

strain Psd
IAA, siderophores,
HCN, antibiotics,
biocontrol activity

Upadhayay and
Srivastava
(2012)

Bacillus thuringiensis IAA Sandip et al.
(2011)

Pseudomonas aeruginosa IAA, siderophores,
HCN, ammonia

Ahemad and
Khan (2010c,
2011a, e, 2012d)

Pseudomonas sp. TLC
6-6.5-4

IAA, siderophore Li and
Ramakrishna
(2011)

Bacillus sp. IAA, HCN Karuppiah and
Rajaram
(2011)

Klebsiella sp. IAA, siderophores,
HCN, ammonia

Ahemad and
Khan (2011b,
d, 2012a)

Enterobacter asburiae IAA, siderophores,
HCN, ammonia

Ahemad and
Khan (2010a,
b)

Bacillus species PSB10 IAA, siderophores,
HCN, ammonia

Wani and Khan
(2010)

Arthrobacter sp. MT16,
Microbacterium sp.
JYC17, Pseudomonas
chlororaphis SZY6,
Azotobacter vinelandii

GZC24, Microbacterium

lactium YJ7

ACC deaminase,
IAA, siderophore

He et al. (2010)

Pseudomonas sp. IAA, siderophore,
HCN, biocontrol
potentials

Tank and Saraf
(2009)

Enterobacter aerogenes

NBRI K24, Rahnella
aquatilis NBRI K3

ACC deaminase,
IAA, siderophore

Kumar et al.
(2009)

Enterobacter sp. ACC deaminase,
IAA, siderophore

Kumar et al.
(2008)

Burkholderia ACC deaminase,
IAA, siderophore

Jiang et al.
(2008)

Pseudomonas aeruginosa ACC deaminase,
IAA, siderophore

Ganesan (2008)

ACC 1-aminocyclopropane-1-carboxylate, HCN hydrogen cyanate,
IAA indole-3-acetic acid
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physiological changes in plant cell metabolism under metal

stress so that the growing plants can withstand high con-

centrations of heavy metals (Glick 2010). However, Hao

et al. (2012) determined that bacterial IAA had a larger

impact on the growth of host plants under metal stress

rather than bacterial metal resistance through transposon

mutagenesis in phosphate-solubilizing Agrobacterium

tumefaciens CCNWGS0286.

1-Aminocyclopropane-1-carboxylate (ACC) deaminase

Another phytohormone, ethylene, modulates many impor-

tant physiological activities of growing plants including

root growth and development. Under both biotic (e.g.,

phyto-pathogen attacks) and abiotic (e.g., heavy metals,

drought, flooding and salinity) stresses, plant produces

ethylene up to the level that is inhibitory to root growth

(Khalid et al. 2006; Arshad et al. 2007; Nadeem et al. 2007,

2009; Chen et al. 2013). Since phytoremediation approach

to decontaminate the metal-spiked soils is largely reliant on

the profuse growth of roots and the efficient uptake and

mobilization of heavy metal ions via prolific root system to

different plant parts, stress-induced ethylene at supra-

optimal concentration leads to reduced root growth in turn,

limiting the proficiency of metal remediating plants

(Arshad et al. 2007; Gamalero and Glick 2012).

To counter this physiological crisis, an enzyme ACC

deaminase (EC 4.1.99.4) produced by many soil microflora

including PSB (Kumar et al. 2009; He et al. 2010),

degrades ACC (an immediate precursor for ethylene in

plants) into 2-oxobutanoate and ammonia hence decreases

the ethylene biosynthesis in plant tissues (Saleem et al.

2007; Shaharoona et al. 2007; Zahir et al. 2009). Ammonia

Fig. 2 Various bacterial interactions with heavy metals in metal-
polluted soils: 1 precipitation/crystallization of metals occurs due to
bacteria-mediated reactions or as a result of the production of specific
metabolites. 2 Plasmid-DNA-encoded efflux transporters (e.g., ATP-
ase pumps or chemiosmotic ion/proton pumps) expel the accumulated
metals outside the cell. 3 Metals bind to the anionic functional groups
(e.g., sulfhydryl, carboxyl, hydroxyl, sulfonate, amine and amide
groups) of extracellular materials present on cell surfaces. 4 Organic
acids secreted by bacteria solubilize the insoluble metal minerals.
5 Some bacteria utilize methylation as an alternative for metal
resistance/detoxification mechanism, which involves the transfer of
methyl groups to metals and metalloids. 6 Metals enter the bacterial
cell by chromosomal DNA-encoded metal transporters either through

ATP hydrolysis or as a result of chemiosmotic gradient across the
cytoplasmic membrane. 7 Bacterial cell also accumulate substantial
concentration of metals by the synthesis of low molecular mass
cysteine-rich metal-binding proteins, metallothioneins having high
affinities for several metals. 8Membrane-embedded metal reductases,
generally encoded by chromosomal DNA, reduce metals in the
presence of electron donors. 9 Siderophore secretion decreases metal
bioavailability by binding metal ions having chemistry similar to iron.
10 Superoxide dismutase, catalase and glutathione are activated to
combat oxidative stress produced by the reactive oxygen species
(ROS), and DNA repair system is activated to repair the DNA
damaged due to various metal interactions within cell
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released in this way is utilized by ACC deaminase-

expressing organisms as nitrogen source for growth (Glick

2005). In addition, while attached with the plant roots,

ACC deaminase-containing bacteria act as a sink for ACC

ensuring that ethylene level may not increased to the point

where root growth and development is impaired (Glick

1995). Thus, bacterial ACC deaminase-induced extensive

root proliferation in metal remediating (hyperaccumulator)

plants results into efficient phytoremediation processes in

metal-polluted soils (Arshad et al. 2007). Several species of

ACC deaminase-containing PSB have been isolated and

successfully improved the plant growth under metal stress

(Ganesan 2008; Jiang et al. 2008; Sun et al. 2009).

Exploiting PSB in phytoremediation of metal-stressed

soils

In various studies, growth promoting effects of PSB are

well established both in unpolluted and polluted soils when

used as inoculants (Ma et al. 2011a, b; Oves et al. 2013).

However, degree of their impact on different plants varies

depending upon plant species, bacterial species, soil types

and environmental factors. In metalliferous soils, several

authors have studied phytoremediation using PSB as bio-

inoculants to remove different heavy metals from soils.

Worldwide, the research in this direction is currently being

carried out considering various aspects to overcome

hurdles which impede the efficient removal of metal

contaminants. In Table 3, various phytoremediation studies

have been listed to show effects of different PSB using

different plant species and metals. Many insights can be

drawn following analyses of these studies:

1. Most of the laboratory or green house studies have

employed plants of Brassicaseae family in conjunction

with PSB because plant species of this family (hyper-

accumulator plants) have been reported to accumulate

substantial amount of metals in their tissues.

2. Diverse species of PSB have been used in these metal

phytoremediation studies. However, species like Pseu-

domonas aeruginosa, being an opportunistic human

pathogen, poses a challenge to be released in the soil

environment (Walker et al. 2004). Hence, ethical and

juridical considerations are needed if they are to be

used as inoculants in fields.

3. Among environmentally toxic metals, only few metals

such as, Ni, Cu, Zn and Cr have been studied

extensively while other toxicologically important

metals, e.g., As, Cd, Hg and Pb are least considered.

Therefore, phytoremediation studies concerning other

metals would reveal new challenges, insights and

problems leading to pave ways for further research in

this course.

4. Both approaches of metal remediation, phytostabiliza-

tion and phytoextraction have been implicated in these

studies. As the plants growing in metal-stressed soils

are weakened due to metal-induced physiological

Fig. 3 Schematic portrayal of
the role of metal resistant
phosphate-solubilizing bacteria
in alleviation of heavy metal
toxicity, phytoextraction and
phytostabilization
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damage, they become prone to diseases and pests

attack. In practicing phytoextraction strategy, it is

paramount important that selected plants must exhibit

resistance to phytopathogens in order to smoothly

function in metal-stressed soils. Moreover, further

exploration and application of PSB strains, possessing

additional traits which confer resistance to plants

against various diseases, would be a better choice for

metal phytoextraction.

Conclusions

Efficiency of phytoremediation of metal-polluted soils is

chiefly determined by the metal bioavailability which in

turn increases the metal uptake by plants. Hence, PSB

compared with other plant growth promoting bacteria

would be marvelous alternatives to boost this process as

organic acids, and bio-surfactants secreted by these

organisms solubilize sparingly soluble metal complexes,

consequently increase bioavailability of metals and nutrient

supply to soils. Thus, PSB with multifunctional activities

(such as production of siderophore, IAA, ACC deaminase,

organic acids and anti-pathogen metabolites) are better

choice in assisting the phytoremediation process in metal-

contaminated soils.
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