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A B S T R A C T

Although antiestrogen therapies targeting estrogen receptor (ER) � signaling prevent disease
recurrence in the majority of patients with hormone-dependent breast cancer, a significant fraction
of patients exhibit de novo or acquired resistance. Currently, the only accepted mechanism linked
with endocrine resistance is amplification or overexpression of the ERBB2 (human epidermal
growth factor receptor 2 [HER2]) proto-oncogene. Experimental and clinical evidence suggests
that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway, the most frequently
mutated pathway in breast cancer, promotes antiestrogen resistance. PI3K is a major signaling
hub downstream of HER2 and other receptor tyrosine kinases. PI3K activates several molecules
involved in cell-cycle progression and survival, and in ER-positive breast cancer cells, it promotes
estrogen-dependent and -independent ER transcriptional activity. Preclinical tumor models of
antiestrogen-resistant breast cancer often remain sensitive to estrogens and PI3K inhibition,
suggesting that simultaneous targeting of the PI3K and ER pathways may be most effective.
Herein, we review alterations in the PI3K pathway associated with resistance to endocrine
therapy, the state of clinical development of PI3K inhibitors, and strategies for the clinical
investigation of such drugs in hormone receptor–positive breast cancer.

J Clin Oncol 29:4452-4461. © 2011 by American Society of Clinical Oncology

INTRODUCTION

Approximately 75% of breast cancers express estro-
gen receptor (ER) � and/or progesterone receptor
(PR). Hormone receptor expression typically indi-
cates a degree of estrogen dependence for cancer cell
growth. Treatment for these patients inhibits ER
function either by antagonizing ligand binding to
ER (tamoxifen and other selective ER modulators
[SERMs]), downregulating ER (fulvestrant), or
blocking estrogen biosynthesis (aromatase inhibi-
tors [AIs]). Although endocrine therapies have
changed the natural history of hormone-dependent
breast cancer, many tumors exhibit de novo or ac-
quired resistance. For example, more than 30% of
patients with early ER-positive breast cancer relapse
within 15 years after adjuvant therapy with tamox-
ifen, and 17% of patients treated with an AI relapse
within 9 years.1,2 An accepted mechanism of resis-
tance to endocrine therapy involves overexpression
of the ERBB2 (HER2) proto-oncogene.3-5 However,
less than 10% of ER-positive breast cancers overex-
press HER2, suggesting that for most ER-positive
breast cancers, mechanisms of escape from endo-
crine therapy remain to be elucidated.

Tamoxifen has been a standard treatment for
ER-positive breast cancer for more than 30 years.

This SERM has dual agonistic/antagonistic effects
on ER transcription and breast cancer cell growth.6,7

In contrast, AIs induce estrogen deprivation without
agonistic effects on ER. AIs are clinically equivalent if
not modestly superior to tamoxifen.2,8 Data on the
clinical activity of fulvestrant as first-line therapy in
the metastatic setting are limited but suggest it may
be superior to AIs despite its inability to completely
downregulate ER in patients’ tumors.9-11 It is un-
clear whether mechanisms of antiestrogen resistance
are common to SERMs, AIs, and ER downregula-
tors. Studies in human cell lines and xenografts have
shown that growth factor receptor signaling path-
ways, particularly those that converge on phospha-
tidylinositol 3-kinase (PI3K) and mitogen-activated
protein kinase (MAPK/ERK), can mediate resis-
tance to all forms of endocrine therapy. PI3K is the
most frequently altered pathway in breast cancer,
with mutation and/or amplification of the genes
encoding the PI3K catalytic subunits p110�
(PIK3CA) and p110� (PIK3CB); the PI3K regula-
tory subunit p85� (PIK3R1); receptor tyrosine
kinases (RTKs) such as HER2 (ERBB2) and fibro-
blast growth factor receptor 1 (FGFR1); K-Ras;
PI3K effectors AKT1, AKT2, and PDK1; and loss
of the lipid phosphatases phosphatase and tensin
homolog (PTEN) and INPP4B (Table 1).
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CROSSTALK BETWEEN ER AND PI3K PATHWAYS

PI3K is activated by growth factor RTKs and G-protein–coupled
receptors (GPCRs). PI3K phosphorylates phosphatidylinositol
4,5-bisphosphate (PIP2) to produce phosphatidylinositol 3,4,5-
trisphosphate (PIP3).33 In turn, PIP3 recruits several pleckstrin ho-
mology (PH) domain–containing proteins to the plasma membrane
such as PDK1, serine/threonine-protein kinase, and AKT, which on
activation drive cell-cycle progression and survival.34,35 Negative reg-
ulation of this pathway is conferred by PTEN and INPP4B, which
dephosphorylate PIP3 and PIP2, respectively.23,36 AKT activates the
mammalian target of rapamycin (mTOR) –containing complex 1
(TORC1),37 which regulates protein synthesis. mTOR is also part of
another complex (ie, TORC2), which lies upstream of AKT.38

In addition to its pro-survival and growth-promoting roles, the
PI3K pathway interacts with ER directly and indirectly (Fig 1). ER

phosphorylation at Ser167 by AKT or p70S6K increases estrogen-
induced, tamoxifen-induced, and ligand-independent ER transcrip-
tional activity.39,40 Additionally, PI3K and Ras promote c-Jun
phosphorylation.41-45 c-Jun complexes with c-Fos to form the AP-1
complex, which cooperates with ER transcription.46-48 Other onco-
genic kinase pathways (eg, MAPK, protein kinase C) also contribute to
the modulation of ER and transcription cofactors.49

The activation of ER by growth factor RTK signaling is recipro-
cated in a feed-forward fashion, whereby ER promotes the transcrip-
tion of genes encoding ligands, RTKs, and signaling adaptors (Fig 1).
Clinical evidence also suggests that ER function may sustain PI3K
pathway activation in breast cancer cells. Neoadjuvant treatment of
patients with ER-positive breast cancer with the AI letrozole reduces
P-AKTS473 and P-mTORS2448 tumor levels (markers of PI3K activity),
which correlates with clinical response and improved disease out-
come.50 Another study detected a reduction in P-S6 levels (marker of

Table 1. PI3K Pathway Alterations Associated With Response to Endocrine Therapy

Gene Protein Aberration
Effect on
Signaling Frequency

Patient
Prognosis Reference

ERBB2 HER2 Gene amplification
or overexpression

Hyperactivation of
ErbB2 signaling
(PI3K, MEK)

Approximately 10% of
ER-positive tumors

Correlates with
worse
outcome

Ellis et al,3

Arpino et al,4

De Laurentiis et al5

PTEN Loss-of-function
mutation or
reduced
expression

Hyperactivation of
PI3K signaling

37% to 44% of ER-
positive tumors

No consistent
correlation

Pérez-Tenorio et al,12

Saal et al,13

Shoman et al14

PIK3CA p110�, PI3K Activating mutation Hyperactivation of
PI3K signaling

28% to 47% of ER-
positive tumors

No correlation or
correlation
with better
outcome

Pérez-Tenorio et al,12

Baselga et al,15

Stemke-Hale et al,16

Ellis et al,17

Campbell et al18

PIK3CB p110�, PI3K Amplification Unknown 5% of all cases Unknown Crowder et al19

IGF1R, INSR IGF-1R,
InsR

Receptor activation Activates IGF-1R/
InsR signaling
(PI3K, MEK)

48% of ER-positive
tumors

Unknown Law et al20

FGFR1 Amplification Hyperactivation of
FGFR signaling
(PI3K, MEK)

11.6% of ER-positive
tumors

Correlates with
shorter RFS

Turner et al21

RPS6K1 p70S6K Amplification Activates
mTORC1,
protein
translation

8.8% to 12.5% of all
tumors

Unknown Monni et al22

INPP4B Reduced expression
or genomic loss

Hyperactivation of
PI3K signaling

8.4% to 37.7% of ER-
positive tumors

Correlates with
worse
outcome

Gewinner et al,23

Fedele et al24

PIK3R1 p85�, PI3K Inactivating mutation Derepression of
catalytic activity
of p110�

2% of all tumors Unknown Jaiswal et al25

AKT1 Activating mutation Hyperactivation of
AKT signaling

2.6% to 3.8% of ER-
positive tumors

Unknown Stemke-Hale et al,16

Loi et al,26

Carpten et al27

AKT2 Amplification Hyperactivation of
AKT signaling

2.8% of all tumors Unknown Bellacosa et al28

EGFR Amplification Hyperactivation of
EGFR signaling
(PI3K, MEK)

0.5% of ER-positive
tumors

Unknown Al-Kuraya et al29

PDK1 Amplification or
overexpression

Hyperactivation of
PDK1 signaling
(AKT, mTORC1)

21% of all tumors Unknown Maurer et al30

KRAS Activating mutation Hyperactivation of
Ras signaling

4% to 6% of all
tumors

Unknown Rochlitz et al,31

Di Nicolantonio et al,32

Abbreviations: EGFR, epidermal growth factor receptor; ER, estrogen receptor; FGFR, fibroblast growth factor receptor 1; HER2, human epidermal growth factor
receptor 2; IGF-1R, insulin-like growth factor-1 receptor; InsR, insulin receptor; mTORC1, mammalian target of rapamycin complex 1; PI3K, phosphatidylinositol
3-kinase; RFS, relapse-free survival.
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TORC1 activity) after neoadjuvant letrozole.15 Hence, estrogen depri-
vation may suppress ER-positive breast cancer cell growth in part by
decreasing PI3K/AKT/mTOR signaling.

Experimentally, PI3K pathway activation has been causally asso-
ciated with de novo and acquired resistance to endocrine therapy.
RNAi-mediated knockdown of PTEN and overexpression of onco-
genes that activate PI3K/AKT signaling (eg, HER2, type 1 insulin-like
growth factor receptor (IGF1R), activated mutant AKT1) confer resis-
tance to tamoxifen, fulvestrant, and estrogen deprivation in ER-positive
breast cancer cells. In most such models, inhibition of PI3K has reversed
antiestrogen resistance.7,39,51 In another example, tamoxifen-resistant
ER-positive MCF-7 breast cancer xenografts exhibited increased ex-
pression of IGF-1R, HER2, and epidermal growth factor receptor
(EGFR).52 One model of resistance to estrogen deprivation employs
overexpression of aromatase in MCF-7 cells followed by selection with
an AI. AI-resistant MCF-7/aromatase cells and xenografts have exhib-
ited higher levels of HER2 and the EGFR ligand amphiregulin along
with lower levels of ER.53,54 We reported that four of four long-term
estrogen-deprived (LTED) ER-positive breast cancer cell lines exhib-
ited amplification of PI3K/AKT/mTOR signaling, and three of four
lines showed hyperactivation of IGF-1R and/or InsR.55 Chronic expo-
sure of MCF-7 cells and xenografts to fulvestrant has been shown to
elicit similar changes.56-58

Emerging evidence also implicates nongenomic, estrogen-
induced signaling in the activation of PI3K. Estrogen stimulation
rapidly initiates intracellular kinase signaling, including activation
of IGF-1R/InsR, EGFR, Src, PI3K, and MEK (Fig 1).51,59-61 This
implies that a non-nuclear ER binds estrogen and transmits signals
to membrane and cytosolic kinases. Several membrane ERs have
been identified, including ER�, splice variants of ER� (ER-36,
ER-46), ER�, and GPCR 30.62-64 Although ER� localizes to the
plasma membrane in cultured cells, this has not been demon-
strated in human tumors.65 Membrane ER might activate onco-
genic kinases to promote endocrine resistance; however, these
mechanisms remain to be shown clinically.

PI3K pathway activation is required for growth of breast cancer
cells resistant to endocrine therapy. Growth of four of four LTED cell
lines in the absence of estrogen is inhibited by treatment with the
PI3K/mTOR inhibitor BEZ235 or the TORC1 inhibitor everolimus.55

Treatment of mice bearing estrogen-independent MCF-7 xenografts
with the pan-PI3K inhibitor BKM120, or bearing letrozole-resistant
MCF-7/aromatase xenografts with wortmannin, has been shown to
slow tumor growth (unpublished data).66,67 Also, treatment of MCF-7
and MCF-7/LTED cells with the Ras inhibitor farnesylthiosalicylic
acid decreases mTOR signaling and hormone-independent growth.68

Interestingly, a recent study showed that exogenous estrogen prevents
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Fig 1. Reciprocal crosstalk between estrogen receptor (ER) � and growth factor receptor signaling pathways. Receptor tyrosine kinases (RTKs) and G-protein–coupled
receptors activate phosphatidylinositol 3-kinase (PI3K; blue) and MEK signaling pathways. These signal transducers can then phosphorylate ER (green) and/or
coactivators and corepressors to modulate ER transcriptional activity not necessarily dependent on ER ligands. In turn, ER transcribes genes encoding components of
growth factor signaling pathways, thus completing signaling cycle of RTKs to ER to RTKs. ER also complexes with RTKs and Src to rapidly induce nongenomic signaling.
ER-interacting proteins shown in color. EGFR, epidermal growth factor receptor; IGF-1R, insulin-like growth factor-1 receptor; IGFBP, insulin-like growth factor binding
protein; IRS-1, insulin receptor substrate 1; JNK, c-Jun N-terminal kinase; PTEN, phosphatase and tensin homolog; SGK3, serum/glucocorticoid-regulated kinase 3;
TGF�, transforming growth factor alpha; TORC1, target of rapamycin complex 1.
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the apoptotic effects of BEZ235 and RNAi-mediated silencing of PI3K
in ER-positive cells.19 Most breast cancers that adapt to antiestrogen
therapy retain ER and, presumably, estrogen sensitivity. These data
imply that treatment of patients harboring ER-positive breast cancers
with a PI3K-targeted therapy alone (without endocrine agent) might
be insufficient to maximally inhibit tumor growth.

ASSOCIATION OF PI3K HYPERACTIVATION WITH RESISTANCE
TO ENDOCRINE THERAPY

Gain-of-function oncogenes and/or loss of tumor suppressors in
breast cancer cells may confer antiestrogen resistance via activation of
PI3K. For example, HER2 overexpression predicts weaker response to
neoadjuvant AIs or tamoxifen and worse outcome after adjuvant
endocrine therapy compared with ER-positive/HER2-negative breast
cancers.3-5 Patients with FGFR1-overexpressing ER-positive tumors
exhibit a shorter relapse-free survival (RFS) after adjuvant tamox-
ifen.21 Patients with ER-positive/INPP4B-deficient tumors show
worse survival compared with patients with ER-positive/INPP4B-
positive tumors.23 Although loss-of-function mutations in PTEN are
rare in ER-positive breast cancer, immunohistochemical (IHC) stud-
ies have reported a wide range of PTEN loss but found no association
of PTEN level with outcome after tamoxifen therapy. Whether other
mutations in the PI3K pathway correlate with antiestrogen resistance
remains to be determined.

Point mutations in PIK3CA, the gene encoding the p110� cata-
lytic subunit of PI3K, are the most common genetic alterations of this
pathway in breast cancer. Up to 80% of PIK3CA mutations occur in
hotspots within the helical (E542K and E545K) and kinase (H1047R)
domains of p110�. They increase PI3K activity, induce cellular trans-
formation in vitro and tumorigenicity in vivo when overexpressed in
human mammary epithelial cells, and induce mammary tumor for-
mation in transgenic mice.69-72 Although such mutations occur in
28% to 47% of ER-positive breast cancers, their clinical significance
remains unclear. In retrospective studies, PIK3CA mutations in pri-
mary ER-positive tumors have correlated with good long-term
outcome.12,15-18,26 In one report, PIK3CA mutations were linked with
lower activation of PI3K (assessed by P-AKT) compared with PTEN
deficiency in breast tumors.16 In another study, a PIK3CA-mutant
gene expression signature was associated with low P-AKT, low
TORC1 signaling, and good outcome after adjuvant tamoxifen.26 This
association of PIK3CA-mutant status and good prognosis in ER-
positive disease does not negate the possibility that combinations of
antiestrogens and PI3K pathway inhibitors would be clinically more
effective than antiestrogens alone in such tumors. Indeed, a recent
analysis of a cohort of 217 patients with multiple solid tumor types
enrolled onto phase I trials with PI3K/AKT/mTOR inhibitors showed
a higher response rate among patients with PIK3CA-mutant versus
PIK3CA–wild-type cancers.73

Understanding the relationship between PIK3CA mutations and
endocrine resistance may be confounded by evidence suggesting that
these genetic alterations may arise late in tumor development. For
example, PIK3CA mutation status is discordant between invasive car-
cinoma and ductal carcinoma in situ in 33% of patient cases, between
primary breast tumors and synchronous lymph node metastases in
13% of patient cases, between primary tumors and asynchronous
metastases in 18% to 33% of patient cases, and even within microdis-
sected regions of the same tumor.74-76

In addition to mutational analyses, tumor protein and gene ex-
pression profiling of PI3K pathway activation may provide a bio-
marker to identify patients with antiestrogen-resistant tumors. For
example, a gene expression signature of PTEN loss, derived from a
comparison of PTEN-positive and -negative tumors by IHC, was
predictive of poor RFS after tamoxifen, whereas PTEN IHC status
alone was not.13 A gene expression signature of PI3K activation, based
on levels of phosphoprotein markers (eg, P-AKT, P-p70S6K) in ER-
positive tumors, was enriched in luminal B breast cancers.77 This
suggests that luminal B tumors have higher PI3K activity, which may
contribute to their lower response to antiestrogens compared with
luminal A tumors.78 Similarly, we identified a tumor protein signature
of PI3K pathway activation that predicts poor outcome after adjuvant
endocrine therapy.55 Therefore, signatures of PI3K activation may
complement mutational analyses for the identification of PI3K-
driven tumors.

RATIONALE FOR COMBINED USE OF ER AND PI3K INHIBITORS

One of the first PI3K pathway–targeted drugs to be tested in combi-
nation with endocrine therapy was the TORC1 inhibitor everolimus.
Patients with ER-positive tumors were randomly assigned to neoad-
juvant letrozole with or without everolimus for 4 months before
surgery. The combination therapy induced a higher clinical response
and greater suppression of tumor cell proliferation compared with
letrozole alone.15 In another study, patients with advanced disease
who had progressed while receiving an AI were randomly assigned to
tamoxifen with or without everolimus. Patients receiving tamoxifen
plus everolimus showed a significantly improved rate of clinical ben-
efit, time to progression, and disease-free survival compared with
women receiving tamoxifen alone.79

Although combinations containing TORC1 inhibitors have
shown clinical activity in breast cancer, inhibition of TORC1 relieves
negative feedback on activators of PI3K (eg, IGF-1R, IRS-1, HER3),
which in turn promote cell survival.80-82 These results suggest that
direct inhibitors of PI3K may be more effective. However, inhibition
of PI3K or AKT also results in feedback upregulation/activation of
several RTKs, which, by providing an upstream input to PI3K, may
counteract drug action.83-86 These data suggest that PI3K/AKT/
TORC1 inhibitors should be combined with RTK inhibitors to induce
an optimal antitumor effect. Consistent with this notion, studies with
human xenografts have shown that combinations of inhibitors target-
ing HER2 and PI3K, HER2 and AKT, HER2 and TORC1, or EGFR
and AKT are each superior to single-agent treatments.80,83-85

Additional rationales for combined inhibition of PI3K and ER
come from studies in HER2-positive breast cancer. HER2 overexpres-
sion, a potent activator of PI3K, confers endocrine resistance.87-90

Preclinical and clinical data suggest that ER-positive breast cancer cells
initially inhibited by tamoxifen or estrogen deprivation can upregulate
HER2 to bypass ER blockade.88,91 The interdependence of these path-
ways is highlighted by examples in which HER2 inhibition with tras-
tuzumab or the tyrosine kinase inhibitor lapatinib restores or
upregulates ER levels or transcriptional activity in breast cancer cells
and patient tumors.92,93 Furthermore, treatment with AIs or down-
regulation of ER with fulvestrant or RNAi has inhibited the growth of
HER2-positive tumors or cells that had progressed with trastuzumab
or lapatinib.92,93 These data suggest that combined inhibition of ER
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and HER2 signaling may provide more effective control of ER-
positive/HER2-positive tumors. This inference is supported by results
from two clinical trials. In the TAnDEM (Trastuzumab in Dual Hu-
man Epidermal Growth Factor Receptor Type 2 [HER2] ER � Met-
astatic Breast Cancer) study, 207 patients with ER-positive/HER2-
positive metastatic breast cancer were randomly assigned to the AI
anastrozole with or without trastuzumab. A second study randomly
assigned 219 patients with ER-positive/HER2-positive metastatic
breast cancer to letrozole with or without lapatinib. In both trials,
progression-free survival and clinical benefit were superior in the
combination arm compared with the AI-alone arm, suggesting that
both HER2 and ER should be simultaneously targeted for maximal
therapeutic efficacy.94,95 Whether combined inhibition of PI3K
and ER is equally effective against ER-positive/HER2-positive tu-
mors remains to be determined.

PI3K PATHWAY INHIBITORS IN CLINICAL DEVELOPMENT

Several drugs targeting multiple levels of the PI3K network (ie, PI3K,
AKT, mTOR) are in clinical development. Class IA PI3K isoforms are
heterodimeric lipid kinases that contain a p110 catalytic subunit and
p85 regulatory subunit. Three genes (ie, PIK3CA, PIK3CB, and
PIK3CD) encode the homologous p110�, p110�, and p110�
isozymes, respectively.96,97 p110� expression is largely restricted to
immune and hematopoietic cells, whereas p110� and p110� are ubiq-
uitously expressed.98 p110� is essential for signaling and growth of
tumors driven by PIK3CA mutations, RTKs, and/or mutant Ras,
whereas p110� lies downstream of GPCRs and has been shown to
mediate tumorigenesis in PTEN-deficient cells.99 A number of ATP-
mimetics that bind competitively and reversibly to the ATP-binding
pocket of p110 are in early clinical development.100,101 These include
the pan-PI3K inhibitors BKM120, XL-147, PX-866, PKI-587, and
GDC-0941; p110�-specific inhibitors BYL719, GDC-0032, and INK-
1117; p110�-specific inhibitor CAL-101; and dual PI3K/mTOR inhib-
itors BEZ235, BGT226, PF-4691502, GDC-0980, and XL-765.

The pan-PI3K and p110�-specific inhibitors are equally potent
against oncogenic p110� mutants.102-104 The rationale for the devel-
opment of isozyme-specific antagonists is to allow higher doses of
anti-p110� and anti-p110� drugs to be delivered without incurring
adverse effects caused by pan-PI3K inhibitors. Interim results from a
phase I trial with the p110�-specific inhibitor CAL-101 in patients
with hematologic malignancies showed that treatment reduced
P-AKT levels by more than 90% in peripheral blood lymphocytes and
induced objective clinical responses.105 Recently completed phase I
trials with BKM120, BEZ235, and XL-147 showed that treatment
partially inhibited PI3K as measured by levels of P-S6 and P-AKT in
patients’ skin or tumors and [18F]fluorodeoxyglucose uptake mea-
sured by PET. Main toxicities were rash, hyperglycemia, diarrhea,
fatigue, and mood alterations. Few clinical responses were observed in
patients with and without detectable PI3K pathway mutations, al-
though screening for genetic lesions was not comprehensive.106-108

Both allosteric and ATP-competitive pan-inhibitors of the three
isoforms of AKT are being developed. AZD5363, GDC-0068,
GSK2141795, and GSK690693 are ATP-competitive compounds that
have shown antitumor activity in preclinical models and recently
entered phase I trials.109,110 Allosteric inhibitors such as MK-2206
bind to the AKT PH domain and/or hinge region to promote a con-

formation incapable of membrane localization.111 MK-2206 inhibits
AKT signaling in vivo and suppresses growth of breast cancer xeno-
grafts harboring PIK3CA mutations or ERBB2 amplification.112 Phase
I data have shown that treatment with MK-2206 decreases levels of
P-AKT, P–proline-rich AKT substrate 40, and P-GSK3� in tumor
cells, peripheral blood mononuclear cells, and hair follicles.113,114

The mTOR kinase is a component of PI3K-driven oncogenesis
that functions within two signaling complexes: TORC1 and
TORC2.37,38 The macrolide rapamycin and its analogs complex with
FK506-binding protein (FKBP12), which then binds to mTOR and
inhibits the kinase activity of TORC1 but not TORC2.38 The formu-
lation problems of rapamycin prompted the development of analogs
such as CCI-779 (temsirolimus), RAD001 (everolimus), AP-23573
(deferolimus), and MK-8669 (ridaferolimus). These rapalogs have
shown cytostatic activity in preclinical models and clinical trials, par-
ticularly in patients with renal cell cancer and in those with mutations
in the tuberous sclerosis complex (upstream of TORC1) who harbor
renal angiolipomas. Compounds that target the ATP-binding cleft of
mTOR (ie, OSI-027, AZD8055, INK-128), and are thus active against
both TORC1 and TORC2, are also in phase I trials.115

CLINICAL INVESTIGATION OF PI3K PATHWAY INHIBITORS IN
ER-POSITIVE BREAST CANCER

The somatic alterations described (ie, PIK3CA and AKT1 muta-
tions, PTEN and INPP4B loss, PIK3CB and AKT2 amplification, and
so on) identify cancers with aberrant activation of and potential
dependence on the PI3K pathway. This is an important consider-
ation for the selection of patients into trials with PI3K inhibitors.
Like mutant PI3K, other somatic mutations in tumors have re-
vealed molecules critical for cancer survival and progression. Phar-
macologic targeting of these mutants has resulted in remarkable
clinical responses in patients bearing tumors with such mutant
oncogenes. Examples include imatinib and dasatinib in chronic
myelogenous leukemia harboring the BCR-ABL oncogene, EGFR
TKIs gefitinib and erlotinib in lung cancers with EGFR-activating
mutations, HER2 antagonists trastuzumab and lapatinib in breast
cancers with HER2 gene amplification, and Raf inhibitors against
metastatic melanomas containing B-Raf–activating mutations.116

As with other targeted therapies, only a fraction of patients with
tumors containing PI3K pathway mutations will likely benefit from
single-agent PI3K inhibitors. There is increasing agreement that initial
phase II efficacy studies with PI3K inhibitors in patients with advanced
disease should be enriched with, if not limited to, patients harboring
mutations in this pathway. However, testing these drugs in single-arm
phase II trials in patients with metastatic cancer with PI3K pathway
alterations is intrinsically problematic because: first, the difficulty of
obtaining biopsies from metastatic sites, and second, the limitations of
assessing tumor response as a meaningful clinical end point in the
absence of a placebo control arm. We will discuss alternative ap-
proaches that may address these issues.

PRESURGICAL AND NEOADJUVANT CLINICAL TRIALS

There are examples of short-term, pharmacodynamic trials providing
information that can be later used for patient selection into trials with
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novel targeted therapies such as PI3K antagonists. In ER-positive
breast cancer, data from presurgical studies suggest that such trials can
be used to predict longer-term outcome after adjuvant endocrine
therapy. Dowsett et al117 reported that patients with ER-positive tu-
mors with high Ki67 scores after 2 weeks of neoadjuvant antiestrogen
therapy had shorter RFS compared with those with low Ki67 scores.
Ellis et al118 found that Ki67 scores and ER status after 3 to 4 months of
neoadjuvant endocrine therapy were predictive of RFS after adjuvant
tamoxifen. Furthermore, ER-positive/HER2-negative tumors showed
a reduction in Ki67 in response to neoadjuvant letrozole, whereas
ER-positive/HER2-positive tumors did not.3 Therefore, presurgical
evaluation of molecular markers after short-term treatment may be
valuable to predict long-term patient benefit. However, no single
biomarker has been shown to accurately predict disease outcome in
individual patients. Ki67 score was found to vary between biopsies
from the same breast tumor such that a change greater than 36% to
50% in the post-treatment compared with pretreatment biopsy would
be required to detect a potentially informative difference.119,120 Fur-
thermore, identifying patients who would benefit from neoadjuvant
therapy using Ki67 score is challenging in tumors with rather low
baseline cell proliferation.120

Although some PI3K pathway mutations (eg, HER2, FGFR1 am-
plification) have been linked with antiestrogen resistance, the role of
PIK3CA mutations is less clear.3-5,21 Neoadjuvant trials provide a
setting to investigate this role. For example, in a neoadjuvant study of
letrozole with or without everolimus, PIK3CAexon9 mutations were
associated with a statistically lower reduction in cell proliferation in
response to letrozole, as measured by a change in the Ki67 IHC score
on day 15, compared with PIK3CA–wild-type tumors.15 We have
observed similar preliminary data in a presurgical trial of short-term

letrozole (10 to 21 days) in patients with ER-positive/HER2-negative
breast cancer (NCT00651976). In this study, analysis of the first 21
patients showed that PIK3CA-mutant tumors exhibited a statistically
lower reduction in Ki67 score compared with tumors with wild-type
PIK3CA (data not shown). However, another study in which tumor
cell proliferation was assessed at baseline and after 4 months of anti-
estrogen therapy found no association between PIK3CA status and
drug-induced change in Ki67 score.17 This discrepancy may be the
result of the different timing (2 to 3 weeks v 4 months) of the biopsies
from which cell proliferation was assessed.

RANDOMIZED TRIALS OF ANTIESTROGENS WITH OR WITHOUT
PI3K PATHWAY INHIBITORS

Although PI3K pathway activation may confer antiestrogen resis-
tance, breast tumors that acquire hormone independence may still be
stimulated by (host) estradiol. Thus, we speculate that PI3K inhibitors
may have limited efficacy against ER-positive breast cancers as single
agents. Because antiestrogen therapies are effective against a large
fraction of ER-positive tumors as single agents, there is a need for
randomized clinical trials of standard ER-targeted therapies versus
combinations targeting both the ER and PI3K pathways.

In Table 2, we summarize the randomized trials in which inhib-
itors of TORC1, HER2, EGFR, IGF-1R, protein kinase C-�/PDK1/
p70S6K, and farnesyltransferase have been combined with endocrine
therapy. The molecular targets of these drugs rely on PI3K and have
been linked to endocrine resistance. Neoadjuvant treatment with
letrozole and the TORC1 inhibitor everolimus more effectively sup-
pressed tumor cell proliferation and increased clinical response com-
pared with letrozole alone in patients with early-stage ER-positive

Table 2. Prospective Randomized Trials Testing Combinations of PI3K Pathway Inhibitors and Endocrine Therapies

Kinase Target Trial Design Phase Reference

mTOR Letrozole � everolimus in patients with early-stage ER-positive breast cancer II Baselga et al15

Exemestane � everolimus in ER-positive metastatic breast cancer after
progression while receiving another AI

III NCT00863655 (BOLERO-
2; ongoing)

Tamoxifen � everolimus in ER-positive metastatic breast cancer after
progression while receiving AI

II TAMRAD; Bachelot et al79

HER2 Anastrozole � trastuzumab in patients with ER-positive/HER2-positive
metastatic breast cancer

III Kaufman et al95

HER2/EGFR Letrozole � lapatinib in ER-positive metastatic breast cancer III Johnston et al94

AI � lapatinib or AI � fulvestrant � lapatinib in ER-positive metastatic breast
cancer after progression while receiving AI

III NCT00688194 (ongoing)

AI � trastuzumab or lapatinib or both in patients with ER-positive/HER2-
positive metastatic breast cancer

III NCT01160211 (not yet
open)

EGFR Anastrozole � gefitinib in early-stage ER-positive breast cancer II Smith et al121

Anastrozole � gefitinib in metastatic ER-positive patients II Cristofanilli et al122

PKC�, PDK1,
p70S6K

Fulvestrant � enzastaurin in ER-positive metastatic breast cancer after
progression while receiving AI

II NCT00451555 (ongoing)

Farnesyl transferase Letrozole � tipifarnib in ER-positive metastatic breast cancer after
progression on tamoxifen

II Johnston et al123

IGF-1R/InsR BMS-754807 � letrozole in ER-positive metastatic breast cancer after
progression while receiving AI

II NCT01225172 (ongoing)

IGF-1R IMCA12 � same antiestrogen (AI, fulvestrant, or tamoxifen) after
progression in patients with ER-positive metastatic breast cancer

II NCT00728949 (ongoing)

AI or fulvestrant � AMG479 in ER-positive advanced or metastatic breast
cancer after progression while receiving endocrine Tx

II Kaufman et al124

Abbreviations: AI, aromatase inhibitor; BOLERO, Breast cancer trials of OraL EveROlimus; EGFR, epidermal growth factor receptor; ER, estrogen receptor; HER2,
human epidermal growth factor receptor 2; IGF-1R, insulin-like growth factor-1 receptor; InsR, insulin receptor; mTOR, mammalian target of rapamycin; PI3K,
phosphatidylinositol 3-kinase; PKC, protein kinase C; TAMRAD, Tamoxifen and RAD001.
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breast cancer.15 In the TAMRAD (Tamoxifen and RAD001) trial, 111
patients bearing AI-resistant metastatic breast cancer (resistance de-
fined as primary [relapse during adjuvant AI or � 6 months after
starting adjuvant AI in metastatic setting] or secondary [relapse � 6
months on adjuvant AI or prior response to AI and subsequent met-
astatic progression]) were randomly assigned to tamoxifen with or
without everolimus. Patients in the combination arm showed an im-
proved clinical benefit rate (61% v 42%), time to progression (8.6 v 4.5
months), and overall survival compared with patients receiving ta-
moxifen alone. Patients with secondary but not primary AI resistance
who received both drugs showed an increased time to progression
compared with patients receiving tamoxifen alone.79 In contrast, re-
sults from other studies have not favored the combination arm. For
example, addition of the IGF-1R antibody AMG479 to fulvestrant or
exemestane did not alter progression-free survival in patients with
ER-positive breast cancer compared with endocrine therapy alone.124

The addition of the farnesyltransferase inhibitor tipifarnib to letrozole
did not improve response in patients with advanced ER-positive dis-
ease compared with letrozole alone.123

The neoadjuvant trial design depicted in Figure 2 illustrates an
approach that can be used to determine whether to pursue combina-
tions of PI3K inhibitors and antiestrogens in patients with ER-positive
breast cancer. Such trials would have to be performed after safety of
the combinations has been documented in phase I studies. Patients
would be randomly assigned to standard endocrine therapy with or
without a PI3K pathway inhibitor. A research biopsy could be ob-
tained after 2 weeks to document effects on tumor cell proliferation,
apoptosis, and ER/PI3K signaling and for wider exploratory mu-
tational analysis. Incorporation of noninvasive imaging with
[18F]fluorodeoxyglucose–positron emission tomography at this
time point could identify metabolic changes indicative of a phar-
macodynamic effect. Study end points would be clinical and/or
pathologic complete response (CR) after 4 to 6 months of therapy.
Historically, pathologic CR has had limitations as an end point of
neoadjuvant trials in ER-positive breast cancer. However, we cannot
rule out that as we optimize targeted approaches such as antiestrogens
in combination with PI3K inhibitors in ER-positive/PI3K-mutant

tumors, a pathologic CR rate could be used as a primary end point for
a trial of this design. This approach potentially addresses the following
questions: First, is there an early (at 2 weeks) difference in cellular and
molecular response between treatment arms? Second, is clinical
and/or pathologic response superior in the arm containing the PI3K
pathway inhibitor? A difference in favor of the combination would
support further development of PI3K inhibitors and endocrine ther-
apy in patients with advanced disease. Third, is there a tissue and/or
imaging pharmacodynamic biomarker in the baseline, 2-week, and/or
surgical specimen that correlates with response/resistance to the com-
bination? If so, such a biomarker could be used to select patients with
advanced disease who would likely benefit from the combination in
phase II trials.

DISCUSSION

Alterations in the PI3K pathway are the most common somatic mu-
tations in ER-positive breast cancer. Experimental and clinical evi-
dence implies that such mutations are associated with antiestrogen
resistance. Many PI3K pathway inhibitors are in clinical development.
Early clinical data suggest that this strategy is feasible and that as single
agents, these drugs are well tolerated. Although there is crosstalk
between the ER and PI3K/AKT pathways, these networks also signal
independently. Because most ER-positive breast cancers that acquire
resistance to antiestrogens retain ER and responsiveness to estrogens,
we speculate PI3K inhibitors should be used in combination with
antiestrogens in patients who progress while receiving the latter. To
determine if combined inhibition of PI3K and ER is more active than
antiestrogen therapy alone against ER-positive tumors with mutations
in the PI3K pathway, randomized clinical trials are required.
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