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Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic

membrane and is abundant in the brain. Accumulated studies have revealed

that PS is involved in the multiple functions of the brain, such as activation

of membrane signaling pathways, neuroinflammation, neurotransmission,

and synaptic refinement. Those functions of PS are related to central

nervous system (CNS) diseases. In this review, we discuss the metabolism

of PS, the anti-inflammation function of PS in the brain; the alterations

of PS in different CNS diseases, and the possibility of PS to serve as

a therapeutic agent for diseases. Clinical studies have showed that PS

has no side effects and is well tolerated. Therefore, PS and PS liposome

could be a promising supplementation for these neurodegenerative and

neurodevelopmental diseases.

KEYWORDS
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Introduction

Phosphatidylserine (PS) is a structural component of the eukaryotic membrane
and is accounted for 5–10% of the total lipid of cells (van Meer et al., 2008; Vance,
2015). Given its unique physical and biochemical properties as an anionic phospholipid,
PS binds to various proteins and is involved in many biological processes, including
enzyme activation, apoptosis, neurotransmission, and synaptic refinement (Fadok et al.,
1992; Zhang et al., 2009; Huang et al., 2011; Scott-Hewitt et al., 2020). Therefore,
the dysregulation on the metabolism of PS is associated with different CNS diseases,
including Alzheimer’s disease (AD), Parkinson’s disease (PD), major depressive disorder
(MDD), stroke, and autism spectrum disease (ASD) (Enseleit et al., 1984; Fabelo et al.,
2011; El-Ansary et al., 2016; Tokuoka et al., 2019; Homorogan et al., 2021). In addition,
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PS supplementation is proved to benefit the patients with
AD, MDD, PD, or ADHD (Funfgeld et al., 1989; Maggioni
et al., 1990; Crook et al., 1992; Hirayama et al., 2014). Chronic
neuroinflammation is implicated in these CNS diseases, PS
supplementation can inhibit excessive neuroinflammation to
play a neuroprotective role. Moreover, PS supplementation can
improve the cognitive function of the brain. In this review, we
summarized the role of PS in the brain and its role in several
related CNS diseases.

The biosynthesis, distribution,
asymmetry, and degradation of
phosphatidylserine

As an important glycerophospholipid, PS was first identified
in the whole-brain lipid extracts in the 1940s (Folch, 1948).
Its glycerol moiety contains two acyl chains at the sn-1 and
sn-2 positions and a polar-head group at position sn-3, in
which the neutral amino acid serine locates (Leventis and
Grinstein, 2010). As shown in Figure 1, PS is produced by
exchanging headgroups in mammalian cells by PS synthases; for
example, PS synthase 1 is responsible for exchanging headgroup
choline from PC (phosphatidylcholine), and PS synthase 2 is
responsible for exchanging headgroup ethanolamine from PE
(phosphatidylethanolamine). Because PS synthase 1 and 2 are
uniquely expressed in the mitochondrial-associated membranes
(MAMs) of the endoplasmic reticulum, PS is produced in the
endoplasmic reticulum and transferred to the mitochondria
or the Golgi through MAMs (Stone and Vance, 2000). In the
mitochondria, a part of PS is catalyzed to PE by PS decarboxylase
in the inner leaflet of mitochondria, while the other part of
PS is incorporated into the mitochondrial membrane (Camici
and Corazzi, 1995). Some newly synthetic PS is transferred
from the endoplasmic reticulum to the Golgi intermediate
compartment and the Golgi cisternae via the secretory pathway
(Voelker, 2000), then PS is secreted to the plasma membrane
or is delivered to the endosome and the lysosome. PS in the
endosome, especially recycling endosomes, is slowly recycled
to the plasma membrane (Voelker, 2000). In the normal
conditions, PS is located exclusively in the cytoplasmic leaflet
of the plasma membrane, endoplasmic reticulum lumen, Golgi,
mitochondria, and endosomes to maintain the normal function
of organelles (Yeung et al., 2008; Leventis and Grinstein, 2010;
Kay and Fairn, 2019). The detailed biological events of PS and
the percentage of PS in total phospholipid in different organelles
were summarized and listed as in Table 1.

Degradation of PS is carried out via two enzymes: PS
decarboxylases and phospholipases (as shown in Figure 1).
As previously described (Camici and Corazzi, 1995), PS
decarboxylases catalyze PS to form PE in the mitochondria.
There are two: PS-specific phospholipases A1 and A2.

Both phospholipases catalyze a reaction to produce Lyso-
phosphatidylserine (2-acyl-1-lyso-PS and 1-acyl-2-lyso-PS). PS-
specific phospholipase A1 (PS-PLA1) hydrolyzes the sn-1 acyl
chain of PS exposed on the surface of cells such as apoptotic
cells or activated platelets, and generates 2-acyl-1-lyso-PS which
is a mediator for the activation of mast cells, T cells and
neural cells (Wen et al., 2001). PS-specific phospholipase A2
(PS-PLA2) is also essential to inflammation and the immune
response. It hydrolyzes the sn-2 acyl of PS to produce 1-acyl-
2-lyso-PS and further to form many bioactive lipid mediators
in many biological processes (Funk, 2001). Therefore, lyso-
phosphatidylserine is involved in a series of biological process
such as apoptosis and T cell activation (Bellini and Bruni,
1993). For example, when PS is exposed during apoptosis,
PS-PLA1 hydrolyzed PS on the cell surface and produces 1-
acyl-2-lyso-PS, stimulates histamine release from mast cells
in the presence of FcupvarepsilonRI cross-linker, and induces
inflammation and cell death (Hosono et al., 2001). In addition,
Lyso-phosphatidylserine can also enhance nerve growth factor-
induced neural differentiation, and may play a neuroprotective
role to improve tissue restoration after brain damage occurs
(Lourenssen and Blennerhassett, 1998).

To maintain normal cellular function, PS is distributed in
the inner leaflet of the lipid bilayers of the membrane; otherwise,
cells are induced to apoptosis as mentioned above when PS is
exposed on the outer leaflet of the lipid bilayers (Chua et al.,
2019). How is the distribution asymmetry of PS regulated in the
cellular lipid bilayers? Flippase, floppases, and scramblases are
three lipid transporter enzymes in the membranes that dictate
the fate of PS distribution. The P4 subfamily of P-type ATPases
(P4-ATPases) is identified as flippase which transport PS and
other lipids from the extracellular to the cytosolic side of the
membrane in an ATP-independent manner. All P4-ATPases are
critical to minimize PS exposure. Total fourteen P4-ATPases
are identified in the human genome; some of them are located
in the plasma membrane (such as ATP11A and ATP11C),
while some is located in the endosome membrane (such as
ATP8A1, ATP8A2, and ATP9A) (Nagata et al., 2020). Most P4-
ATPases require CDC50A (TMEM30A) as a functional subunit
for target localization (Coleman and Molday, 2011). Deletion
of the chaperone CDC50A in the cell promotes PS exposure
and cellular engulfment by macrophage (Segawa et al., 2014).
Opposite to flippase, floppase transports lipid from the cytosolic
to the extracellular side of the membrane. Lipid floppases
are identified as members of the ATP-binding cassette (ABC)
transporter superfamily. Floppase ABCA1 is responsible for PS
and cholesterol transportation and has been found to have a
critical role in lipid efflux and plasma membrane remodeling
(Gulshan et al., 2013). Scramblases are also important lipid
transporters that transport PS bidirectionally in an ATP-
independent manner (Leventis and Grinstein, 2010). Two
family members TMEM16 and Xk-related (XKR) protein are
identified to have scramblases activity (Suzuki et al., 2013;
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FIGURE 1

The biosynthesis, distribution, and degradation of phosphatidylserine. PS is produced in ER (MAM), PSS1 catalyzes PE to PS, PSS2 catalyzes PC to
PS. Some new PS is transported to mitochondria, and PS is decarboxylased and forms PE in mitochondria. PS is also transferred to the plasma
membrane and other oranges by the Golgi via traditional vesicle-mediated trafficking. PS in the endosome is recycled to the plasma membrane.
PS in lysosomes is derived from the Golgi apparatus or endosome. PS can be hydrolyzed by phospholipase A1 (PLA1) and phospholipase A2
(PLA2), the productions are 2-acyl-1-lyso -PS and 1-acyl-2-lyso-PS, respectively. Created with BioRender.com.

TABLE 1 The biological events of phosphatidylserine (PS) and the percentage of PS in total phospholipid of different organelles.

Organelles membrane PS% The key protein Events of PS distribution and metabolism

Plasma membrane 12 Flippase Floppase Scramblase Flippase transports PS from the extracellular to the cytosolic
side, floppase transports PS from the cytosolic to the
extracellular side, scramblases transports PS bidirectionally.

Endoplasmic reticulum 3–5 PSS1 and PSS2 scramblases Produce PS by PSS1 and PSS2 in MAMs, scramblases
translocate PS synthesized on the cytosolic side to the internal
leaflet.

Golgi complex 5 P4-ATPase Keep PS asymmetry, transport PS to plasma membrane, divert
PS to the prelysosomal endocytic compartment.

Early endosome 8.5 ATP8A1, ATP8A2, ATP9A, EHD1 ATP8A1, ATP8A2 and ATP9A are PS flippases, EHD1 is a PS
effector, all of them are essential for endosomal traffic through
recycling endosomes.

Late endosome 2.5–3.9

mitochondria 1 PS decarboxylase Decarboxylate PS to PE on the outer leaflet of the
mitochondrial inner membrane

EHD1, Eps15 homology domain-containing protein 1.

Kalienkova et al., 2021). Among the two families, TMEM16F
and XKR 8 are well-documented scramblases. As shown in
Figure 2, TMEM16F is a Ca2+-dependent scramblase, while

XKR8 responds to the caspase signal (Hankins et al., 2015).
However, these transporters may be interacted or crosstalk
between them may regulate PS metabolism. For example, in
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FIGURE 2

The scrambles are responsible for phosphatidylserine (PS)
exposure. PS scrambles are responsible for PS translocation
during cell apoptosis as well as other biological processes.
TMEM16F and XKr8 are well-documented PS scrambles. When
the intercellular Ca2+ concentration is upregulated, TMEM16F
binds Ca2+ and transports PS to the outer leaflet of the plasma
membrane. When the cell undergoes apoptosis, caspase cleaves
and activates XKr8, and then XKr8 exposes PS to the outside of
the cell and releases the “eat me” signal. But in other biological
processes, it remains unknown which scramble is activated or
both of them are activated. Created with BioRender.com.

the apoptotic cells or other biological processes, the flippases
are disrupted by caspase or inhibited by Ca2+; at the same
time, either TMEM16F or XKR8 is activated to expose PS and
participate these biological processes (Nagata et al., 2020).

The functions of endogenous
phosphatidylserine

As the protein docking sites on the cell
membrane, phosphatidylserine
participates in the activation of many
signaling pathways

PS is the major acidic phospholipid in the human brain,
accounting for 11.4–14.4% in the cerebral cortex, and 16.0–
21.1% in white matter and myelin (Svennerholm, 1968;
Horrocks, 1973). Hence, PS is an essential nutrient for the brain
and is implicated in the normal functions of the brain. As the
structural lipid in the cell membrane, many signaling molecules
or proteins interact with PS through their C2 domain or gamma-
carboxyglutamic acid domain in the presence of Ca2+; PS is
located inside the cells and servers as to recruit and activate

signal pathways, including PKC family, phosphoinositide-3-
kinase (PI3K)/AKT and Ras/Raf. For example, protein kinase
C (PKC) family members bind PS through their C2 domains,
while growth arrest-specific 6 (Gas6) binds PS via gamma-
carboxyglutamic acid domain (Rajotte et al., 2008). In addition,
due to the negatively charged headgroup of PS, some proteins
bind PS in a non-specific charge-based manner, such as protein
kinase Src, Rac1, and K-Ras, and activate these kinase and their
downstream signals (Stace and Ktistakis, 2006). These signal
pathways have been well described to support neuronal cell
survival, differentiation, and proliferation (Kim et al., 2014;
Glade and Smith, 2015; Kay and Fairn, 2019).

Phosphatidylserine is involved in
neurotransmission

Neurotransmission is a biological process by which neurons
transmit information and maintain normal functions of the
brain. Structurally, the neurotransmitters which are packaged
in synaptic vesicles are released by presynaptic membranes
via calcium-dependent exocytosis and then bind to the
receptor in the postsynaptic membrane and complete the
signal transmission between neurons (Kimura, 2021). PS is
a component of the synaptic vesicle and involves several
necessary neurotransmission steps. On the one hand, PS could
directly bind to neurotransmitters, and the binding facilitated
the availability of neurotransmitters for their re-uptake. For
examples, PS has the highest affinity among acidic lipids to bind
serotonin in brain tissues (Johnson et al., 1977); the headgroup
of PS in lipid bilayer is strongly bound to dopamine or
L-dopa through H-bonds (Orlowski et al., 2012). The interaction
between PS and neurotransmitters may facilitate the uptake
process or metabolization of neurotransmitters and exert their
effects (Orlowski et al., 2012). On the other hand, synaptic
vesicle exocytosis is the most important neurotransmission
process. Previous studies showed that PS treatment increases
synaptic vesicle number adjacent to the plasma membrane and
upregulates the frequency of calcium-dependent exocytosis of
synaptic vesicles (Uchiyama et al., 2007; Zhang et al., 2009).
Synaptic vesicle exocytosis includes three critical steps: vesicle
docking, prime, and fusion. PS may influence neurotransmitter
vesicle docking and fusion at the plasma membrane. Recently a
study demonstrated that PS promoted vesicle docking through
interaction with α-synuclein (α-Syn). When PS levels in the
vesicle membrane decrease, α-Syn inhibits the vesicle docking;
however, high levels of PS can bind to α-synuclein and
reverse its inhibition on the vesicle docking (Lou et al., 2017),
suggesting the critical role of PS in α-Syn-mediated vesicle
docking. Similarly, PS also regulates the opening and dilation
of the fusion pore via interaction with synaptotagmin I (syt-
1), the major calcium sensor for synaptic vesicle exocytosis
(Brose et al., 1992). This process is shown in Figure 3, PS or
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phosphatidylinositol is able to bind the C2 domains of Syt-
1 to promote the fusion of synaptic vesicle membrane with
the cell membrane (Tucker et al., 2004; Gruget et al., 2020).
Furthermore, the high level of PS increases the binding affinity
of Syt-1 to N-ethylmaleimide-sensitive fusion protein receptor
complex (SNARE) at the plasma membrane, which was the core
machinery complex for exocytosis. The Syt-1/SNARE complex
undergoes Ca2+- dependent oligomerized and inserts into the
presynaptic membrane and facilitates the opening and dilation
of the fusion pore for the neurotransmitter release (Hosono
et al., 2001; Koh and Bellen, 2003; Zhang et al., 2009; Figure 3).
In summary, PS is involved in the biological processes of the
release and re-uptake of neurotransmitters.

Phosphatidylserine is linked to
glia-mediated synaptic refinement

Synaptic refinement, as known as synaptic pruning, is
a process to eliminate supernumerary synapses. Impairment
of synaptic pruning is involved in the pathogenesis of ASD,
MDD, AD, and other mental conditions (Brown and Neher,
2014; Vilalta and Brown, 2018). Previous studies showed that
microglia and astrocytes mediate the regulation of synaptic
pruning (Schuldiner and Yaron, 2015; Wilton et al., 2019).
In the developmental and adult brain, glia-mediated synaptic
refinement is an essential physiological process to keep a proper
number of synapses to maintain functional neuronal circuits
(Schuldiner and Yaron, 2015). Similar to the apoptotic process,
PS externalization in synapses takes part in glia-mediated
synaptic pruning process in the developing hippocampus where
there are abundant synapses that need to be pruned (Scott-
Hewitt et al., 2020). On the contrary, microglial synapse
elimination can be prevented by blocking accessibility of
exposed PS using Annexin V or TREM2 loss in microglia
(Scott-Hewitt et al., 2020). In addition, mitochondrial activity
reduction contributes to PS exposure on axons, which is a
marker of axonal pruning (Shacham-Silverberg et al., 2018).

How PS involved in glia-mediate synaptic refinement
and axonal pruning is remains unclear? A previous study
showed that the complement protein C1q was also involved
in the synaptic pruning process by recognizing exposed PS
in synapses (Scott-Hewitt et al., 2020). Deficiency of C1q in
mice reduces the microglial engulfment of synapses and results
in excessive retinal innervation of lateral geniculate neurons
(Scott-Hewitt et al., 2020). The S4 variant of GPR56 splicing
isoforms is also found to bind PS to mediate synaptic pruning
by microglia; however, the deletion of GPR56 in microglia
fails to bind exposed PS and leads to excess synapses (Li
et al., 2020). In addition, some PS receptors that recognize
exposed PS in synapses are considered to mediate synaptic
pruning. Deletion of PS flippase chaperone CDC50A induces
PS exposure on neuronal somas and specifically eliminates

inhibitory post-synapse through microglial PS receptor Mer (Li
et al., 2021). Previous studies also showed that PS receptors
TREM2 and MEFG10 contribute to synaptic refinement in
microglia (Filipello et al., 2018) and in astrocytes (Lee et al.,
2021), respectively. Overall, PS exposure was a marker of
unwanted synapses and axons; PS receptors bind to exposed PS
and trigger synaptic pruning.

Phosphatidylserine located in the outer
of cell membrane is a marker of
apoptosis

The increasing lines of evidence demonstrate that PS
exposure in the outer leaflet of cell membrane can be
caused by apoptosis including intrinsic apoptosis and
extrinsic apoptosis (Kiraz et al., 2016). Intrinsic apoptosis
is induced by mitochondrial stress and the release of
cytochrome C from the mitochondria to the cytosol.
Cytochrome C in cytosol activates apoptotic protease-
activating factor 1 and caspase cascades like caspase 9
and caspases 3/7, resulting in intrinsic apoptosis (Segawa
et al., 2014). Extrinsic apoptosis is mediated by death
receptors including tumor necrosis factor receptor 1,
the Fas receptor (CD95), and the tumor necrosis factor-
related apoptosis-inducing ligand (traiL) receptors. Death
receptors interact with their ligands to activate caspase 8, and
activating caspase 8, in turn, activates caspase3/7. Activated
caspase3/7 is a key to trigger PS exposure and cell apoptosis
(Boada-Romero et al., 2020).

During apoptosis, caspases 3/7 inactivates PS flippase and
activates PS scramblases to expose PS (Segawa et al., 2014).
ATP11C (adenosine triphosphatase type 11C), a PS flippase
family member, is essential to maintain PS asymmetry in
the cell membrane (Takada et al., 2015; Segawa et al., 2018).
Activated caspases 3/7 cleave ATP11C upon the recognized sites
of ATP11C causing PS exposure in the outer of cell membrane
(Segawa et al., 2014). PS exposure is abolished and cells are not
induced to apoptosis and are not engulfed by macrophages when
caspase recognized sites of ATP11C are mutated (Segawa et al.,
2014). In addition, PS scramblases XKR8, which is important for
PS asymmetry, is also cleaved by caspase3/7 upon the recognized
site at C-terminus of XKR8 and activated (Suzuki et al., 2014).
Active XKR8 forms a high-order complex with basigin and
neuroplastin, two chaperone proteins of XKR8 (Suzuki et al.,
2014), and then exposes PS to cell surface (Suzuki et al., 2016).

Externalization of PS serves as a marker of apoptotic cells
and an “eat me” signal. Exposed PS on the cell surface is
recognized by PS receptors expressed in macrophages and
further initiates actin reorganization to engulf apoptotic cells
by macrophages (Lemke, 2019). PS receptors in macrophages
that bind PS directly or indirectly are shown in Figure 4.
Several PS receptors can recognize PS directly, such as T-cell
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FIGURE 3

Phosphatidylserine (PS) effector protein synaptotagmin I is involved in neurotransmitter release. As the figure shows, synaptotagmin I possesses
two C2 domains to bind Ca2+ and PS. N-terminus of synaptotagmin I is in synaptic vesicles and C2 domain in cytoplasmic. Synaptotagmin I
binds Ca2+ when Ca2+ flows into cells from the Ca2+ channels. The Ca2+ binding further increases the binding of synaptotagmin I to SNARE
complex as well as the fusion of synaptic and plasma membrane. SNARE complex includes the synaptosome-associated protein of 25 kDa
(SNAP25), synataxin, and synaotobrevin. Created with BioRender.com.

immunoglobulin and mucin domain-containing molecule-
1 and -4 (TIM-1, -4), receptor for advanced glycation
end products (RAGE), brain-specific angiogenesis inhibitor
1 (BAI1), triggering receptor expressed on myeloid cells 2
(TREM2), stabilin 2, and members of the CD300 family (Park
et al., 2007; Paidassi et al., 2008; Park et al., 2008; He et al.,
2011; Tian et al., 2014; Krasemann et al., 2017). Other PS
receptors, such as integrin αvβ3 and TAM receptors, bind to PS
indirectly and need bridging molecules. For example, integrin
αvβ3 binds to the epidermal growth factor domain of Milk
fat globule-EGF factor 8, which is a soluble PS receptor to
recognize exposed PS and apoptotic cells and mediate apoptotic
signal (Fuller and Van Eldik, 2008); Protein S and growth arrest
specific 6 also recognize PS and bridge TAM receptors with
apoptotic cell (Lemke, 2017). Most PS receptors are expressed
in peripheral macrophages and microglia, the primary tissue-
resident macrophages in the brain (Nazareth et al., 2021).

The function of exogenous
phosphatidylserine

Exogenous PS could obtain from the bovine brain and
krill, and also be made from soybean lecithin by the enzymatic
reaction with L-serine (Glade and Smith, 2015). When

exogenous PS is given, PS can be uptake and transported in the
cell by PS flippase, then incorporated into the membrane system
to support cell function (Glade and Smith, 2015). In addition, PS
liposomes that exposed PS on the surface could mimic apoptotic
cells, be recognized by PS receptors and engulfed by phagocytes,
and then triggered anti-inflammatory signal pathways (Aramaki
et al., 2001).

Phosphatidylserine improves the
cognitive function of the brain

Increasing studies have demonstrated that supplementation
of PS significantly improved the cognitive impairment caused
by aging, AD, or PD (Cenacchi et al., 1993; Kim et al.,
2014; More et al., 2014). In a double-blind study, the
elder patients with severe cognitive decline were treated
with brain cortex-derived PS (BC-PS) 300 mg/day for
6 months, compared with placebos, BC-PS administration
significantly improved the storage, learning, and retrieval
abilities of memory in patients. Treatment the aged patients
with BC-PS (300 mg/day) for 12 weeks also resulted in
significant improvement of cognitive function (Schreiber et al.,
2000). These results suggested that choric PS treatment
ameliorates the cognitive function of the brain. Previous
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FIGURE 4

Phosphatidylserine (PS) is involved in microglia-mediated neuron apoptosis. When the neuron is undergoing apoptosis, PS is exposed to the cell
surface. Microglia can find and phagocyte the apoptotic neuron. Several PS effectors expressed in microglia can recognize the exposed PS
directly or indirectly. TREM2, RAGE, TIM4, and BAI1 can bind PS directly. TAM receptors recognize PS indirectly through their ligands Gas6 and
ProS1. Both Gas6 and ProS1 have Gla-domain to bind PS. As well as TAM receptor, intergrinαvβ3 recognize PS through MFG-E8. All of the PS
effectors can trigger cytoskeletal rearrangement of microglia and engulf the dying neuron. Created with BioRender.com.

literatures demonstrate that PS benefits brain functions
in several ways.

First, PS may improve function of brain through PKC. Since
PKC activation influences the process of cognition through
regulating phosphorylation of substrates such as N-methyl-
D-aspartate (NMDA) receptor, AMPA receptor, and growth-
associated protein-43 (Sun and Alkon, 2010), the expressions
of several PKC isoforms are down-regulated in cognition
impairment conditions, including aging, PD, and AD (Mizutani
et al., 1998; Alkon et al., 2007; Do Van et al., 2016). Intake
of exogenous PS could promote the activity of PKC (Bell
and Burns, 1991), which phosphorylated its substrates to
boost cell function (Sun and Alkon, 2010). Secondly, PS may
ameliorate the cognitive function through enhancing glucose
mentalism, which is related to cognitive impairment. Abnormal
glucose metabolism rates of AD was found in predominantly
disease-affected brain regions of patients with AD and other
types of dementia (Friedland et al., 1983). The administration
of exogenous PS (500 mg daily for 3 weeks) increased
global glucose metabolism by 14.8% in the brain cortex and
significantly improved the cognition of AD patients (Heiss et al.,
1991; Klinkhammer et al., 1991). Thirdly, PS may improve the
cognitive function through normalization the activity of NMDA
receptor. NMDA receptor-mediated excitatory transmission is
essential for the cognition function of the brain (Cohen and
Muller, 1992). Compared to the young brains, the NMDA
receptors in the aging brains alters, such as decreasing density
of NMDA receptors and enhancing affinity to L-glutamine and
glycine (Cohen and Muller, 1992). Chronic treatment with
PS increased the density of NMDA receptors and normalized

the affinity to L-glutamine and glycine in aging mice (Cohen
and Muller, 1992). Fourthly, long-term potentiation requires
a persistent increase in synaptic efficacy and is a critical
synaptic mechanism of cognition (Thompson, 2000). Long-term
potentiation needs the activation of NMDA receptor/channel
complex. Treatment with exogenous PS also elicits synaptic
efficacy (Borghese et al., 1993). Furthermore, exogenous PS
stimulation also increased the metabolic levels of dopamine
and serotonin which is lower in the cerebrospinal fluid in
Alzheimer’s presenile dementia (Argentiero and Tavolato, 1980),
and a recent study reported PS also increased the release of
choline, which is an important neurotransmitter and decrease
in AD brains (Suzuki et al., 2001), In summary, PS can improve
the cognitive function of the brain through different pathways.

Phosphatidylserine inhibits
neuroinflammation in neurological
diseases

Neuroinflammation is an immune response in the
CNS and is mediated by microglia, astrocytes, or recruited
macrophages (Woodburn et al., 2021). Neuroinflammation
is involved in various conditions, including CNS injury,
ischemia, infection, toxin, or autoimmunity (Woodburn
et al., 2021). Neuroinflammation is a double-edged sword for
the CNS:transient neuroinflammation may play a protective
role during tissue repair after injury and remove the cellular
debris; meanwhile, chronic neuroinflammation is related to the
progression of CNS diseases such as AD, PD, stroke, and other
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brain injury (Catorce and Gevorkian, 2016; Leng and Edison,
2021).

Previous studies show that exogenous PS liposomes have
an anti-inflammatory effect in the CNS (Bachiller et al., 2018).
Treatment with PS liposomes or PS head group phospho-L-
serine, the expression of pro-inflammation cytokines (such as
TNFa and IL1β) and NO synthesis induced by LPS significantly
decrease, and the expression of anti-inflammation cytokines
(TGFβ and PGE2) significantly increase in microglia (De et al.,
2002; Huynh et al., 2002; De Simone et al., 2003; De Simone
et al., 2004; Zhang et al., 2006). Those studies suggested that PS
liposomes may play a neuroprotective role through modulating
microglia phenotype. PS and PC liposomes significantly increase
the survival retinal neurons after I/R by reducing the expression
of pro-inflammatory genes in microglia, such as IL1β, IL6,
and C-C Motif Chemokine Ligand 2–5 (Dvoriantchikova
et al., 2009). PS and PC liposomes also inhibit the microglial
activation induced by Aβ and interferon-γ through reducing
the production of TNFa, NO, and superoxide (Casamenti et al.,
1991). Intranasal PS liposomes prior to surgical brain injury
induction significantly increases TGFβ, and decreased IL1β and
TNFa in brain tissue to attenuate inflammation (De Simone
et al., 2004).

It is unknown how PS or its analogs mediates the
anti-inflammation effects. Previous studies show that Mer,
a PS receptor belonging to TAM receptor, triggered anti-
inflammation of macrophages because Mer deficiency did not
reduced LPS-induced inflammation in mice (Camenisch et al.,
1999; Vago et al., 2021). CD36, another PS receptor, is also
involved in anti-inflammation of PS liposomes (De Simone
et al., 2004). A newly identified PS receptor-phosphatidylserine-
specific receptor (PSR) may be involved in anti-inflammatory
effect of PS (Fadok et al., 2001). Like other PS receptors, PSR
is also involved in the phagocytosis but the more important
function of PSR is to inhibit excess inflammation (Fadok et al.,
2001). PSR in macrophages can inhibit the phagocytosis of
apoptotic cells when PSR is bound to its ligands such as PS
liposomes, phospho-L-serine, or PSR antibody; but promoted
the anti-inflammation induced by LPS by increasing TGFβ and
decreasing TNFa (Fadok et al., 2000). It remains unknown
whether other PS receptors also are involved in this process.
Mechanically, the interaction of the PS liposomes and PS
receptor may inhibit several important inflammation regulators,
such as p38 mitogen-activated protein kinase (p38MAPK),
cyclic AMP responding element-binding protein (CREB), and
NFκB. PS liposomes treatment significantly inhibits p38MAPK
phosphorylation induced by LPS (Aramaki et al., 2001; Ajmone-
Cat et al., 2003; Ma et al., 2011). Treating microglia with
PS liposomes reduces phosphorylation of CREB induced by
LPS (Ajmone-Cat et al., 2003). PS liposomes also inhibited
the activation of NFκB induced by LPS (Aramaki et al., 2001;
Ajmone-Cat et al., 2003). In addition, treatment with PS
liposomes triggers the activation of ERK in microglia as early

as 5 min (Ma et al., 2011). Therefore, the interaction between
PS and PS receptors not only mediated the phagocytosis of
apoptotic cells but also inhibit inflammation signaling and
the release of anti-inflammation cytokines to have the anti-
neuroinflammation effects.

The roles of phosphatidylserine in
different central nervous system
diseases

As described above, a growing body of data implicate
that both endogenous and exogenous PS plays critical roles
in CNS diseases. Therefore, we summarized the current
advances of PS in different CNS diseases, including AD, PD,
MDD, ischemic stroke, ASD, and attention deficit hyperactivity
disorder (ADHD).

Alzheimer’s disease

Alzheimer’s disease AD is a progressive neurodegenerative
disease; the pathological features of AD are characterized by the
accumulation of amyloid-β (Aβ) plaques and phosphorylated
tau neurofibrillary tangles (Paasila et al., 2021). There are many
hypotheses about the mechanisms of AD, including synaptic
dysfunctions hypothesis, cholinergic theory, amyloid cascade
hypothesis, tau cascade hypothesis, neuroinflammation, and
gut-brain axis hypotheses (Craig et al., 2011; Calsolaro and
Edison, 2016; Kowalski and Mulak, 2019; Ju and Tam, 2022).
Among these hypotheses, abnormal lipid metabolism in the cell
membrane is considered as one of the mechanisms of AD. The
alteration of PS and other phospholipids changes the viscosity
of cell membrane and hinders many biological processes,
such as enzyme activity, signal transduction efficiency, and
membrane carrier (Akyol et al., 2021). It is controversary
about the alternation of PS in brain tissues of AD patients.
Some studies have demonstrated PS is reduced in brains of
AD patients (Corrigan et al., 1998; Pettegrew et al., 2001;
Oma et al., 2012; Sabogal-Guaqueta et al., 2020; Akyol et al.,
2021). Meanwhile, others studies also found PS is increased
or unchanged in brains of AD patients (Wells et al., 1995;
Lampl et al., 2006; Martin et al., 2010; Kim W. S. et al., 2018).
The details are shown in Table 2. Similar to AD patients, the
changes of PS in brains are also not consistent in different
animal models of AD as shown in Table 3 (Yao et al., 2009;
Gonzalez-Dominguez et al., 2014; Martinez-Gardeazabal et al.,
2017; Fitzner et al., 2020; Yi et al., 2020; Dejakaisaya et al.,
2021). The reasons for this inconsistency may be explained
by brain regions, Braak stages, age in the AD patients, and
different experimental methods in studies. Therefore, PS is not
considered as a robust diagnostic marker for AD (Tokuoka et al.,
2019), but PS plays an important role in the mechanisms of
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AD. First, PS was reported to significantly increase the spine
density of hippocampal pyramidal neurons (Nunzi et al., 1989;
Spires-Jones et al., 2007); the reduction of dendritic spines is
related to brain cognitive impairment in AD and the aged
(Spires-Jones et al., 2007). Therefore, PS may ameliorate AD
symptoms by restoring dendritic spines. Secondly, PS could
negatively regulate the activity of PS synthase (PSS1 and PSS2) to
prevent the depletion of PC and PE, resulting in high potassium-
induced acetylcholine release (Casamenti et al., 1991; Suzuki
et al., 2001; Bergo et al., 2002); the increase of acetylcholine
release enhances the activity of cholinergic neurons and improve
the cognitive function of AD patients. Thirdly, PS reduces
the production of Aβ in CHO-APP/PS1 cells and Aβ-induced
toxicity to primary hippocampal neurons (Xu et al., 2021).
In addition, PS could combine with others drugs or function
as a drug carrier to improve AD symptoms, for example, PS
combines with ferulic acid and curcumin significantly to inhibit
Aβ production, phosphorylated tau, and IL1β release, and
increase brain-derived neurotrophic factor and acetylcholine
(Okuda et al., 2019). PS also serves as drug delivery approach
for metformin and nicotinamide to ameliorate the cognitive
function and inflammation (Vakilinezhad et al., 2018; Saffari
et al., 2020).

Although the function of PS in AD has not been well
clarified, clinical studies have shown that PS benefits patients
with AD (Crook et al., 1992; Heiss et al., 1994; More et al.,
2014). Clinical studies have shown that PS supplementation
significantly improves cognitive function and memory loss in
patients with AD. In a clinical trial, treatment the AD patients
with PS (100 mg, three times a day for 12 weeks) significantly
improved cognitive impairment, especially in the early stages
of AD (Crook et al., 1992). Co-administration of 300 mg PS
and 240 mg PA in AD patients also had shown the effects on
emotion and daily life quality (More et al., 2014). Combination
of cognitive training twice a week and PS treatment (200 mg,
twice a day) in AD patients benefited brain functions and
neuropsychological symptoms at 8 and 16 weeks after the
treatment (Heiss et al., 1994). These studies indicated that PS
could be used as a daily brain health supplement for AD patients.

Parkinson’s disease

Parkinson’s disease is a neurodegenerative disorder,
which clinically appears mainly as bradykinesia, rest tremor,
and muscular rigidity (Israel and Hassin-Baer, 2005). Two
pathogenesis features of PD are the loss of dopaminergic
neurons and the presence of Lewy bodies in the substantia
nigra and striatum. The degeneration of dopaminergic neurons
leads to the lack of dopamine in the substantia nigra and
striatum, while Lewy bodies contains a high concentration of
α-Syn that are toxic to neurons (Witt, 2014). Recent studies
have shown that abnormal lipid metabolism is also involved

in the pathogenesis of PD. Phospholipid levels in peripheral
blood of PD patients are higher than control subjects (Lobasso
et al., 2017). It is found to have higher PS in the frontal cortex
of PD at early stages (Fabelo et al., 2011; Canerina-Amaro
et al., 2019). PS is also found to increased significantly in skin
fibroblasts from Parkin-mutated PD patients (Li et al., 2015).
Similar to PD patients, PS also increased in the brains of PD
animal models (Canerina-Amaro et al., 2019). Therefore, PS is
increased in the brain of PD patients and PD animals. However,
the specific mechanism by which PS is involved in PD is still
largely unknown and needs to be further studied.

Increasing PS was proved to promote the aggregation of
α-Syn on phospholipid bilayers, which impairs the membrane
permeabilization and may contribute to neuronal death in the
substantia nigra in the brain of PD patients (Perrin et al., 2000;
Zhao et al., 2004; Stockl et al., 2008; Lv et al., 2019; Hannestad
et al., 2020). Kanamycin, an aminoglycoside antibiotic with
positively charged amino groups, was reported to interfere with
H-bonding between PS and α-Syn and inhibit aggregation of
α-Syn on membrane (Mahapatra et al., 2019); thus, kanamycin
may benefit PD patients. In addition, PS-riched exosomes also
accelerated the aggregation of α-Syn and the transmission of
α-Syn fibril between brain regions (Xia et al., 2019; Guo et al.,
2020). Therefore, upregulated PS is related to the development
of PD, and is a potential biomarker for the diagnosis of PD.

Interestingly, PS supplementation also benefits PD patients.
In a double-blind study, PS administration showed a significant
amelioration on some symptoms, such as motivation, anxiety,
and affectivity in PD patients (Funfgeld et al., 1989). PS reversed
memory impairment in reserpine-induced PD rat model (Alves
et al., 2000); however, PS did not improve cognitive impairment
in the classical MPTP-induced PD model (Perry et al., 2004),
suggesting different mechanisms in reserpine/MPTP-induce
memory impairment. Sleep disorders is a prodromal marker
of PD (Tekriwal et al., 2017). In addition, PS can also serve
as a drug delivery tool to elevate the bioavailability of drug,
such as epigallocatechin-3-gallate and GDF5. Epigallocatechin-
3-gallate, an antioxidant isolated from green tea with low
bioavailability and high instability, is a potentially therapeutic
for PD. Epigallocatechin-3-gallate–loaded PS liposomes reduced
the production of nitric oxide, IL-1β, TNF-α, and COX induced
by LPS in vivo and in vitro (Cheng et al., 2021). Furthermore,
simultaneous intra-nigral injection of PS liposomes loaded
with epigallocatechin-3-Gallate restored motor impairment in
the rotation behavior test (Cheng et al., 2021). Similarly, PS
liposomes loaded with growth differentiation factor GDF5 (a
drug that can protect dopaminergic neurons from degeneration)
with intranasal administration increased GDF5 concentration
in the midbrain by 8 fold (Hanson et al., 2012). PS liposomes
loaded with astragaloside IV and nestifin-1 facilitates the
penetrating of the blood-brain barrier and reduced the
expression of α-Syn (Kuo et al., 2021). Therefore, the PS
liposome is a delivery tool for PD drugs.
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TABLE 2 The alteration of phosphatidylserine (PS) in Alzheimer’s disease (AD) patients.

Age (years) Gender Tissue Method PS content

81.33± 6.57 7M/8F Neocortex LC-MS/MS Down

72.9± 0.8 – Inferior parietal lobule Occipital cortex 31P NMR Down

77.4± 7.2 3M/5F Hippocampus Gas chromatography Down

76.5± 8.1 7M/9F Erythrocyte Membrane HPLC Down

72.3± 10.6 4M/1F Cortex Annexin V SPECT
imaging

Up

– – Hippocampus Temporal cortex HPLC Up

70.9± 5.7 8M/6F Blood LC-MS/MS NA

81.2± 2.48 5M/5F Cortex HPTLC NA

70.1± 16.3 4M/6F White matter ESI-MS/MS Up

Gray matter Down

Cerebrospinal fluid Down

2D-HPLC, two-dimensional liquid chromatography/mass spectrometry;
HPLC, high performance liquid chromatography;
HPTLC, high performance thin layer chromatography;
31PNMR, 31P nuclear magnetic resonance.

TABLE 3 The alteration of phosphatidylserine (PS) in Alzheimer’s disease (AD) models.

Species Model type Age (month) Tissue Method PS content

Mouse APP/PS1 6 Hippocampus cortex GC-MS Up

Mouse ApoE KO 20 Corpus callosum MS Up

Mouse Tg2576 6 Cortex LC-MS Up

Rat 192IgG-saporin induced
AD

– Whole brain IMS Up

Mouse APP/PS1 9 Brain cortex HPLC Down

Major depressive disorder

Major depressive disorder is a very heterogeneous mental
disorder. Genetic, psychological, and environmental factors
are the main causes of MDD disease (Gu et al., 2020;
Nemeroff, 2020; Cao et al., 2021). Previous studies showed
that the concentration of PS in peripheral blood of MDD
patients increased significantly compared with healthy controls
(Kim E. Y. et al., 2018; Homorogan et al., 2021). The
content of PS was found to increase in the rat brains
of post-traumatic stress (Chaichi et al., 2021). In addition,
escitalopram, an antidepressant drug, significantly reduces
the concentration of PS in the peripheral blood of patients
with MDD, and also improved depressive behaviors (Pastoor
and Gobburu, 2014; Homorogan et al., 2021). Interestingly,
supplementation with PS significantly improves depressive
symptoms in both depressive animals and MDD patients.
Clinical studies have reported that treatment of elderly MDD
women with PS (200–600 mg/day) for 30 days significantly
improved the depressive symptoms (Maggioni et al., 1990;
Brambilla et al., 1996). Chronic PS administration (300 mg/day
for 1–6 months) for MDD patients also reduced apathy and
sleep disturbances, and increased motivation, and interest

(Palmieri et al., 1987). Combined supplementation with
100 mg PS, 119 mg docosahexaenoic acid, and 70 mg
eicosapentaenoic (three times a day) for 12 weeks significantly
improved depressive behaviors in MDD patients, accompanying
with the correction of the base level and circadian rhythm
of salivary cortisol (Komori, 2015). In animal models,
PS administration reduced the immobility time in the
forced swimming test in mice, implicating the significant
antidepressant effect of PS (Castilho et al., 2004). Treatment
post-stroke depressive mice with PS liposomes significantly
reduced the immobility time in the forced swimming test
and tail suspension test (Partoazar et al., 2021). In addition,
intracerebroventricular injection of PS also attenuated stress-
induced behaviors in chick isolation-induced stress model
(Koutoku et al., 2005).

The specific mechanism of antidepressant effects of PS is
still largely unknown; A previous study demonstrated that co-
injected PS with scopolamine, an antagonist of acetylcholine
receptors abolished antidepressant effects of PS, indicating
that muscarinic acetylcholine receptors are required for
antidepressant effects of PS (Koutoku et al., 2005). Other
studies have reported that PS treatment inhibits the production
of ACTH, reduces the production of plasma cortisol, and
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then slows down the activation of the hypothalamus-pituitary-
adrenal (HPA) axis in the process of MDD (Monteleone et al.,
1992; Hellhammer et al., 2004; More et al., 2014). Although
PS alleviated depressive behaviors in post-stroke depression
mice through the reduction of pro-inflammatory cytokines
such as TNF-α(Partoazar et al., 2021); the blood contents
of IL1β, TNF-α, and IL6 did not alter in elderly patients
with MDD after PS supplementation (Brambilla and Maggioni,
1998). Therefore, whether PS functions as an antidepressant
through anti-inflammatory needs further studies or not. How
PS improves depressive behaviors in MDD patients should be
studied further.

Ischemic stroke

Stroke is a very common and serious central nervous
system disease that remains the second-leading cause of
death and the third-leading cause of death and disability
(Collaborators, 2021). Stroke leads to acute brain damage and
cell death, which is accompanied by a series of physiological
and biochemical changes, such as the increase of reactive
oxygen species, calcium-dependent excitotoxicity, the alteration
of electrolyte composition, the increase of cytochrome c released
by mitochondria phospholipase mediated membrane damage
(Fisher and Saver, 2015; Collaborators, 2021; Feske, 2021). PS
has been demonstrated to be involved in the biological process
of stroke. The content of PS was found to decrease significantly
in the brain after ischemic injury; however, PS still decreased and
remained below to control even after the long time reperfusion,
although the contents of other lipids were restored quickly
(Enseleit et al., 1984; Wieloch et al., 1991; Rao et al., 2000). The
main reasons for the decrease of PS are unknown and may be
related to a large number of cell deaths and the degradation
of membrane structure after ischemic injury. The reduction of
PS influences the activity of intercellular enzymes such as PKC
(Huang et al., 2011). PKC is inactive in the cytosol and active
once binds to PS in the presence of Ca2+ in the cell membranes;
during ischemia and reperfusion, the total activity of PKC is
reduced (Huang et al., 2011). The activity decreased of PKC
was partly because PKC-α was dephosphorylated, transited from
dimer to trimer, and lost the activity, while PKC-β is degraded
by calpain (Louis et al., 1988; Wieloch et al., 1991; Harada et al.,
1999). Those studies suggest that ischemia/reperfusion destroys
the membrane system and changes the lipids in the membrane,
so, the activity of the membrane-bound enzyme is decreased and
normal function in the brain is impaired.

Similar to other diseases, PS also has a therapeutic effect
for stroke. Ischemia/reperfusion injury has been demonstrated
to elicit strong inflammatory responses mediated by activated
microglia/macrophages. Microglia/macrophages can be
activated by exposed PS on apoptotic cells (Zhao et al.,
2017); however, PS liposomes can mimic apoptotic cells
to target microglia/macrophages (Hosseini et al., 2015).

PS modified microbubbles could cross the blood–brain
barrier and target the activated microglia/macrophages in
an ischemic stroke mouse model (Zhao et al., 2018). As
described above, PS liposomes treatment promoted the
production of anti-inflammatory factors, and inhibited the
production of pro-inflammatory in phagocytes (Zhang et al.,
2006). Therefore, PS liposomes may have a neuroprotective
effect through enhancing the anti-inflammatory response of
microglia/macrophages in stroke.

Autism spectrum diseases

Autism spectrum disease is a neurodevelopmental disorder
and is defined by communication and social deficit, coupled
with repetitive and unusual sensory-motor behaviors (Mostafa
et al., 2010). Genetic and environmental risk factors may
contribute to ASD (Kim et al., 2019). The serum levels of PS
were much lower in autistic patients than healthy subjects (El-
Ansary et al., 2011). Another study found that serum PS levels
decreased in autistic children with impaired sensory compared
with control subjects (El-Ansary et al., 2016).

Autism spectrum disease is a heterogeneous
neurodevelopment disease. Recently, the largest whole-
exome sequencing study of ASD has identified 102 risk genes
(Satterstrom et al., 2020). Although numerous biomarkers and
risk genes have been reported, there is no robust biomarker
to diagnose, prognosis, and predicted ASD. The reduction of
PS in the blood of ASD patients could be a potential marker,
but still need further studies to evaluate the effectivity in
different subgroups.

Attention deficit hyperactivity disorder

Attention deficit hyperactivity disorder is a
neurodevelopmental disorder that is characterized by impairing
inattention, impulsivity, and motor hyperactivity (Polanczyk
et al., 2015). ADHD is a familial disorder and its genetic
factors contribute to 76% (Thapar and Cooper, 2016). Several
environmental factors are also linked to ADHD, ranging from
prenatal and perinatal factors, dietary factors, environmental
toxins, and psychiatric social factors (Mayer et al., 2021).
First-line pharmacological treatments for ADHD are CNS
stimulants, for example, methylphenidate and dexamfetamine.
The second-line treatment is the noradrenaline reuptake
inhibitor atomoxetine (Thapar and Cooper, 2016). However,
20–30% of children has failed to respond to those drugs
or cannot tolerate (Mayer et al., 2021). A clinical study
reported that treatment ADHD children with PS-omega3
(250mg/day) for 30 weeks significantly improved ADHD
symptoms including hyperactive-impulsive, emotionally, and
behavioraly-dysregulated symptoms (Manor et al., 2012).
Another clinical observation also showed that supplementation
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with 200 mg/day PS for 2 months resulted in significant
improvements in overall symptoms and short-term auditory
memory in ADHD children (Hirayama et al., 2014). However,
it is also showed that treatment ADHD patients with 200–
300?mg/day of PS significantly reduced inattention, while
no effects on overall symptoms of ADHD and hyperactivity-
impulsivity (Bruton et al., 2021). In conclusion, PS supplement
serves as a no adverse effect and natural nutritional strategy for
improving symptoms and ADHD patient’s quality of life (Manor
et al., 2013). ADHD is a high prevalence mental disorder and
affects a whole lifetime (Polanczyk et al., 2015), whether PS also
works in adult ADHD patients need further studies.

Schizophrenia

Schizophrenia is a mental disorder described by impairment
of cognitive, behavior, and motion. Symptoms of schizophrenia
include delusions, disorganized speech, and hallucinations
(Tandon et al., 2013). PS was increased in the thalamic (Schmitt
et al., 2004), and not changed in hippocampus of patients
with schizophrenia (Hamazaki et al., 2010), although thalamic
and hippocampus both are critical brain regions for cognition,
perhaps they are contributed to schizophrenia through different
mechanisms. On the contrary, the level of PS is lower in
fibroblasts and red blood cell from schizophrenia patients
(Mahadik et al., 1994; Ozcan et al., 2008), however, alteration
of PS in red blood cell membrane of schizophrenia patients is
inconsistent in different studies, several studies also supports

that PS is not change (Lautin et al., 1982). Abnormal membrane
phosphatidylserine and other lipids of fibroblast and red blood
cell may predate the onset of schizophrenia (Lautin et al., 1982),
could sever as predicted biomarker. PS is also related to poor
response of antipsychotics treatments in schizophrenia patients,
lower level of PS is found in poor responses to risperidone,
olanzapine, and quetiapine (de Almeida et al., 2020), due to the
important role of PS in brain function, lower PS may be involved
in worse outcomes of treatment.

Spinal cord injury

Spinal cord injury (SCI) is serious CNS disease which
caused by traumatic and non-traumatic reasons, and often leads
to impairments of sensory and motor function (Anjum et al.,
2020). Reduction of PS in spinal cord is reported in several
SCI animal models, including experimental autoimmune
encephalomyelitis (Chevalier and Rosenberger, 2017),
ischemia/reperfusion, and experimental traumatic injury
(Lukacova et al., 1996). These studies support that SCI
accompanied with the rapid degradation of PS and difficult
to restore. In ischemia/reperfusion injury, PS is decreased
during ischemia, and only partly region of spinal cord restore
to control even after 3 hours long term reperfusion (Lukacova
et al., 1996). PS is the main component of myelin sheath, and
loss of myelin sheath is common accompaniment of SCI, so to
increase PS may benefit SCI patients (Horrocks, 1973; Waxman,
1992; Anjum et al., 2020). Glyceryl triacetate treatment

TABLE 4 The trend and function of phosphatidylserine (PS) in central nervous system (CNS) disease.

Disease Trend of PS Function of PS PS improves
disease

Patient Animal model

AD Inconsistent Inconsistent Increase dendritic spine, increase
acetylcholine, inhibit the microglial
activation and tau hyperphosphorylation

Yes

PD Up Up Initiate and enhance aggregation of α-Syn,
function as carrier to deliver other drugs

Yes

MDD Up Up Blunt the activation of hypothalamus
pituitary adrenal axis, attenuate the
cytotoxicity of corticosterone

Yes

Stroke No data Down Reduced PS decrease the activity of PKC,
PS liposomes inhibit inflammation

No data

ASD down No data No data No data

ADHD No data No data No data Yes

Schizophrenia inconsistent No data No data No data

SCI No data Down No data No data
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significantly increased PS in experimental autoimmune
encephalomyelitis mice model, and improved the loss of myelin
(Chevalier and Rosenberger, 2017).

Conclusion

Phosphatidylserine is important nutritional component in
the cell membrane, especially with high proportion in the
brain and has critical multiple functions involving in cellular
signal transduction, cell death and survival, and inflammation.
As we summarize in Table 4, alterations of PS are observed
in the serum and the brains in different CNS diseases,
but the specific biological effects of altered PS in different
CNS diseases remain largely unknown and warrant further
investigations. However, a body of evidence showed that oral
PS benefits patients with different CNS diseases including
AD, PD, MDD, and ADHD. In addition, clinical studies also
showed that PS had no side effects and was well tolerated
(Heiss et al., 1994). Therefore, PS and PS liposome could be
a promising supplementation for these neurodegenerative and
neurodevelopmental diseases.
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