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Abstract

The phosphoinositide 3-kinase (PI3K) pathway crucially controls metabolism and cell growth.

Although different PI3K catalytic subunits are known to play distinct roles, the specific in vivo

function of p110β (the product of the PIK3CB gene) is not clear. Here, we show that mouse mutants

expressing a catalytically inactive PIK3CBK805R mutant survived to adulthood but showed growth

retardation and developed mild insulin resistance with age. Pharmacological and genetic analyses of

p110β function revealed that p110β catalytic activity is required for PI3K signaling downstream of

heterotrimeric guanine nucleotide-binding (G protein)-coupled receptors as well as to sustain long

term insulin signaling. In addition, PIK3CBK805R mice were protected in a model of ERBB2-driven

tumor development. These findings indicate an unexpected role for p110β catalytic activity in

diabetes and cancer, opening potential new avenues for therapeutic intervention.

Introduction

Phosphoinositide 3-kinases (PI3Ks) and their lipid product phosphatidylinositol-3,4,5-

trisphosphate [PtdIns(3,4,5)P3] are involved in signaling events influencing a large number of

cellular processes (1–3). Class IA PI3Ks are mainly activated by receptor tyrosine kinases

(RTKs) and form heterodimers composed of a catalytic subunit (p110α, β, or δ, which are

encoded by the PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a SH2 domain-

containing adaptor protein (p85α, p50α, p55α, p85β or p55γ) (3). Class IA PI3Ks are activated
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by either p85 recruitment to phosphorylated RTKs and adaptors like insulin receptor substrate

1 and 2 (IRS-1/2) or by binding to Ras (2). Whereas p110α is known to play a major role in

insulin signaling (4,5), and p110δ in lymphocyte activation (6), the role of p110β has remained

elusive. Pharmacological studies have suggested a role for p110β in platelet aggregation (7);

however, the early embryonic lethal phenotype caused by its genetic ablation (8) has prevented

accurate characterization of its in vivo function.

Aberrant regulation of the PI3K signaling pathway is frequently associated with cancer (9).

Mutations in the class IA p110 gene PIK3CA can be detected in a number of human tumors

(10,11). Although mutations in p110β corresponding to oncogenic p110α mutations fail to

elicit the same oncogenic behavior (12), overexpression of wild-type p110β induces

transformation in cultured cells (13) and various human cancers show increased abundance of

p110β (14). Nonetheless, whether targeting p110β could be effective in cancer therapy is

unknown.

Here, we show that mice expressing a catalytically inactive form of p110β survive to adulthood

and develop a mild insulin resistance with age. Mutant mice were protected in an in vivo model

of ERBB2-driven mammary gland cancer development, identifying p110β as a promising drug

target with tolerable side effects.

Results

Generation of mice expressing a kinase-dead p110β mutant

A mouse strain was engineered to carry a mutation in the PIK3CB gene (Suppl. Fig. 1) in which

Lys805 of the p110β ATP-binding site was replaced with Arg (PIK3CBK805R allele), leading

to the production of a catalytically inactive form of p110β (p110βK805R). Unexpectedly,

homozygous PIK3CBK805R/K805R mice were viable and reached adulthood. However, 50%

fewer PIK3CBK805R/K805R mice were born from heterozygous crosses than expected (50

mutant homozygotes out of 372 mice analyzed; P<0.0001 by χ2), indicating embryonic lethality

with incomplete penetrance. This phenotype could not be associated to expression of aberrant

p110β variants still retaining partial catalytic activity (Suppl. Fig. 2a–e).

Unexpected non-catalytic function of p110β
At embryonic day 13.5, two distinct groups of PIK3CBK805R/K805R littermate embryos were

found: approximately 70% appeared normal, whereas approximately 30% were abnormally

small and moribund. The existence of these two distinct groups appeared to be related to genetic

background because increased contribution of the C57/BL6J background resulted in a marked

decrease in the percentage of normal homozygous embryos. In murine embryonic fibroblasts

(MEFs) derived from these two mutant populations, the protein and mRNA abundance of

p110βK805R was different (Fig. 1a, b and Suppl. Fig. 2g); it reached 60 to 80% of control

amounts in normal embryos (PIK3CBK805R/K805R High) but only 5 to 20% of wild-type

p110β amounts in abnormal embryos (PIK3CBK805R/K805R Low). In MEFs from

PIK3CBK805R/K805R High, enzymatic activity of p110βK805R did not increase above

background (Fig. 1c and d) however p110α and p85 expression were not altered from that in

wild-type MEFs (Fig. 1a and b). Similarly, both total class IA PI3K activity, precipitated with

beads linked to a phosphopeptide that mimicked an activated growth factor receptor (Fig. 1d,

Suppl. Fig 2f), and p110α activity, immunoprecipitated with antibodies directed against

p110α, (Suppl. Fig 2f) were normal, showing that the in vitro activity of other class IA PI3Ks

was unaltered. Further, decreased p110β abundance did not cause any substantial increase in

free p85 (Suppl. Fig. 3).
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Lack of p110β leads to early embryonic lethality associated with defective cell proliferation

(8) and, in agreement, impaired cell proliferation was found in PIK3CBK805R/K805R Low MEFs.

In contrast, PIK3CBK805R/K805R High cells unexpectedly proliferated at a rate similar to that of

wild-type MEFs (Fig. 1e). Consistent with this, cell proliferation of wild-type MEFs did not

change after treatment with the p110β-selective inhibitors TGX-221 (7) (Fig. 1e) or TGX-155

(15) (Suppl. Fig. 4), suggesting a non-catalytic function of p110β. p110β is known to associate

with Rab5, a monomeric small guanosine triphosphatase (GTPase) involved in fusion of

clathrin-coated vesicles and in growth factor receptor endocytosis (16,17). We thus

investigated the possible role of p110β in these processes. We found that, although the amount

of plasma membrane epidermal growth factor receptor (EGFR) was similar in mutant and

control cells, internalization of epidermal growth factor (EGF)-activated EGFR in

PIK3CBK805R/K805R Low cells was impaired compared to both wild-type and

PIK3CBK805R/K805R High cells (Fig. 2a).

Overexpression of a dominant-active Rab5 mutant (Rab5Q79L) did not rescue EGFR

internalization in the PIK3CBK805R/K805R Low MEFs (Suppl. Fig. 5), suggesting a role of

p110β at early steps of endocytosis. Consistently, PIK3CBK805R/K805R Low MEFs showed a

decrease in the numbers of clathrin-positive vesicles beneath the plasma membrane compared

to control cells. In contrast, clathrin staining in the perinuclear region was not affected (Fig.

2b). Moreover, recruitment of the Rab5 effector early endosomal antigen 1 (EEA1) to early

endosomes was reduced in PIK3CBK805R/K805R Low MEFs (Fig. 2b), likely as a consequence

of alterations in the endocytic route.

Requirement for p110β catalytic function downstream of both receptor tyrosine kinases and
G protein-coupled receptors

Comparison of wild-type and PIK3CBK805R/K805R High MEFs revealed that the catalytic

function of p110β was not required for Akt activation 5 minutes after stimulation with insulin,

insulin-like growth factor 1 (IGF-1), EGF, or platelet-derived growth factor (PDGF) (Fig. 3a

and Suppl. Fig 6). Nonetheless, p110β catalytic activity in MEFs was required for

lysophosphatidic acid (LPA)- and sphingosine-1-phosphate (S1P)-dependent phosphorylation

of Akt (Fig. 3b and 3c), providing genetic evidence for the involvement of p110β in

heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR)

signaling, as previously suggested (5,18,19).

Despite the normal growth of PIK3CBK805R/K805R High MEFs in culture,

PIK3CBK805R/K805R mice showed growth retardation, suggesting p110β involvement in

growth control in vivo. PIK3CBK805R/K805R mice were born smaller than controls and showed

an average 20% growth retardation that was compensated only after 24 weeks of age, at which

time they did not show a significant reduction in muscle weight or alteration in fat mass (Fig.

3d and e, and Suppl. Fig. 7a and b). The abundance of p110βK805R in various tissues, including

liver, fat, and skeletal muscle, appeared lower than in controls but was never as low as in MEFs

derived from abnormal embryos (Suppl. Fig. 7c). Mutant livers also displayed normal amounts

of insulin receptor-β (IRβ) and IRS-1 (Suppl. Fig. 7d). In PIK3CBK805R/K805R liver extracts,

p110β enzymatic activity was undetectable; however, PI3K activity precipitated by either anti-

p110α antibodies or pan-p85 unselective antibodies or by phosphopeptide-linked beads (Suppl.

Fig. 2f) was unaltered, suggesting normal in vitro activity of other class IA PI3K.

PIK3CBK805R/K805R mice developed increased blood glucose and signs of mild insulin

resistance that was detectable from 6 months of age (Fig. 4a–f). This phenotype was

accompanied by pancreatic islet hyperplasia and increased insulin secretion (Fig. 4g).

Furthermore, mutant mice showed reduced hepatic glycogen deposits and defective insulin-

mediated inhibition of gluconeogenesis (Fig. 4h–j), indicating that the mutation impacts

insulin-mediated control of liver metabolism. Similarly, mutant mice showed decreased
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expression of sterol regulatory element-binding protein factor 1C (SREBF-1c), a transcription

factor that regulates the lipogenic program, as well as reduced serum triglycerides and

cholesterol, demonstrating abnormal lipid metabolism in the liver and consequent dyslipidemia

(Table I).

Because these findings appear inconsistent with a major role of p110α in insulin signaling (4,

5), we sought to define the molecular mechanism involved, by analyzing the signaling complex

at the activated insulin receptor. In agreement with p110α being crucial for acute insulin

receptor signaling, at early time points after insulin stimulation 8 week-old

PIK3CBK805R/K805R livers showed normal recruitment of p85 and p110α to IRS-1 (Fig 5a) as

well as unaltered p110α activity (Suppl. Fig. 7e) and Akt phosphorylation (Fig 5b). However,

in livers of wild-type mice treated with TGX-155 or of PIK3CBK805R/K805R mice, insulin-

evoked Akt activation declined significantly faster than in untreated wild-type controls (Fig.

5b). Similar results were observed in insulin-stimulated HepG2 hepatoma cells treated with

TGX-221 (Suppl. Fig. 8).

Requirement for p110β in ERBB2-mediated mammary carcinogenesis

The observation that p110β catalytic function was required for insulin signaling suggested that

this isoform could also be involved downstream of other growth factor receptors or their

oncogenic forms. Because p110β can be activated downstream of EGFR (17,20) and is

homogeneously expressed in the epithelium of mammary ducts (Fig. 6a), we studied the

PIK3CBK805R mutation in a model of breast cancer triggered by activated ERBB2 (also known

as HER-2 or neu) (21,22), an oncogene known to signal through an unidentified PI3K isoform

(s) (23). PIK3CBK805R/K805R mice were intercrossed with BalbC transgenic mice expressing

activated ERBB2 (neuT) in the mammary gland. A cohort of 7 PIK3CBK805R/K805R/neuT and

10 PIK3CBWT/WT/neuT female mice was followed for 350 days. In agreement with whole

mount preparations showing a strong reduction of the side buds at 10 weeks of age (Fig. 6c),

development of the first tumor was substantially delayed in PIK3CBK805R/K805R/neuT mice

(Fig. 6b and Table II). Furthermore, at least up to 380 days of life, PIK3CBK805R/K805R/neuT

mice showed a reduced number of tumors (Suppl. Fig. 9a), which grew at a significantly lower

rate than in PIK3CBWT/WT/neuT controls (Table II and Suppl. Fig. 9b). Immunohistochemistry

showed expression of activated ERBB2 in both genotypes; however, the foci of transformation

and the high numbers of proliferating Proliferating Cell Nuclear Antigen (PCNA)-positive

cells, which completely filled duct lumina of PIK3CBWT/WT/neuT mammary glands, were

reduced in mutant samples, which showed empty and scarcely proliferating structures (Fig.

6d). To determine whether this protection was intrinsic to the function of p110β in mammary

gland epithelium, cells from multiple primary tumors were bulk cultured in vitro.

Immunostaining with antibodies directed against E-Cadherin confirmed that these cultures

consisted of a homogeneous epithelial population (Suppl. Fig. 10). PIK3CBK805R/K805R/neuT

cells showed an average one third reduction in total p110β abundance but normal amounts of

p110α and p85 (Fig. 7a). The development of tumors in compound-mutant mice correlated

with mutations downstream of PI3K because a reduction in the amount of the PtdIns(3,4,5)

P3 phosphatase PTEN was detected in polyclonal PIK3CBK805R/K805R/neuT tumors (Fig. 7a).

Despite the decrease in PTEN abundance, PIK3CBK805R/K805R/neuT cell populations grew

significantly slower than controls (Fig. 7b). To test if this effect was due to either the lack of

the kinase activity or the reduction in p110βK805R expression, cells of both genotypes were

cultured in the presence of p110βselective inhibitors, TGX-155 or TGX-221 (7,15,24) (Fig.

7b). This treatment did not show effects in PIK3CBK805R/K805R/neuT cells but caused a

significant reduction in proliferation in wild-type tumor cells, demonstrating that oncogenic

ERBB2 drives tumor growth largely through p110β catalytic activity.
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Discussion

Whereas PI3Ks-mediated signaling has been implicated in the control of cell proliferation,

survival, and metabolism, the specific role of the p110β isoform has long remained elusive.

We showed here that, unexpectedly, p110β possesses both kinase-dependent and independent

functions. Indeed, our results indicate that p110β may have a scaffolding function, as already

shown for the G protein-coupled p110γ (25). The kinase-independent function(s) of p110β are

sufficient for embryonic development because low abundance of p110β protein led to

embryonic lethality and the presence of p110β--even in a catalytically inactive form--was

sufficient to allow embryonic development and viability to adulthood.

The existence of a multiprotein complex containing both p110β and Rab5 (16,17) suggests a

potential function of p110β in clathrin-mediated endocytosis. Our results are consistent with

p110β being mainly associated with clathrin-coated vesicles (16) and support the requirement

for p110β kinase-independent activity early in the endocytic pathway. Indeed, our findings

suggest that GTP-bound active-Rab5 recruits p110β to clathrin-coated pits or vesicles and that

the scaffolding activity of p110β contributes to their assembly. In the absence of such

scaffolding function clathrin-coated vesicles seem to be inefficiently formed. In turn, this

appears to affect the Rab5-dependent endocytic pathway resulting in a decrease of EEA1-

positive endosomes.

Despite the unexpected finding of its non-catalytic function, p110β kinase activity is clearly

required downstream of both receptor tyrosine kinases and GPCRs. For example, GPCR

signaling triggered by S1P and LPA required p110β to trigger Akt phosphorylation. This

provides a simple mechanistic explanation for the apparently paradoxical ability of GPCRs to

trigger PI3K signaling in cells not expressing p110γ, the prototypical GPCR-activated PI3K

(26). Our findings are in agreement with recent reports (27,28) and with earlier pioneering

studies indicating GPCR-mediated p110β activation (19) by direct association of p110β with

the βγ dimer of heterotrimeric G proteins (18).

On the other hand, our data also indicate p110β catalytic function is required downstream of

receptor tyrosine kinases and contributes to insulin receptor signaling. Pik3cbK805R/K805R mice

show a mild increase in blood glucose and peripheral insulin resistance, which is accompanied

by increased insulin secretion and pancreatic islet hyperplasia. This is consistent with a

compensation typical of the hyperinsulinemia observed in patients with impaired glucose

tolerance (29). In addition, decreased hepatic glycogen deposits and defective insulin-mediated

inhibition of gluoconeogenesis indicate that the absence of p110β catalytic activity impacts

insulin-mediated control of liver metabolism. Similarly, p110β is required for lipid metabolism

and for the regulation of the lipogenic program as demonstrated by the decreased expression

of SREBF-1c as well as reduced serum tryglicerides and cholesterol. These finding were

unexpected because p110α is the main PI3K isoform known to be involved in insulin signaling

(4,5). Nonetheless, consistent with our findings, reduced p110β expression correlates with the

incidence of type 2 diabetes associated with low birthweight (30). Although p110α alpha plays

a major role in the insulin signaling pathway, we demonstrate that p110β activity is essential

to sustain a prolonged insulin stimulation. Mechanistically, this effect could perhaps be

explained through the auto-inhibition of p110α, but not of p110β, following insulin stimulation

(31). Although the limited extent of Akt phosphorylation impairment suggests a possible

combination of kinase-dependent and independent functions of p110β in insulin signaling, our

data show that the catalytic activity of p110β supports p110α function. Therefore, whereas the

spike of PI3K signaling following insulin and growth factor stimulation depends on p110α
(5), our results provide conclusive genetic evidence that p110β supports the PtdIns(3,4,5)P3

production that sustains this response.
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A similar mechanism could account for the reduced tumorigenicity associated with oncogenic

ERBB2 signaling. Previous reports have demonstrated that PI3K signaling is involved in

ERBB2-mediated proliferation of mammary gland epithelium (32) but have also shown that

mutations of the p110α-encoding PIK3CA gene are associated with ERBB2 amplification,

suggesting a link between p110α and ERBB2 signaling (33). However, as decreased

proliferation is detected in PIK3CBK805R/K805R/neuT compound mutant mammary glands, it

is possible that, instead of p110α, p110β is the critical PI3K involved in ERBB2-positive cancer

cell proliferation. PIK3CA mutation is mutually exclusive with the loss of the PtdIns(3,4,5)

P3 phosphatase PTEN (33) suggesting that p110α might play little role when PTEN is absent.

In agreement, prostate cancer development triggered by PTEN loss is blocked by the lack of

p110β and not p110α (27). Our data confirm and extend this idea, providing the first conclusive

evidence that inhibition of the catalytic activity of p110β reduces proliferation of mammary

gland cancer cells even in conditions of low PTEN abundance.

In conclusion, the data presented here indicate that the kinase-independent function(s) of

p110β are sufficient for embryonic development but that p110β kinase activity is needed for

normal insulin receptor signaling and for the growth of ERBB2-dependent mammary gland

cancers (Fig. 8). These results suggest highly tissue-specific functions for p110β and indicate

that p110β targeting could represent a promising option for treatment of selected tumors such

as ERBB2-driven breast cancer.

Materials and methods

Mice

The targeting strategy used to generate the PIK3CBK805R allele was similar to that previously

used to generate the PIK3CGK833R allele (25). Briefly, the point mutation leading to the

substitution with an R of the K805 crucial for kinase activity was generated by site directed-

mutagenesis of the PIK3CB cDNA and fused in frame with the PIK3CB 5th coding exon,

followed by an internal ribosome entry site-enhanced Green Fluorescent Protein (IRES-eGFP)

cassette and a pA signal. A Neor/HSV thymidine kinase selection cassette flanked by loxP sites

was placed upstream of the mutant cDNA. To allow conditional expression of the kinase-dead

p110β mutant, a duplicated PIK3CB 5th coding exon fused in frame with the PIK3CB wild-

type cDNA and flanked by loxP sites was placed upstream of the selection cassette. The

construct was electroporated in E14 embryonic stem (ES) cells and two independent

recombinant clones were isolated. Heterozygous mice obtained from germ line chimeras were

bred with Balancer Cre mice to delete the wild-type cDNA cassette and progeny were

intercrossed to obtain PIK3CBK805R/K805R mice. Phenotypic analysis was carried out on two

lines derived from independent clones. Results were obtained studying wild-type and mutant

littermates derived from heterozygous crosses of mixed 50%129/Sv-C57Bl/6J-50%BalbC

genetic background as well as in 9th generation C57Bl/6J (for diabetes studies) and 3rd

generation BalbC (for cancer studies) backcrossed mice.

Reagents

The antibody directed against p110β was from S. Cruz Biotechnology (# sc-602). Antibodies

directed against total Akt and P-Ser473 Akt were from a mouse monoclonal clone and from

Cell Signaling Technology (#9271), respectively. Antibodies directed against p85 (#4257) and

p110α (# 4254) were from Cell Signaling Technology. Antibodies directed against IRS-1 (#05–

699) and insulin receptor α subunit (#07–724) were from Upstate.

Protein analysis

Tissues were removed, frozen in liquid nitrogen, and homogenized in lysis buffer (50mM Tris-

HCl ph 8 and 150 mM NaCl) supplemented with 2 mg/ml aprotinin, 1 mM pepstatin, 1 ng/ml
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leupeptin, 50 mM NaF, 2 mM Sodium O-vanadate, 1 mM sodium pyrophosphate, and 1%

Triton X-100. The same buffer was used to solubilize protein extracts from cultured cells.

Homogenates were clarified by centrifugation in a microcentrifuge at 4°C. Supernatant were

analyzed for immunoblotting or immunoprecipitated for either 1h or overnight with the

indicated antibodies. Immunocomplexes were bound to 30 μl of a suspension of 50% protein

A- or protein G-Sepharose beads and washed with lysis buffer. Beads were resolved on SDS-

PAGE and transferred on PVDF membranes. Blots were probed with the indicated antibodies

and developed with enhanced chemiluminescence (ECL, Millipore).

Lipid kinase assay

p110α, p110β and pan-p85 were immunoprecipitated using specific antibodies. Alternatively,

all class IA PI3K were pulled down with a phosphopeptide YpVPMLG corresponding to the

consensus sequence next to Tyr 751 of the human PDGF receptor β. Proteins were then

incubated with 10 mg of phosphatidyl inositol and radiolabeled ATP (10 mM cold ATP, 5

μCi P32 ATP). PtdIns(3)P products were resolved by thin-layer chromatography and visualized

with autoradiography.

Endocytosis assays

Endocytosis assay was performed as described (34). Briefly, MEF cells were serum-starved

for 2 hours in Dulbeccos’s Modified Eagle Medium (DMEM) supplemented with 0.3% BSA.

Cells were incubated with purified EGF (100 ng/ml Upstate Biotechnology Inc.) or

fluorescently labelled EGF in DMEM supplemented with 0.3% BSA at 4 °C for 1 hour. The

EGF-containing medium was then replaced with warm DMEM and cells were incubated at

37°C for a further 15 min. Cells were fixed with 4% paraformaldehyde in PBS for 10 min and

permeabilized with 0.1% TritonX-100 in PBS for 10 min. Cells were extensively washed and

stained with monoclonal anti-EGFR antibody (Oncogene Science, USA, catalog n. Ab-1), anti-

EEA1 antibody (Santa Cruz, CA, USA, catalog n. SC6415), and anti-clathrin antibody

(Affinity Bioreagents, CO, USA, catalog n. MA1-065) followed by Cy3-conjugated goat anti-

mouse IgG (1:400 in PBS). Nuclei were stained with DAPI (Sigma). Time point 0 was obtained

by fixing the cells after incubation with EGF at 4°C for 1 hour. Cells were stained without

permeabilization as described above.

Cell culture and proliferation

For determination of relative growth, MEFs were seeded in triplicate at 2.5×105 cells per 6 cm

tissue culture dish, with DMEM containing GlutaMAX and 4.5g/l glucose, (Invitrogen, USA)

supplemented with 10% Fetal Bovine Serum (FBS). Cell numbers were evaluated using an

automatic cell counter (Casy Technology, Germany). For measurement of tumor proliferation,

cells were seeded in triplicate at 5×103 cells per 96 well dish and counted using an 3-(4,5-

dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based colorimetric assay

(Roche, Germany). Inhibitors of p110β were added to the culture 24 hours after plating. Data

are the average of at least three independent experiments.

Metabolic studies

Measurements of body weight and length, glucose tolerance tests, and plasma insulin level

determination were performed as previously described (35). Insulin tolerance tests were

conducted on randomly fed (fed ad libitum) mice, by intraperitoneal injection of 1 U/kg of

recombinant human insulin, followed by measurement of blood glucose at various time points.

Plasma insulin was dosed using a RIA kit (#SRI-13K; LINCO Research, USA) following

manufacturer’s instructions. Measurement of other hematological parameters and quantitative

polymerase chain reaction (PCR) were performed following standard protocols (36). Glycogen

was measured as described (37).
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Histological analysis

For pancreatic islet morphometric analysis, tissue was fixed in 10% neutral-buffered formalin,

embedded in paraffin and cut into 5 μm thick sections. Sections were stained with haematoxylin

and eosin following standard protocols. Islet area was measured with the Metamorph software

in 8 sections 200 mM apart. Nuclei in each islet were counted and normalized to the measured

area.

Histology, immunohistochemistry and mammary gland whole mount preparations were

performed as previously described (38).

For mammary gland immunofluorescence analysis, mammary glands were fixed in PLP (4%

paraformaldehyde, 0.2% periodate, 1.2% lysine in 0.1 M phosphate buffer), embedded in

Optimum cutting temperature (OCT) freezing medium and cut into 5 μm thick sections.

Fluorescently labeled 5g9 anti-p110β monoclonal antibody was obtained by coupling the

purified Ig with Alexa Fluor® 488 (Pierce Biotechnology # 46403, IL, USA).

Statistical analysis

Statistical significance was calculated with Student’s t, one or two-way ANOVA tests followed

by Bonferroni’s post hoc analysis, or Mantel-Haenszel Log-rank test where appropriate. Values

are reported as the mean±standard error of the mean.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Kinase-dependent and independent functions of p110β in wild-type (PIK3CBWT/WT) and

PIK3CBK805R/K805R MEFs. A) PIK3CBK805R gene dosage inversely correlates with phenotype

severity. MEFs were derived from apparently normal (PIK3CBK805R/K805R High) or abnormal

(PIK3CBK805R/K805R Low) 13.5 days post conception (d.p.c.) PIK3CBK805R/K805R embryos.

Homogenates of MEFs of the described phenotypes were analyzed by SDS–PAGE and

immunoblotted with the indicated antibodies. B) Analysis of p85 association to p110 in MEFs.

Protein extracts were immunoprecipitated with anti-pan p85 antibodies and immunoblotted

using the indicated antibodies. C) Analysis of p110β catalytic activity. Representative lipid

kinase assay with p110β immunoprecipitated from wild-type or PIK3CBK805R/K805R High

MEFs. D) PI3K activity in PIK3CBK805R/K805R High (KR) MEFs relative to that in wild type

controls (WT), as measured after pull down with anti-p110β antibodies or with

phosphopeptide-bound beads associating with all class IA PI3Ks. Asterisks: P < 0.001. E)
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Proliferation curve of mutant MEFs with high and low p110βK805R expression levels compared

to that of wild-type MEFs with or without 100 nM TGX-221 treatment (TGX). Statistical

significance: PIK3CBK805R/K805R Low cells vs. all other conditions (* P < 0.05, ** P < 0.01);

other pairs of datasets: not significant.
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Fig. 2.

Analysis of EGF receptor endocytosis. A) Immunofluorescence of cells of the given genotype

incubated with EGF for 1 hour at 4°C (0 min) and then shifted to 37°C for 15 minutes (15 min).

Merged images show EGFR in white and 4′-6-Diamidino-2-phenylindole (DAPI) in blue.

Exposure times were identical for the different genotypes but longer at 0 min to better show

cell surface EGFR. B) Immunofluorescence of cells of the given genotype with anti-clathrin

(top) or anti-EEA1 antibodies. Merged images show clathrin or EEA1 in red and DAPI in blue.
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Fig. 3.

In vitro and in vivo consequences of p110β kinase-dead expression. A) IGF-1 and insulin-

dependent Akt (also known as Protein kinase B, PKB) and extracellular signal regulated kinase

1 and 2 (Erk1/2) phosphorylation in wild-type (WT) and kinase-dead (KR) MEFs derived from

normal embryos. Shown is a representative Western blot of eight independent experiments

analyzing the response at 5 minutes after stimulation. B) Analysis of Akt phosphorylation after

stimulation with LPA. Wild-type (WT) and PIK3CBK805R/K805R High MEFs were stimulated

with 10μM LPA in the absence or presence of 100 nM TGX-221. C) Analysis of Akt

phosphorylation 5 minutes after stimulation with S1P of cells of the indicated genotype in the

presence or absence of the p110β inhibitor TGX221. Shown is a representative Western blot

of three independent experiments. D) Growth analysis of PIK3CBK805R/K805R (KR) mice. The

figure shows the external appearance of 6 week-old wild-type (WT) and

PIK3CBK805R/K805R (KR) mice. E) Weight gain curve of wild-type (WT) and

PIK3CBK805R/K805R (KR) mice from 3 to 24 weeks after birth (males n=13, females n=22; *

P < 0.05, ** P < 0.01, ** P < 0.001).
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Fig. 4.

Insulin-dependent glucose metabolism in 6-month old wild-type (WT) and

PIK3CBK805R/K805R mice (KR). Statistical significance: * P < 0.05, ** P < 0.01, ** P < 0.001.

A) Blood glucose in random fed mice (n=9 per genotype). B) Insulin concentrations in the

serum of random fed mice (n=9 per genotype). C) Blood glucose in fasted mice (wild type,

n=9; KR, n=6). D) Glucose tolerance test (n=5 per genotype). E) Insulin tolerance test (n=7

per genotype). F) Insulin concentration in serum of glucose-treated fasted animals. G) Analysis

of pancreatic islet size. Left: histological sections of hematoxylin-eosin (H & E) stained

pancreata. Center: quantification of islet area (n=4 per genotype). Right: immunofluorescence

with antibodies directed against insulin (Ins; red) and against glucagon (Gcn; green). Nuclei

were stained with bisbenzimide (DNA; blue). Bars represent 100 μm. H) Histology of a
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representative liver section of the indicated mice stained with the periodate-Schiff (PAS) stain,

recognizing carbohydrates. Measurement of % of PAS positive pixels: WT: 7.3 ± 0.9; KR:

2.27 ± 0.4. I) Glycogen levels in the liver of randomly fed 24 week-old mice (n=7). J) Pyruvate

challenge of wild-type (WT) and PIK3CBK805R/K805R (KR) mice. A bolus of 2 g/kg was

administered intraperitoneally in 24 week-old mice fasted for 16 hours and blood glucose was

measured at the indicated time points (n=5).
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Fig. 5.

Role of p110β in insulin signaling. A) Insulin-induced recruitment to IRS-1 of p85 and

p110α, determined by IRS-1 immunoprecipitation followed by immunoblot, 5 min after insulin

stimulation of livers. B) Phosphorylation of Akt (on Thr308 and Ser473) determined by

immunoblot, in livers of mice of the indicated genotype with and without TGX-155 treatment.

Lower panel: quantification of Akt phosphorylation on Ser473 (n=5; ** P < 0.01).

Ciraolo et al. Page 17

Sci Signal. Author manuscript; available in PMC 2009 June 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 6.

p110β is required for ERBB2-driven breast cancer development. A) p110β expression in

mammary gland epithelium. Cryostat sections of mammary glands derived from

PIK3CBK805R/K805R/neuT (KR/neuT) and PIK3CB+/+/neuT (WT) virgin females were stained

with the anti-p110β 5g9 monoclonal antibody directly coupled to Alexa 488 (described in

Suppl. Fig. 2d; green) as well as with the nuclear stain propidium iodide (red) and analyzed by

confocal microscopy. Bar corresponds to 20 μm. B) Kinetics of tumor appearance in

PIK3CBWT/WT/neuT (WT/neuT; black lines; n=10) and PIK3CBK805R/K805R/neuT (KR/neuT;

red lines; n=7) compound mutant mice (P=0.01). C) Whole mount preparations of

PIK3CBWT/WT/neuT and PIK3CBK805R/K805R/neuT mammary glands at 10 weeks. Upper

panel: PIK3CBK805R/K805R/neuT mammary gland shows a reduction of duct side buds

constituted by atypical hyperplastic lesions. Lower panel: magnification of the side buds

revealing the empty aspect of PIK3CBK805R/K805R/neuT hyperplastic lesions. L: lymph node,

mh: atypical mammary hyperplasia. Bar corresponds to 1 mm. D) Histology of mammary

glands. Ducts were stained with anti Erbb2 and with anti PCNA antibodies to show transgene

expression and proliferating cells, respectively. Bar represents 100 μm. Arrowheads indicate

PCNA-positive cells in the mutant sample.
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Fig. 7.

p110β kinase activity is required for ERBB2-driven breast cancer cell proliferation. A) Western

blot analysis of protein expression in cultured mammary tumors of the two genotypes with the

indicated antibodies. B) Proliferation curves, reported as relative increase in the number of

cells compared to the initial seeding density, of cultured tumor cells of the two genotypes in

the absence or presence of the p110β selective inhibitors TGX-155 (10 μM) and TGX-221

(100 nM). Statistical significance: wild-type cells vs. all other conditions (* P < 0.05, ** P <

0.01); other pairs of datasets: not significant.
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Fig. 8.

Model of the catalytic and non-catalytic functions of p110β. The catalytic activity of p110β is

triggered by both RTK and GPCR signaling and cooperates in Akt activation, cancer

development and glucose homeostasis (left side). p110β also functions as a scaffold protein

(right inset) required for the organization at the plasma membrane of clathrin coated pits or

vesicles, thus controlling RTK endocytosis.
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Table I

Metabolic measurements in Pik3cbK805R/K805R Mice

PIK3CBWT/WT PIK3CBK805R/K805R P by Student t

Triglycerides (mg/dL) 109±11 71±6 <0.05

Cholesterol (mg/dL) 66±3 45±2 <0.01

Free Fatty Acids (mM) 1.5±0.1 1.4±0.1 NS

AST (UI) 78±16 63±8 NS

ALT (UI) 47±12 37±3 NS

Plasma Albumin (g/dL) 2.3±0.1 2.2±0.1 NS

Leptin (ng/ml) 0.72±0.08 0.69±0.09 NS

Cumulative Food Intake (g food/q BW per 10
days)

0.30±0.02 0.27±0.01 NS

SREBF1C mRNA (% of WT) 100 72±4 <0.01

PCK1 mRNA (% of WT) 100 147±6 <0.01

G6PC mRNA (% of WT) 100 172±1 <0.01

FBP1 mRNA (% of WT) 100 134±7 <0.01

AST (aspartate aminotransferase); ALT (alanine transaminase); SREBF1C (sterol regulator element-binding protein-1c); PCK1 (phosphoenolpyruvate

carboxykinase-1); G6PC (glucose-6-phosphatase, catalytic subunit); FBP1 (fructose 1,6-bisphosphatase).
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Table II

Autochthonous Carcinogenesis in Pik3cbK805R/K805R/neuT Mice

latencya survivalb growthc

Pik3cbWT/WT/neuT (n=39) 174±5 207±17 33±12

Pik3cbK805R/K805R/neuT (n=35) 227±9 279±14 52±5

p<0.0001 p=0.0134 p<0.05

a,b,c
Time in days:(a)from the birth and the growth of a 2mm diameter tumor;(b)from the birth and the growth of a 8mm diameter tumor;(c)time required

for a 2mm diameter tumor to reach a 8mm diameter. Growth from 8 to 10mm diameter was not significantly different (n=5 per genotype; not shown).

Statistical analysis: paired t test
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