
REVIEW

Phospholipase D signaling: orchestration by PIP2

and small GTPases

Paschal A. Oude Weernink & Maider López de Jesús &

Martina Schmidt

Received: 12 October 2006 /Accepted: 20 December 2006 / Published online: 24 January 2007
# Springer-Verlag 2007

Abstract Hydrolysis of phosphatidylcholine by phospho-
lipase D (PLD) leads to the generation of the versatile lipid
second messenger, phosphatidic acid (PA), which is
involved in fundamental cellular processes, including
membrane trafficking, actin cytoskeleton remodeling, cell
proliferation and cell survival. PLD activity can be
dramatically stimulated by a large number of cell surface
receptors and is elaborately regulated by intracellular
factors, including protein kinase C isoforms, small GTPases
of the ARF, Rho and Ras families and, particularly, by the
phosphoinositide, phosphatidylinositol 4,5-bisphosphate
(PIP2). PIP2 is well known as substrate for the generation
of second messengers by phospholipase C, but is now also
understood to recruit and/or activate a variety of actin
regulatory proteins, ion channels and other signaling
proteins, including PLD, by direct interaction. The synthe-
sis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms
is tightly regulated by small GTPases and, interestingly, by
PA as well, and the concerted formation of PIP2 and PA has
been shown to mediate receptor-regulated cellular events.
This review highlights the regulation of PLD by membrane
receptors, and describes how the close encounter of PLD
and PIP5K isoforms with small GTPases permits the
execution of specific cellular functions.
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Introduction

The activation of membrane receptors by hormones and
growth factors results in the localized generation of
intracellular second messengers. The hydrolysis of mem-
brane phospholipids and the generation of biologically
active products play important roles in the regulation of cell
function and cell fate. Well known is the activation of
phosphoinositide-specific phospholipase C (PLC) isoforms,
which hydrolyze phosphatidylinositol 4,5-bisphosphate
(PIP2), a membrane phospholipid found in all eukaryotic
cells (Schmidt et al. 2004). Stimulation of PLC isoforms
plays a major role in many early and late cellular responses
to receptor activation, including smooth muscle contraction,
secretion and neuronal signaling as well as fertilization, cell
growth and differentiation (Berridge 2005; Nishizuka
2003). Phospholipase D (PLD) was first described 60 years
ago as a distinct, phospholipid-specific phosphodiesterase
activity in cabbage leaves (Hanahan and Chaikoff 1948).
This pioneering research indicated that PLD hydrolyzes
phosphatidylcholine to yield phosphatidic acid (PA) and
choline. The recognition that PLD is rapidly and dramat-
ically activated in response to extracellular stimuli in
cultured animal cells, now 20 years ago (Bocckino et al.
1987; Cockcroft 1984), has brought PLD signaling to the
very forefront of current biological and biomedical re-
search. Meanwhile, phosphatidylcholine-hydrolyzing PLD
has been identified in bacteria, protozoa, fungi, plants and
animals, and, due to this widespread distribution, is assumed
to be involved in the regulation of fundamental cellular
functions. Indeed, it has now been established that activation
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of PLD and the generation of PA by a vast number of
membrane receptors modulate such a wide array of cellular
responses as calcium mobilization, secretion, superoxide
production, endocytosis, exocytosis, vesicle trafficking,
glucose transport, rearrangements of the actin cytoskeleton,
mitogenesis and survival (Cockcroft 2001; Exton 2002b;
Jenkins and Frohman 2005; Liscovitch et al. 2000).

PIP2 is a critical cofactor for PLD, and profoundly
affects the activity, membrane localization and receptor
activation of both PLD isoforms, PLD1 and PLD2 (Brown
et al. 1993; Hodgkin et al. 2000; Liscovitch et al. 1994;
Pertile et al. 1995; Schmidt et al. 1996d). Thus, reduction of
cellular PIP2 levels, for instance via scavenging of PIP2 by
the actin-binding protein fodrin (Lukowski et al. 1998) or
via forced PIP2 hydrolysis by the phosphatase synaptojanin
(Chung et al. 1997), has been shown to inhibit PLD
activity. Vice versa, the synthesis of PIP2 by phosphoinosi-
tide 5-kinase (PIP5K) isoforms can be directly stimulated
by the PLD product PA (Jenkins et al. 1994; Moritz et al.
1992), and this regulation has also been confirmed to occur
at the whole cell level (Divecha et al. 2000; Jones et al.
2000b; Skippen et al. 2002). It is now hypothesized that the
reciprocal stimulation of PLD and PIP5K enzymes enables
rapid feed-forward stimulation loops for a localized and
explosive generation of PA and PIP2, which may then
govern the recruitment and activation of proteins to execute
specific cellular tasks, especially membrane trafficking, and
changes in the organization of the actin cytoskeleton. The

activity and localization of both PLD and PIP5K are under
control of GTPases of the Arf and Rho families, which are
well-defined regulators of membrane transport and actin-
reorganization processes. The reciprocal stimulation of
PIP5K and PLD, and the regulation of these enzymes by
ARF and Rho GTPases, point to concerted mechanisms in
cellular actions, involving acute, localized PIP2 and PA
synthesis (Fig. 1). This review will focus on the regulation
of PLD enzymes by membrane receptors and monomeric
GTPases, and on how PLD signaling is organized and
connected by PIP2 metabolism.

Phosphatidic acid and PLD isoforms

Most cellular responses following PLD activation are
probably mediated by the immediate reaction product PA.
PA is a multifunctional lipid that can be further metabolized
to the bioactive lipids, lysophosphatidic acid (LPA) and
diacylglycerol (DAG), can by itself alter membrane
curvature, and can serve as a protein attachment site and
affect both cellular localization and activity of various
proteins, including Raf-1 kinase, protein phosphatase 1,
sphingosine kinase 1, and mTOR (mammalian target of
rapamycin), a key regulator of cell growth and proliferation
(Jenkins and Frohman 2005). PLD enzymes can catalyze a
transphosphatidylation reaction in which the phosphatidyl
moiety of phosphatidylcholine is accepted by primary

Fig. 1 Regulation and cellular
roles of PLD and PIP5K. Regu-
lation of PLD and PIP5K by
ARF and Rho family GTPases is
essentially involved in the regu-
lation of intracellular vesicle
trafficking and actin cytoskele-
ton reorganization. Both PLD
and PIP5K are stimulated by
cell surface receptors and by
conventional PKC isoforms, and
the latter can become activated
after receptor-induced hydroly-
sis of PIP2 by PLC. Positive
feed-forward regulation is
achieved by stimulation of PLD
by PIP5K-derived PIP2, and of
PIP5K by PLD-derived PA.
Activation of ARF-GAPs by
PIP2 accelerates the inactivation
of ARF proteins, and may
terminate a round of PA and
PIP2 synthesis
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alcohols, thereby producing stable phosphatidylalcohol
instead of PA. This transphosphatidylation reaction is
widely applied to measure PLD activity in biological
samples, and quenching of PA synthesis by primary
alcohols has proven extremely helpful to identify the
involvement of PLD enzymes in cell physiology. In this
way, a role for PLD has been demonstrated in a variety of
signaling processes, such as activation of phosphoinositide
(PI3K, PIP5K) and protein (Akt, ERK1/2) kinases, calcium
mobilization, cytoskeleton remodeling, endocytosis, exocy-
tosis, membrane trafficking, superoxide production, glucose
transport, cell migration, cell proliferation, and survival
signaling (Exton 2002a; Foster and Xu 2003).

There are two mammalian PLD genes, PLD1 and PLD2.
PLD1 has a low basal activity and is extensively regulated
by conventional protein kinase C (PKCα, -β, -γ) isozymes
and small GTPases of the ARF (ARF1 - ARF6) and Rho
(RhoA, Rac1, Cdc42) families (Henage et al. 2006). PLD2
has a higher basal activity than PLD1, but has been shown
to respond to ARF and PKC as well (Chen and Exton
2004). PIP2 is recognized to be the most important cofactor
for PLD, and both PLD isoforms are absolutely dependent
on PIP2 for activity. Experiments utilizing inactive PLD
mutants and RNA interference have discriminated isoform-
specific PLD functions, and showed that PLD1 is involved
in agonist-induced secretion, actin organization, and cell
adhesion and migration (Exton 2002a; Iyer et al. 2006; Kim
et al. 2006; Vitale et al. 2001), and PLD2 in endocytosis
and recycling of membrane receptors (Du et al. 2004; Koch
et al. 2006; Padrón et al. 2006).

The PLD isoforms, both with two splice variants, share
an ~50% amino-acid sequence identity (Colley et al. 1997;
Hammond et al. 1995, 1997; Steed et al. 1998). The
catalytic core of both PLD enzymes are composed of four
conserved domains (domain I-IV), and the HKD motifs in
the domains II and IV probably associate together to form a
catalytic centre (Xie et al. 2000). PLD1 is characterized by
a 116-amino acid loop region following domain II, which
has been proposed to function as a negative regulatory
element (Sung et al. 1999). PLD1 and PLD2 further possess
N-terminal PH (pleckstrin homology) and PX (phox
homology) domains. PIP2 binds to the PH domain
(Hodgkin et al. 2000), but also to a polybasic PIP2 binding
motif within the catalytic core (Sciorra et al. 1999), and
interaction of PIP2 with both domains has been suggested
to be involved in membrane targeting of PLD as well as
stimulation of PLD catalytic activity (Du et al. 2003;
Hodgkin et al. 2000; Sciorra et al. 2002). The PX domain
of PLD1 has been reported to preferentially bind to
phosphatidylinositol-3,4,5-trisphosphate (PIP3) (Lee et al.
2005; Stahelin et al. 2004), but interaction with PI5P has
been observed as well (Du et al. 2003). Recently, it was
shown that the PX domain of PLD has GTPase-activating

protein (GAP) activity towards dynamin, and that PLD
supports EGF receptor endocytosis (Lee et al. 2006). The
PH and PX domains probably contribute to the proper
localization of the PLD enzymes within cells. In line with a
role for PLD enzymes in different cellular tasks, PLD1 and
PLD2 show a diverse subcellular distribution. PLD1 is
found throughout the cell, but primarily localizes to
perinuclear endosomes and the Golgi apparatus (Brown et
al. 1998; Freyberg et al. 2001; Hughes and Parker 2001).
PLD2 is almost exclusively present at the plasma mem-
brane in lipid raft fractions (Czarny et al. 1999). The
localization of PLD1 does not seem to be static, and
regulated translocation and recycling of the enzyme
between cellular compartments may be crucial to its proper
functioning. In an elegant study, coordinated subcellular
targeting of the lipid binding motifs has been demonstrated
to drive this subcellular cycling of PLD1 (Du et al. 2003).
Upon stimulation, PLD1 was found to translocate from the
intracellular compartments to the plasma membrane, and
this process was probably dependent on the polybasic PIP2
binding site. The PH domain then facilitated entry of PLD1
into lipid rafts, a step critical for internalization of the
enzyme, whereafter interaction of the PX domain with PI5P
may control the efficient return of PLD1 to the endosomes.

PIP2 and PIP5K isoforms

PIP2 is an essential and versatile factor in cellular signaling.
Hydrolysis of PIP2 by PLC into the second messengers,
inositol-1,4,5-trisphosphate (IP3) and DAG, is a general and
well-defined answer of cells in response to stimulation of
many membrane receptors (Schmidt et al. 2004). Phos-
phorylation of PIP2 by PI3K results in the rapid accumu-
lation of PIP3, which recruits and activates mediators
involved in actin remodeling, mitogenesis and survival
(Vanhaesebroeck et al. 2001). But it is now recognized that
PIP2, as well as other phosphoinositides, are signaling
molecules by themselves and can, by binding to unique
phosphoinositide-binding sequences, such as the PH and
PX domains, affect the activity and subcellular localization
of many proteins, including many actin regulatory proteins,
a wide range of ion channels, and PLD (Niggli 2005; Suh
and Hille 2005; Yin and Janmey 2003). In this way, PIP2
can modulate a remarkable variety of cellular processes,
including cortical actin organization, membrane ruffling,
vesicle trafficking, gene expression, cell migration and cell
survival (Ling et al. 2006; Oude Weernink et al. 2004b;
Toker 2002). Subsequent dephosphorylation of PIP2 by
inositol polyphosphate 5-phosphatases, such as synaptoja-
nin, is believed to terminate local PIP2 signaling, for
instance in the process of vesicle trafficking (Majerus et
al. 1999).
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To execute this variety of functions, PIP2 may be
organized in discrete functional pools within cells, but the
existence of PIP2 clusters in the plasma membrane is
currently under debate. Using green fluorescent protein-
tagged PH domains or antibodies to visualize PIP2, the lipid
was found to concentrate in highly dynamic, actin-rich
regions (Tall et al. 2000) and lipid rafts (Laux et al. 2000;
Parmryd et al. 2003) in the plasma membrane, feeding the
idea that spatially organized PIP2 synthesis regulates actin
polymerization and other cellular processes. The localization
of PIP2 in rafts is supported by biochemical data (Pike and
Casey 1996); however, specific PIP2 clustering has been
disputed (van Rheenen et al. 2005).

PIP2 is generated after phosphorylation of phosphatidyl-
inositol-4-phosphate by PIP5K. In mammals, cDNAs
encoding three isoforms of PIP5K (designated Iα, Iβ and
Iγ) with alternative splice variants have been cloned
and characterized (Ishihara et al. 1996, 1998; Loijens and
Anderson 1996). Sequence analysis has shown that PIP5K
enzymes are related to PIP4K enzymes, but that they share
no identity with most other lipid (PI3K and PI4K) or
protein kinases. The sequence similarity between the
PIP4Ks and PIP5Ks is clustered in the catalytic core of
the kinases (Anderson et al. 1999; Hinchliffe et al. 1998).
An activation loop spanning the catalytic domain has been
shown to determine both substrate specificity and subcellular
targeting of PIP5Ks, which can be swapped by substitution
of a single amino acid within this loop (Kunz et al. 2002). In
murine PIP5K-Iβ, two dimerization domains were identified,
which may contribute to the proper subcellular localization
and functioning of the enzyme (Galiano et al. 2002).

The identification of three PIP5K isoforms raised the
expectation of a differential regulation of the enzymes by
cellular signal transduction components, but up to now the
regulatory properties of PIP5K-Iα, Iβ and Iγ appear to be
remarkably similar. All PIP5K isoforms are stimulated by
PA, are extensively regulated by ARF and Rho GTPases,
and inhibited by protein kinase A (PKA) and PI-stimulated
autophosphorylation (Oude Weernink et al. 2004b). Never-
theless, evidence has been provided that PIP5K isoforms
may selectively control functional PIP2 pools, which may
support particular processes in different cell types. Thus,
actin reorganization down-stream of Rac1 in platelets
specifically involves murine PIP5K-Iα (Tolias et al. 2000).
Human PIP5K-Iα was found to localize in Rac1-induced
membrane ruffles, and the LIM protein Ajuba has been
identified to interact with and stimulate PIP5K-Iα in leading-
edge membrane ruffles in migrating cells (Kisseleva et al.
2005). Human PIPK-Iβ was detected primarily in cytosolic
vesicular structures (Doughman et al. 2003) and may
synthesize the PIP2 pool involved in constitutive endocytosis
(Padrón et al. 2003). The long-splice variant of PIP5K-Iγ,
PIP5K-Iγ90, is enriched in neurons and is implicated in the

regulation of clathrin coat recruitment, actin dynamics
(Wenk et al. 2001) and focal adhesion formation (Di Paolo
et al. 2002; Ling et al. 2002). In contrast, short PIP5K-Iγ87
seems to be the major producer of the PIP2 pool that
supports receptor-induced IP3 generation (Wang et al. 2004).

The execution of specific PIP2-modulated processes is
very probably achieved by an orchestration of appropriate
signaling partners within discrete subcellular microdomains,
and PLD-derived PA as well as the PLD enzymes by
themselves can contribute to this organization. Indeed, both
PLD1 and PLD2 interact with PIP5K-Iα, and PLD2 recruits
PIP5K-Iα to a submembraneous vesicular compartment
(Divecha et al. 2000). PLD2-derived PA was shown to
stimulate PIP5K-Iγ splice variants, and the subsequent
formation of PIP2 to drive the initial stages of integrin-
mediated cellular adhesion (Powner et al. 2005). In many
processes, the temporal activation and correct localization of
PLD and PIP5K isoforms by monomeric GTPases appears
crucial to achieve the spatially organized production of PIP2
and PA (Santarius et al. 2006).

ARF GTPases and membrane traffic

Although the direct interaction site on PLD for ARF has not
yet been unequivocally defined, it is well established that
ARF proteins, particularly ARF1 and ARF6, activate both
PLD enzymes, but especially PLD1 (Hammond et al. 1995,
1997). ARF GTPases regulate intracellular vesicle traffick-
ing and actin remodeling. ARF1 is localized to the Golgi
complex, and is required for proper Golgi structure and
function. The use of primary alcohols has also pointed to a
role for PLD in vesicle transport to Golgi (Bi et al. 1997;
Ktistakis et al. 1996). PLD activity has been shown to
stimulate the release of nascent secretory vesicles from the
trans-Golgi network (Chen et al. 1997), and to be required
for maintaining the structural integrity and function of the
Golgi apparatus, but the precise role for PLD in vesicle
formation is still controversial. PIP5K is also a direct
effector of ARF1, and an ARF1 mutant that selectively
activates PIP5K, but not PLD activity, demonstrated that
both PLD-derived PA and direct activation of PIP5K by
ARF1 contribute to increased PIP2 synthesis (Skippen et al.
2002). In permeabilized cells, ARF1 has been shown to
restore secretion by promoting PIP2 synthesis (Fensome et
al. 1996), and ARF1-mediated PIP5K activation (Jones et
al. 2000a) and recruitment to the Golgi complex (Godi et al.
1999) appears to be critical in Golgi functioning.

ARF6 regulates vesicular transport, secretion, and
cortical actin reorganization. ARF6 activates PLD, and PA
has been implicated in the mediation of the effects of ARF6
in vesicular trafficking events. A critical role for PLD1 in
exocytosis has been established in different cell types,
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including neurons (Humeau et al. 2001), neuroendocrine
cells (Vitale et al. 2001) and pancreatic β cells (Hughes et
al. 2004). PLD2 has recently emerged as a mediator of ARF-
dependent internalization of the μ-opioid receptor (Koch et
al. 2003), and both PLD isoforms have been implicated in
macrophage phagocytosis (Corrotte et al. 2006; Iyer et al.
2004). In addition, PIP5K colocalizes and interacts with, and
is directly activated by ARF6 at the plasma membrane
(Honda et al. 1999), and ARF6 and PIP2 colocalize on the
plasma membrane and on endosomal structures (Brown et al.
2001). ARF6-organized PIP2 turnover at the plasma mem-
brane is apparently involved in regulated secretion (Aikawa
and Martin 2003; Brown et al. 2001; Lawrence and
Birnbaum 2003). Focal and transient accumulation of PIP2
by PIP5K is required for phagocytosis as well (Botelho et al.
2000; Coppolino et al. 2002; Wong and Isberg 2003), and
PIP2 hydrolysis probably dictates the remodeling of actin
necessary for completion of phagocytosis (Scott et al. 2005).
The synthesis of PIP2 is essential for priming the exocytotic
apparatus, and the recruitment and activation of PLD1 by
PIP2 seems the primary mechanism for the functional
integration of PLD1 into the exocytotic pathway (Vitale et
al. 2001; Waselle et al. 2005). Thus, CD16-induced cytolytic
granule secretion mediated by ARF6 was shown to involve
PIP5K-Iα membrane targeting and activation of both PIP5K
and PLD (Galandrini et al. 2005). PIP2 also recruits
additional proteins—for instance the endocytic proteins
AP-2, epsin and AP180—to initiate clathrin-coat formation
preceding endocytosis (Ford et al. 2001; Itoh et al. 2001;
Padrón et al. 2003), and CAPS (Grishanin et al. 2004) to
initiate dense-core vesicle exocytosis. Direct activation of
PIP5K-Iγ by ARF6 has been shown to stimulate clathrin-
coat recruitment to synaptic membranes to allow synaptic
vesicle recycling (Krauss et al. 2003). PLD-derived PA may
directly contribute to vesicle fusion in a biophysical manner,
as PLD cleaves the non-fusogenic lipid, PC, to form the
fusogenic lipid, PA. But PA also takes a function as an
essential cofactor for PIP5K, and disruption of Golgi
membranes (Sweeney et al. 2002), blockade of clathrin-coat
assembly (Arneson et al. 1999) and inhibition of ARF1-
reconstituted secretion (Way et al. 2000) after quenching of
PA production could be attributed to inhibited PIP2
synthesis. Thus, both PLD and PIP2 synthesis seem
necessary for membrane trafficking aspects in the endo-
and exocytotic machinery. But PLD and PIP5K also mediate
other processes down-stream of ARF6. Epidermal growth
factor (EGF)-induced membrane ruffling requires ARF6-
induced PIP5K-Iα translocation to the ruffles and local PIP2
production. This leads to the recruitment of PLD2, and PLD-
derived PA and ARF6 may then synergistically activate
PIP5K (Honda et al. 1999).

The relationship between ARF and PIP2 is also bidirec-
tional, as phosphoinositides can regulate ARF activity by

binding and activating both ARF-specific guanine nucleo-
tide exchange factors (ARF-GEFs) (Klarlund et al. 1998;
Paris et al. 1997) and ARF-GTPase-activating proteins
(ARF-GAPs) (Kam et al. 2000; Nie et al. 2002) via their
PH domains. The fact that ARF-GAPs bind PIP2 with high
affinity and specificity offers an attractive feed-back
mechanism for terminating ARF activation after a cycle of
ARF-induced PIP2 synthesis.

Rho GTPases and actin dynamics

PA formation, especially by PLD1, has been reported to
induce stress fibre formation in specific cell types (Cross et
al. 1996; Ha and Exton 1993; Kam and Exton 2001;
Porcelli et al. 2002). Rho proteins, in particular RhoA,
Rac1 and Cdc42, which control actin cytoskeleton reorga-
nization, exclusively activate PLD1 by direct interaction
with its C-terminus (Exton 2002b; Powner and Wakelam
2002). Thus, PLD stimulation by RhoA may happen by
direct interaction, but may involve indirect, Rho-dependent
mechanisms as well. Inactivation of Rho GTPases, with
Clostridium difficile toxin B or Clostridium botulinum C3
exoenzyme, reduced cellular PIP2 levels, resulting in
inhibiton of receptor-mediated PIP2 hydrolysis by PLC
(Schmidt et al. 1996a) as well as diminished PLD
stimulation (Schmidt et al. 1996d). As the inhibition of
PLD signaling after Rho inactivation could be largely
rescued by the addition of PIP2, Rho proteins do seem to
affect PLD via PIP5K regulation (Schmidt et al. 1996c,d).
PIP2 is well-known to associate with and regulate the
activity of a plethora of actin-binding proteins that organize
actin dynamics (Hilpela et al. 2004; Yin and Janmey 2003),
and PA and PIP2 may act in concert to mediate Rho-
dependent actin cytoskeleton remodeling. PIP5K isoforms
are, like PLD, under direct control of Rho GTPases. PIP5K
isoforms are markedly stimulated by RhoA, Rac1, and
Cdc42 (Chong et al. 1994; Hartwig et al. 1995; Oude
Weernink et al. 2004a), and physically associate with both
RhoA (Ren et al. 1996) and Rac1 (Tolias et al. 2000), but
not with Cdc42 (Oude Weernink et al. 2004a; van Hennik
et al. 2003). PIP5K isoforms are now seen as critical
mediators of RhoA- and Rac1-induced actin organization
and remodeling (Doughman et al. 2003; Shibasaki et al.
1997; Tolias et al. 2000). The established Rho effector Rho-
kinase, a serine/threonine kinase, is apparently involved in
Rho-dependent regulation of both PLD (Schmidt et al.
1999) and PIP5K activities (Oude Weernink et al. 2000),
and PIP5K was found to play an essential role as down-
stream effector of Rho and Rho-kinase in neurite remodel-
ing (van Horck et al. 2002; Yamazaki et al. 2002) and
platelet cytoskeleton assembly (Gratacap et al. 2001; Yang
et al. 2004). But Rho may also directly signal to PIP5K
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independently of Rho-kinase, as RhoA-induced activation of
ERM (ezrin, radixin, moesin) proteins, that cross-link actin
filaments to plasma membranes, was found to be mediated
by PIP5K, but not by Rho-kinase (Matsui et al. 1999). PLD
and PIP5K were also demonstrated to collectively mediate
Rho-induced changes in the actin cytoskeleton. Thus,
myogenic differentiation induced by arginine-vasopressin,
which involves actin fiber formation, is mediated by Rho
proteins and PLD1, and involves PLD-induced PIP2 synthe-
sis along the actin fibers (Komati et al. 2005). These findings
suggest that PLD and PIP5K enzymes may co-operate
down-stream of Rho in processes that depend on actin
organization.

Another Rho effector, PKC-related protein kinase N
(PKN), also directly interacts with PLD (Oishi et al. 2001)
and mediates PLD activation by the α1-adrenergic receptor
(Parmentier et al. 2002). Interestingly, components of the
actin regulatory machinery, β-actin and α-actinin, have
been found to directly associate with and inhibit the activity
of PLD isoforms (Lee et al. 2001; Park et al. 2000). PLD
also binds to and is stimulated by filamentous F-actin, and
PLD1 in particular may act as a signal transduction
component responsive to dynamic changes of the actin
cytoskeleton (Kusner et al. 2002). PKN interacts with
α-actinin, and PKN may modulate PLD signaling by
reversing the inhibitory effect of α-actinin on PLD1, and
by direct interaction with PLD1.

Regulation of PLD and PIP5K by membrane receptors

In line with the critical role of PA in cellular processes, the
enzymatic activity of PLD is tightly regulated by a variety
of hormones, neurotransmitters, and growth factors. Regu-
lation of PLD enzymes by membrane receptors, including
G protein-coupled receptors (GPCRs) and receptor tyrosine
kinases (RTKs), is complex and mediated by several
cytosolic factors, including PKC as well as ARF, Rho and
Ras GTPases (Exton 2002b; Liscovitch et al. 2000; López
De Jesús et al. 2006; Powner and Wakelam 2002). Most
receptors that stimulate PLD also increase PLC activity,
leading to activation of the PLD regulator PKC, and it was
assumed that PLD activation might be secondary to PLC
activation. A physical association between PLD with PKC
isoforms has been reported, resulting in strong activation of
in vitro PLD1 activity, and the major interaction site was
identified within the N-terminus of PLD1 (Park et al. 1998).
Indeed, inhibition of PKC was shown to reduce receptor-
induced PLD responses, and PLD1 mutants unresponsive to
PKC did respond poorly to activation of GPCRs (Zhang et
al. 1999) or to active Gαq proteins (Xie et al. 2002).
However, stimulation of PLD in several receptor systems,
including M3 muscarinic and α1-adrenergic receptors, was

actually PKC-independent (Balboa and Insel 1998; Muthalif
et al. 2000; Rümenapp et al. 1997; Schmidt et al. 1994),
suggesting that PLD stimulation must not necessarily be
secondary to PLC stimulation.

Brefeldin A, an inhibitor of certain ARF-GEFs, reduced
receptor signaling to PLD in several cell types, indicating
that ARF proteins participate in receptor-mediated PLD
stimulation (Fensome et al. 1998; Mitchell et al. 1998;
Rümenapp et al. 1995; Shome et al. 2000). Likewise,
sequestration of ARF-GEFs by the ARF-related protein
ARP inhibited M3 muscarinic receptor signaling to PLD
(Schürmann et al. 1999). Clostridial toxins and enzymes
that specifically inactivate Rho proteins and expression of
inactive Rho mutants have been used to identify the role of
Rho in signaling to PLD. Thus, Rho proteins were found to
be involved in PLD stimulation by GPCRs (M3 muscarinic,
bradykinin, sphingosine-1-phosphate and LPA), RTKs
(PDGF, EGF), and immunoglobulin (FcεRI) receptors
(Hess et al. 1997; Ojio et al. 1996; Schmidt et al. 1996c).

Stimulation of PLD by GPCRs was shown to be mediated
by both pertussis toxin (PTX)-insensitive (Gosau et al. 2002;
Schmidt et al. 1994) and PTX-sensitive (Cummings et al.
2002; Fensome et al. 1998) heterotrimeric G proteins. G12

family proteins can stimulate PLD (Plonk et al. 1998), and
RGS (regulators of G protein signaling) proteins, that act as
α subunit-specific GAPs, have been used to position G12 in
PLD activation by the M3 muscarinic (Rümenapp et al.
2001), the PAR1 (Fahimi-Vahid et al. 2002), and the Ca2+-
sensing receptor (Huang et al. 2004), as well as mechanical
force (Ziembicki et al. 2005). As forskolin and cAMP were
shown to cause activation of PLD via PKA and ERK1/2
(Ginsberg et al. 1997; Yoon et al. 2005) or, alternatively, via
the cAMP-activated GEF for Ras-like GTPases, Epac and
R-Ras (López De Jesús et al. 2006), Gs proteins also mediate
stimulation of PLD. PLD activation is also controlled by
βγ-subunits, possibly via Src and/or ARF6 (Le Stunff et al.
2000; Ushio-Fukai et al. 1999), but Gβγ can also directly
interact with and inhibit PLD (Preininger et al. 2006).

As the precise mechanism of PLD stimulation in intact
cells was only poorly understood, during the last 10 years
our laboratory in Essen has focused on the regulation of PLD
activity by membrane receptors. In HEK-293 cells, signaling
to PLD by a typical GPCR, the M3 muscarinic receptor, and
an RTK, the EGF receptor, was studied and shown to be
executed by several distinct pathways (Fig. 2). In addition,
by expressing inactive PLD mutants, the M3 muscarinic and
the EGF receptors were found to signal to individual PLD
isozymes and to selectively stimulate PLD1 and PLD2
respectively (Han et al. 2001). The M3 muscarinic receptor
stimulates both PLC and PLD via PTX-insensitive mecha-
nisms (Offermanns et al. 1994; Peralta et al. 1988; Schmidt
et al. 1994). Interestingly, stimulation of PLD by the agonist
carbachol was not affected by PKC inhibitors, suggesting
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that activation of PLD by the M3 muscarinic receptor was
rather independent of PLC (Rümenapp et al. 1997; Schmidt
et al. 1994). Expression of α-subunits of G proteins and of
specific RGS proteins was used to identify the G proteins
involved in these pathways, and demonstrated that whereas
the M3 receptor signals to PLC via Gq proteins, activation of
PLD is mediated by G12 family proteins (Rümenapp et al.
2001). PLD activation by the M3 receptor, but not by the
EGF receptor, was further found to be under control of ARF
(Rümenapp et al. 1995, 1997) as well as Rho proteins,
particularly RhoA (Schmidt et al. 1996c,d). Likewise,
regulation of mTOR by LPA, but not PDGF, involved
PLD1 activation by Rho GTPases (Kam and Exton 2004).
Both ARF1 and RhoA were found to become activated after
M3 receptor activation (Keller et al. 1997; Rümenapp et al.
1995), and a role for Rho-kinase in RhoA-controlled PLD
stimulation could be demonstrated (Schmidt et al. 1999). In
further studies, it was shown that activation of PLD by
RhoA and Rho-kinase is mediated by G12 and the tyrosine
kinase Pyk2, whereas activation by ARF1 is mediated by
G13, PI3K and the Arf-GEF ARNO (Han et al. 2003). In
cardiomyocytes, Rho proteins were shown to affect signaling
to PLD by both endothelin-1 and thrombin, apparently by
controlling PIP2 synthesis, whereas ARF selectively affects
signaling by the PAR1 receptor (Fahimi-Vahid et al. 2002).

PLD can directly interact with RalA, and a Ras/Ral
signaling cascade was shown to regulate PLD responses. In
HEK-293 cells, Ras and RalA—but not Rho proteins—
were located in RTK signaling to PLD, and this Ras/Ral-
dependent signaling cascade was found to be dependent on
PKC-α and a Ral-specific GEF (Fig. 2) (Schmidt et al.

1998; Voss et al. 1999). RalA apparently co-operates with
ARF (Kim et al. 1998; Xu et al. 2003) and Rho proteins
(Frankel et al. 1999; Wilde et al. 2002) to achieve full PLD
activation. Likewise, Ras proteins were found to modulate
PLD responses by PDGF (Lucas et al. 2000), and RalA to
affect EGF receptor signaling to PLD (Lu et al. 2000). It
was recently shown that direct activation of Ras-related R-
Ras by Epac is involved in PLD stimulation by the M3

muscarinic receptor, apparently by coupling to Gs proteins
(López de Jesús et al. 2006), but a contribution of Ral
proteins to GPCR-induced PLD activation has not been
found (Meacci et al. 2002). Collectively, these data
demonstrate that heterotrimeric G proteins as well as small
GTPases co-ordinate PLD activation by specific membrane
receptors in particular cell types, and these mechanisms
probably contribute to the organization of agonist-induced
PA production for the execution of diverse cellular
signaling tasks.

In addition, the synthesis of PIP2 can be directly
stimulated by GPCRs (thrombin, LPA, M3 muscarinic) as
well as RTKs (Cochet et al. 1991; Nolan and Lapetina
1990; Pike and Eakes 1987). Receptor activation leads to
increased association of PIP5K with the actin cytoskeleton
(Grondin et al. 1991; Payrastre et al. 1991), and receptor-
induced stimulation and cytoskeletal association of PIP5K
may be directly involved in actin cytoskeletal regulation
and initialize the assembly of enzymes into signaling
complexes. GPCR-induced stimulation of PIP2 synthesis
was found to be mediated by pertussis toxin-sensitive Gi

proteins (Schmidt et al. 1996b; Stephens et al. 1993), but
also by G12 and Gq proteins (Oude Weernink et al. 2003).

Fig. 2 Regulation of PLD by
the M3 muscarinic receptor and
receptor tyrosine kinases in
HEK-293 cells. In human
embryonic kidney (HEK-293)
cells, signaling to PLD by the
M3 muscarinic receptor and by
typical RTKs (EGF, PDGF,
insulin) is organized into rather
discrete pathways and channeled
by particular heterotrimeric
G proteins and small GTPases
(orange), specific GEF proteins
(pink) and further signaling
components (green). AC,
adenylyl cyclase; ROCK,
Rho-kinase
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Enhanced PIP2 synthesis is also caused by conventional
PKC isoforms, which may increase PIP5K activity by
stimulating PIP5K dephosphorylation by the okadaic acid-
sensitive protein phosphatase 1 (Park et al. 2001).

Concluding remarks

In the last decade, PLD has taken a firm position as all-round
player in cellular signaling events. It is now appreciated that
PLD and PIP5K act together to execute several important
cellular functions, including vesicle transport, cytoskeleton
dynamics and cell adhesion. Because of the reciprocal
stimulation of their activities it seems inappropriate to
generally assign a conventional “upstairs-downstairs” rela-
tionship to PLD and PIP5K isozymes. The localized
generation of the lipid messengers by PLD and PIP5K, PA
and PIP2, is clearly co-ordinated by small GTPases of the
ARF, Rho and Ras families. The following picture emerges
of how PLD and PIP5K may co-operate to execute their
cellular tasks. Particular small GTPases, activated by
membrane receptors or cellular factors, bind to PIP5K and
recruit the enzyme to specific cellular compartments.
Subsequent activation of PIP5K catalytic activity triggers
the localized generation of PIP2, which now serves as an
anchor for specific proteins, including PLD enzymes. The
sequestered PLD is activated by PIP2 and the GTPases, and
PLD-derived PA now, among other tasks, contributes to the
activation of PIP5K. This feed-forward regulation loop
depends on both PIP5K and PLD, and quenching of PA
formation (by primary alcohols) or reduction of PIP2 levels
(by PLC-mediated hydrolysis or dephosphorylation by
phosphatases) can interrupt the snowball from rolling. PIP2
dephosphorylation may be important in the cell as a decisive
mechanism to terminate the localized reactions before a
cellular avalanche develops. Attractive candidates are further
specific GEFs and GAPs for the GTPases, some of which
have been shown to be directly regulated by PIP2. PIP2-
dependent inactivation of the organizing GTPase may then
provide the final turn-off signal.
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