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Abstract

Chlorella sorokiniana is an important industry microalga potential for biofuel production. Inoculum size is one of the
important factors in algal large-scale culture, and has great effects on the growth, lipid accumulation and metabolism of
microalgae. As the first barrier of cell contents, membrane plays a vital role in algal inoculum-related metabolism. The
knowledge of phospholipids, the main membrane component and high accumulation of phospholipids as the major
content of total lipids mass in some microalgae, is necessary to understand the role of membrane in cell growth and
metabolism under different inoculum density. Profiling of C. sorokiniana phospholipids with LC-MS led to the identification
of 119 phospholipid species. To discover the phospholipid molecules most related to change of inoculum sizes, Partial Least
Squares Discriminant Analysis (PLS-DA) was employed and the results revealed that inoculum sizes significantly affected
phospholipid profiling. Phosphatidylglycerol (PG), phosphatidyl- ethanolamine (PE) and several phosphatidylcholine (PC)
species might play an important role under our experimental conditions. Further analysis of these biomarkers indicated that
cell membrane status of C. sorokiniana might play an important role in the adaption to the inoculum sizes. And the culture
with inoculum size of 16106 cells mL21 presented the best membrane status with the highest content of PC and PG, and
the lowest content of PE. We discovered that the inoculum size of 16106 cells mL21 might provide the best growth
condition for C. sorokiniana. Also we proposed that PG, PE and several PC may play an important role in inoculum-related
metabolism in C. sorokiniana, which may work through thylakoid membrane and photosynthetic pathway. Thus this study
would provide more potential targets for metabolic engineering to improve biofuel production and productivity in
microalgae.
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Introduction

Currently, the demand of energy has risen rapidly because of

the modernization and the industrialization of the world.

However, the fossil fuels were considered as unsustainable and

causing environmental pollution [1]. The renewable energies have

become research hotspot in recent years. Amongst the renewable

energies,, biofuels derived from microorganism is one of the most

promising alternative to fossil fuel-based energy sources [2,3].

Researchers studied microalgae cultivation and microalgal biofuel

production from different directions, such as expanding the new

application of algae, system screening of valuable algae strains [4],

optimization of process conditions [5,6], investigation of metabolic

pathways [7,8], metabolic engineering [9,10], genome analysis

[11] and so on. The green phototrophic microalga Chlorella

sorokiniana is a potential algal candidate for biofuel production,

which casts most industry interests due to its fast growth rate, easy

cultivation, and wide adaptability [12,13,14]. It is well known that

oil-rich microalgae species are the most productive biofuel crops

which could provide 10,100 times higher biomass and oil yield

than land oil crops [15,16]. Furthermore, several scientists

reported positive results on the large culture of algae for biofuels

[17,18]. The algae oils are mainly composed of triacylglycerols

(TAG), diacylglycerols (DAG), free fatty acids (FFA) and

phospholipids (PL), and TAG contributes more than 80% of

algae lipid mass. Oils from algae are generally transesterificationto

yield fatty acid methyl esters (FAME) [19,20]. Furthermore,

Previous studies have shown that phospholipid synthesis precur-

sors, DAG and FFA, could not only be derived from TAG, but

also from membrane phospholipids [21].

However, microalgal biofuels could not make an impact on the

fuel market yet due to high producing cost [22,23]. One of the

vital cost factor is low cell density culture resulting in long cycle

time and high cost of the dewatering process in downstream [24].

Besides, low cell density culture also hamper the systematic

screening for new compounds from pure cultures [24] and axenic

culture of algae [25]. Although high cell density culture could solve

certain problems mentioned above, it also has inevitable negative

effects on cell culture with cell stress and typically light and

nutrient limitation [26]. Therefore, an optimized process is still

highly needed to improve the cell density in the culture to achieve

the highest biofuel productivity. Changing initial cell density has
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been reported as an efficient solution to control cell density of

culture [27,28], and inoculum-associated growth and target

product improvements also have been reported [20,29]. However,

extensive investigation into the nature of lipid accumulation are

still limited, and metabolic mechanisms of lipid biosynthesis upon

inoculum sizes remains poorly understood [20,30]. Previously, we

demonstrated that inoculum sizes (16104–16107 cells mL21)

significantly affected cell growth, lipid accumulation, protein and

metabolism regulation in a photoautotrophic culture of Chlorella

sorokiniana, and lipid production was tightly related to photo-

synthetical carbon fixation metabolism [28,31]. Nevertheless,

cellular response to inoculum sizes has not been fully explored yet.

Numerous factors affect photosynthetic microorganism’s ability

to adapt high cell concentrations, such as pH, light condition, cell

contact frequency and so on, which all must across the essential

barrier between cell interior and environment, membrane, to

affect the cell. Accordingly, the plasma membrane appears to be a

primary target and communication platform of perturbation

effects of inoculum sizes on cells. Structure and composition of

phospholipids strongly influence the physicochemical properties

and dynamical properties of membranes [32,33,34]. Furthermore,

phospholipids are now known to play a vital role in algal cellular

signaling and cell-cell interactions [35]. A large body of evidence

established that phospholipids on algal membranes are funda-

mental to lots of important biological processes, such as stress

response, photosynthesis, and so on [36,37]. For instance, there is

strong evidence that phospholipid distribution of yeast, in part,

contributes to its tolerance to increasing cell density [27]. Thus

knowledge of phospholipid changes associated with the biological

characteristics of membrane is essential to understand the

potential mechanisms of how C. sorokiniana utilizes these molecules

to adapt to inoculum size changes. Thus, dissecting the details of

phospholipid changes would provide a clearer understanding of

the inoculum sizes-dependent metabolism in this industry micro-

alga.

To elucidate involvement of phospholipids in the cellular

responses to inoculum size changes in C. sorokiniana, LC-MS based

approach was employed for phospholipid profiling, followed by

Partial Least Squares Discriminant Analysis (PLS-DA) for data

classification and potential biomarkers selection. In this study,

three types of phospholipid molecules were identified as biomark-

ers, including phosphatidylglycerol (PG), phosphatidylethanol-

amine (PE) and phosphatidylcholine (PC). Their functions in

relation to regulation of cell membrane stability, signal transduc-

tion and photosynthesis efficiency under different inoculum sizes

were also discussed.

Methods

Reagents and Materials
Phospholipid internal standards in this paper were as follows:

1,2-dilauroyl-sn-glycero-3-phospho(19-rac-glycerol)(sodium salt)(PG12:

0/12:0), 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine(PE12:0/

12:0), 1,2-dilauroyl-sn-glycero-3-phosphocholine(PC12:0/12:0), 1,2-

dipalmitoyl-sn-glycero-3-phospho-(19-myo-inositol)(ammonium salt)

(PI16:0/16:0), 1,2-dilauroyl-sn-glycero-3-phospho-L-serine (sodium

salt)(PS12:0/12:0), 1,2-dimyristoyl-sn-glycero-3-phosphate (sodium

salt) (PA14:0/14:0). All these internal standards were purchased

from Avanti Polar Lipids (Alabaster, AL. USA) and prepared in

chloroform-methanol(1:1, v/v) to a final concentration of 1mg mL21.

High-performance liquid chromatography(HPLC)-grade chloroform

and methanol were procured from Merck(Darmstadt, Germany)and

Ammonium hydroxide (28%) was obtained from J&K Chemical

(Beijing, China). Except for those were noted, reagents and solvents

were purchased from Sigma-Aldrich (St. Louis, MO) at the highest

grade commercially available, and all water used was obtained from

a Milli-Q Synthesis (Millipore, Billerica, MA).

Algal Strain and Culture Conditions
The C. sorokiniana strain was obtained from Dr. Dingji Shi

(Tianjin University of Science Technology, Tianjin, China). Algae

cultivation was carried out as previously described. Briefly, cells

were inoculated into 250 mL flask containing 150 mL BG11

medium with shaking (135 rpm) under continuous illumination

provided by cool-white fluorescent lights (65 mmol m22 s21) at

25uC. Growth was determined by counting cells with blood cell

counting plate under light microscopy. Four inoculum sizes used

in initial cell density assay were 16104, 16105, 16106 and 16107

cells mL21 and cells were harvested at two phases, the exponential

and stationary phase, respectively. Notably, the samples here were

divided into 8 classes (see below for details) and named after

different inoculum sizes and harvest growth phases. For example,

cells with inoculum sizes of 16104 cells mL21 were named as

IN104, and cells at exponential phase and stationary phase were

specified as ‘‘E’’ and ‘‘S’’, respectively. The cells were collected

and frozen at 270uC in a Labconco freeze dryer overnight and

kept in labeled tubes at 280uC till further investigation.

Phospholipids Extraction from C. sorokiniana
Phospholipid extraction was performed as described by Bligh

[38] and Chen [39] with slight modifications. Briefly, 20 mg

lyophilized cells were suspended in 0.75 mL chloroform and

0.3 mL ultrapure water and shaken (100 rpm) for 1 h at room

temperature (RT). Subsequently, 2 mL of lipid extract buffer

(LEB, chloroform-methanol, 2:1, v/v, with 0.1% (w/v) butylated

hydroxytoluene) was added, followed with another shaking at RT

for 30 min. The chloroform layer was collected, and another three

extractions were repeated by adding 2 mL LEB into the aqueous

layer and shaking for 30 min. All chloroform layers from four

times of extraction were combined into one tube and washed with

0.5 mL 1 M KCl and 1 mL ultrapure water sequentially. The

solvents were then removed by evaporating under vacuum with

rotary evaporator (BUCH Vacuum Rotavapor, Germany) at 35uC

and the final pellets were stored at 240uC for further analysis.

LC-MS Analysis
The LC-MS analysis of phospholipids was carried out on a

Waters Alliance 2695e HPLC/autosampler system (Milford, MA,

USA) coupled to a Waters Quattro micro API triple quadrupole

MS system (Micromass, Manchester, UK) [40,41]. The total

phospholipid was separated on a Venusil XBP Silica column

(150 mm62.1 mm i.d., 5 mm, Agela, DE, USA) with a column

temperature of 25uC. The mobile phase A was chloroform/

methanol/28% ammonium hydroxide (89.5/10/0.5, v/v), and

mobile phase B was chloroform/methanol/water/28% ammoni-

um hydroxide (55/39/5.5/0.5, v/v). The linear gradient program

was set as follows: 0–7 min, 10–23% B; 7–10 min, 23% B; 10–

15 min, 23–28% B; 15–20 min, 28–34% B; 20–25 min, 34–40%

B; 25–45 min, 40–50% B; 45–50 min, 50% B; 50–60 min, 50–

10% B; 60–70 min, 10% B. The injection volume was 5 ml, and

the flow rate was 0.2 ml min21.

Semi-quantification of identified phospholipids species was

carried out on the tandem quadrupole mass spectrometer under

negative electrospray ionization (ESI) condition by full scan within

a single acquisition. For full scan, the mass ranged from m/z 550

to 1000 with a scan time of 0.45 s and inter-scan delay of 0.02 s;

the voltage of capillary, extractor and RF (radio frequency) lens

were 3 kV, 3 V, and 0.1 V, respectively; the source and desolvation
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temperature were 100uC and 350uC respectively; the flow rates of

nitrogen as desolvation gas and cone gas were 400 L h21 and 50 L

h21, respectively. For semi-quantification of individual phospholip-

ids molecules, extracted ion chromatograms (EIC) was applied to

integrate peak areas by using ApexTrackTM peak detection

algorithm in Masslynx (Version4.1) Quanlynx Applications Man-

ager after correction for the contribution of the 13C isotope effect.

Each ion peak area was normalized to that of the corresponding

internal standard and the dry weight of cell (DWC), expressed by

nmol phospholipids (mg DWC)21.

Multivariate Statistical Analysis
In this work, one pattern recognition method PLS-DA was

performed to investigate correlations between different samples

and identify potential key phospholipids involved in inoculum-

associated response. The data in the multivariate statistical analysis

was set as X-matrix consisted of 119 individual phospholipid

species from 53 samples. The data was handled by centre and

pareto scaling prior to PLS-DA analysis with SIMCA-P Demo

(Umetrics AB, Sweden). The quality of PLS model was evaluated

by three parameters: R2(X), R2(Y) and Q2(Y), resulting in a valid

and clear phospholipid profile separation between the algal

samples analyzed. This statistical evaluation allows differentiate

and characterize the sample and gives a possible biological

interpretation of data. The range of the three parameters is 0–1,

and the higher the value of these parameters, the better the

explanation and reliable predictive ability of the model.

Statistics Analysis
Experimental data in this paper were obtained from at least six

replicates for each treatment, and values were shown as mean 6

standard deviation. Analysis of variance (ANOVA) was applied to

ascertain the significant of differences, and the p-values less than

0.05 were considered as significant (*) and the p-values less than

0.005 were considered as highly significant (**).

Results and Discussion

Identification and Quantification of Phospholipid (PL)
Species
All phospholipid samples extracted from C. sorokiniana were

analyzed under the optimal LC-MS conditions. The order of

elution was PG, PE, PC, phosphatidylinositol(PI), phosphatidyl-

serine(PS) and phosphatidic acid(PA), as six main phospholipid

classes in C. sorokiniana (Figure 1). In this study, total 119

phospholipid species comprised of 12 PG, 37 PC, 16 PI, 11 PS

and 9 PA were detected. The number of carbon atoms of two fatty

acyl chains of PLs of C. sorokiniana ranged from 32 to 44 while the

number of carbon-carbon double bonds of acyl chain ranged from

0 to 6. The result was in line with distribution of length and degree

of unsaturation fatty acids in C. sorokiniana [28]. Nevertheless,

composition of acyl chains in treatments was obviously different

compared to each other (Figure 2). The diversity of acyl chain

moieties of PE and PC were much more extensive than the others.

Both PI and PG contained short chain fatty acids (C32–C38),

much shorter than those of PA (C36–C42). Researchers also

identified PG, PE, PC and PI from another green alga Dunaliella

salina, and pointed out that main acyl chains were C14:0, C16:0,

C16:1, C18:0, C18:1, C18:2 and C18:3 [42]. Another report also

indicated that the main phospholipids species in a diatom Nitzschia

laevis were PC, lysophosphatidylcholine(LPC), PI, PG and DPG

with acyl chain ranged from 14:0 to C20:5, with dominant C16

acyl chains [43].

As shown in Figure 2, the two concentric circles displayed the

quantitative analysis of C. sorokiniana samples and presented

phospholipid class distribution for each inoculum culture at

exponential and stationary phase, respectively. These results

allowed observation of variation in PL classes of C. sorokiniana

extracts. It’s clear that PC, PE and PG constituted major

percentage (83.02–91.04%) of total phospholipids in this micro-

alga. Although inoculum sizes had no effect on the composition of

phospholipids (119 PL detected in all samples), it changed the

content of each phospholipid class significantly (Figure 1).

Compared with other C. sorokiniana culture conditions, IN106

showed a different profile with a sharp increase of PG, a dramatic

decrease of PE and a minor increase of PC. In details, content of

PG under IN106 at the exponential and stationary phase was

22.24% and 22.01%, respectively. Interestingly, PG amounts

detected in other cultures showed a reduction of 21.52–47.18%

and 46.58–50.42% compared to IN106-E and IN106-S, respec-

tively. These results evidently illustrated the phospholipid compo-

sitional differences between IN106 and the others, while similar-

ities between IN104 and IN105 suggested similar phospholipid

metabolism trend when compared with IN106-E and IN106-S,

respectively. A similar trend was observed in IN107, which was

significantly lower than the others. It can be suggested that IN106

had distinguished phospholipid metabolism different from the

other treatments.

Our results were consistent with several recent reports where

major phospholipids in microalgae species were PC, together with

PE and PG, and less amounts of PS, PI, PA and dipho-

sphatidylglycerol (DPG) [44,45]. Nonetheless, significant differ-

ence of phospholipids compositions of microalge from species to

species was also noticed. For instance, some recent reports

indicated that PC, PE, PG and PI were predominant in Ahnfeltia

tobuchiensis, PC, PE, PA, PG and PI in Laminaria japonica, PE, PG

Figure 1. The molecular species profile of phosphlipids from C.
sorokiniana.
doi:10.1371/journal.pone.0070827.g001
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and PI in Sargassum pallidum, and PS, PE, PA, PG and PI in Ulva
fenestrata [44], PC, LPC, PG, PE, LPE, PI and LPI in

Nannochloropsis oculata [46], and PC with PIF, PG, DPG and LPC

in Nitzschia laevis [47]. The phospholipid compositions determine

the membrane physiological characteristics of mircoalgae, as

variations in phospholipid headgroup could cause change of

membrane biophysical properties, such as membrane intrinsic

curvature, protein distribution and so on [48]. Our current

phospholipidomic study indicated that PE and PG were the key

phospholipid molecules causing phospholipid profile alternations

under different inoculum sizes (Figure 2), suggesting the impor-

tance of membrane density and fluidity of photosynthesis-related

thylakoid membrane in metabolism of microalgae under different

inoculum sizes.

Effects of Inoculum Sizes on Acyl Chain Length and
Unsaturation of PL Species in C. sorokiniana
Besides the phospholipid headgroup, acyl chains also charac-

terize membrane structure and dynamics, and thus membrane-

associated biological processes [49,50]. Our results showed that

inoculum sizes had little impact on the average length of the acyl

chains of total phospholipids with a range from 35.15 to 35.57.

However, a close look at average acyl chain length (CL) of

different phospholipid classes showed significant difference. For

instance, PG and PI had the shortest CL, followed by PE, PC and

PS. PA showed a longer CL (112.00–115.21%) compared with

that of PG. Furthermore, the inoculum-associated CL varied

significantly according to the phospholipids classes (Figure 3). For

example, compared with the other culture conditions, IN106 had

the shortest CL of PG, PI, and the longest CL of PC and PA. The

CL level of PE was relatively stable in the exponential phase, with

the maximum length (36.0660.17) in IN106-S. Interestingly, the

CL of PS was decreased with increasing inoculum sizes, suggesting

a possible different trend compared with other phospholipid

classes.

The influence of CL on biophysical properties of membranes,

such as stability and fluidity, has been studied for years [50,51,52].

Zhao and Feng have established an artificial membrane system by

PC with various hydrophobic chain moieties, and found that the

net van der Waals interaction between acyl chains increased with

increasing CL, leading to less stability and decreased bilayer

intermolecular spacing [52]. Niemelä and coworkers also inves-

tigated the influence of CL on bilayers, and revealed that

increasing CL would increase bilayer thickness and further

interdigitation across the bilayer center [51]. High concentration

of long aycl chain fatty acid residues of membrane lipids could

result in a high rigidity, which is mainly present as a crystalline,

‘‘solid’’ phase [53]. In IN106, the variation of CL of PG and PI

could cause an increase of the membrane fluidity, while that of

PC, PE and PA showed an opposite tendency. This might be

arisen partly from dissimilar metabolic pathway for different

phospholipid classes. In microalgae, PI and PG can only be

synthesized from cytidyldiphosphate-diacylglycerol (CDP-DAG)

pathway from PA, while both CDP-DAG and Kennedy pathways

are involved in production of PC and PE (http://www.kegg.jp),

which might explain why these phospholipids classes had different

CL variation under different inoculum size cultures of C.

sorokiniana. Another reason might be different biological characters

of those phospholipids. For instance, PG is the only phospholipid

presents in significant quantities in thylakoid membranes while

other phospholipids locate in extra-chloroplast membranes. A

large body of evidence demonstrated that PG played an important

role in microalgal photosynthesis [54], thus increasing the fluidity

of thylakoid membrane might be helpful for the improvement of

electron transport rate and photosynthetic efficiency [55].

Interestingly, in this study levels of acyl chain unsaturation of

phospholipids were in correlation with inoculum sizes, and the

lowest degree of unsaturation (DU) of all detected phospholipids

was observed in IN106, resulting in much lower total DU of

phospholipids in IN106 than those from other cultures (Figure 4).

High DU of acyl chain could increase spatial configuration of

phospholipid molecules and membrane fluidity which helps

microorganisms in adaptation to low environmental temperature

[56]. A recent report showed that exposure to saturated fatty acids

at concentrations leading to endoplasmic reticulum membrane

phospholipid remodeling would inhibit oxysterol activity [57]. Lin

also found DU of acyl chains in bilayer could affect the sterol

partitioning between lipid domains in plasma membrane [58].

Figure 2. The phosphlipid distribution of C. sorokiniana under different inoculum sizes.
doi:10.1371/journal.pone.0070827.g002
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Additionally, the variation of DU of specific phospholipids was

reported in lots of studies. Take PG as an example, Sakamoto has

reported that DU of PG acyl chains in chloroplasts strongly

correlated with the chilling sensitivity of tobacco plants [59].

Ivanov also discussed the physiological role of the decreasing of

DU of PG in down-regulation of photosystem I (PSI), modulation

of the capacity of PSI-dependent cyclic electron flows, and

distribution of excitation light energy in tobacco plants under

photoinhibitory conditions under low temperatures [60]. These

previous studies revealed that DU of phospholipids closely related

to the biological characteristics of the membrane. Therefore, the

decrease of DU of phospholipids in IN106 in the present work

suggests a possible membrane adaption to the inoculum sizes.

Identification of Potential Phospholipid Biomarker
To determine whether phospholipid profiling analysis could

distinguish the inoculum size cultures, PLS-DA model was carried

out to investigate inoculum-dependent phospholipid characteris-

Figure 3. The chain lenth of phospholipids in C. sorokiniana under different inoculum sizes.
doi:10.1371/journal.pone.0070827.g003
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tics of C. sorokiniana. As shown in Figure 5, PLS-DA was performed

to discriminate different inoculum sizes in 53 samples with

available phospholipids information. The sample classification

was determined by inoculum sizes and growth phases. The values

of the first three principal components showed a small variation

within the same class and samples in the same growth phase were

grouped together on the three-dimensional PLS-DA score plot,

indicating a high reproducibility of LC-MS analysis of phospho-

lipid profile in this study (Figure 5a). Additionally, the PLS-DA

score plot for the first and third components was examined in

details (Figure 5b). The remarkable separation among samples

collected at different growth conditions both in t1 and t3, reflected

a high reproduction within the same class. IN106-E, IN106-S and

IN104-E dominated and positively correlated to the first

component (t1), whereas the third component separated samples

based on the harvesting condition. Nevertheless, overlaps were still

observed among different classes. IN this study, the PLS-DA

model successfully categorized samples and the loading plot

provided an insight into the changes of phospholipid among

different classes.The loading plot of PLS-DA also illustrated the

potential phospholipid biomarkers which definitively contribute to

the classifications. Consecutively, the membrane metabolic differ-

Figure 4. The degree of unsaturation of phospholipid in C. sorokiniana under different inoculum sizes.
doi:10.1371/journal.pone.0070827.g004
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ence observed all along the growth time and culture can be

distinguished by the phospholipid profile, especially the samples

grown under IN106. Considering the similar result obtained from

a parallel proteomic analysis [31], we proposed that the culture

with the inoculum sizes of 16106 cells mL21 had a distinguished

difference compared to the other inoculum sizes subjected to its

unique phospholipid composition.

In an effort to get an insight into the most vital phospholipid in

response of C. sorokiniana to incoulum size, we conducted the PLS-

DA analysis to reveal potential biomarkers (Figure 5c). The PLS-

DA loading plot w*c [1]–w*c [3] revealed the contribution of each

phospholipid species to the model and enriched the ones most

correlated to the first and third components as the potential

biomarkers. And then a deeper investigation was applied to the

most potentially relevant biomarkers.

Obviously, the content differences of all phospholipid biomark-

ers identified in this PLS-DA model were caused by responding to

the initial cell density, which related to the cell membrane function

of adaptation to different inoculums sizes. As shown in Figures 6,

7, 8, the biomarkers in this system have been shown to be PG, PE

and PC. Variations in the content of these molecules yielded

different membrane status that cells utilize to adapt to their initial

cell densities. The results verified that C. sorokiniana had developed

mechanisms of altering quantities and composition of phospho-

lipids, especially those of PG, PE and PC, to cope with different

inoculum sizes.

Effect of Inoculum Sizes on Content of Potential
Phospholipid Biomarkers
According to the PLS-DA analysis, the inoculum-dependent

differential abundances among major PLs were PG, PE and PC.

PG was the third most abundant class of phospholipids in C.

sorokiniana (Figure 2). The highest concentrations of PG species

observed in C. sorokiniana were PG34:2 and PG34:3. Furthermore,

almost all PG molecules reached peak values in IN106 (Figure 6).

These also explained the change of total concentration of lipids in

C. sorokiniana culture [28].

Figure 7 displayed the change of vital PE molecules under

different inoculum sizes. The PE species were another group of key

phospholipids in inoculum-dependent culture, and also consist of

the most diverse phospholipid class in terms of types of acyl chains

and the second most abundant phospholipid class observed in C.

sorokiniana (Figure 1). As shown in Figure 8, PE34:2 was the most

abundant PE species among all cultures and significantly reduced

in IN106 when compared with others. Similarly, significant

decrease of other PE species was also observed in IN106

(p,0.005). Additionally, PE32:1, PE34:2, PE34:1, PE36:1 and

PE38:1 were positively related to the third component in

Figure 4C, and all these species reached maximum values at

IN107 (p,0.05). Whereas PE32:3, PE34:6, PE36:6 and PE36:5,

negatively correlated to the third component, reached their highest

values in IN105.

Figure 5. PLS-DA model based on the entire phospholipid profile in C. sorokiniana. (a) PLS-DA 3D score plot distinguishing C. sorokiniana
grown under different inoculum sizes (R2X [1] = 39.2%; R2X [2] = 18.4%; R2X [3] = 17%). (b) PLS-DA score plot t [1]–t [3] indicating the separation
between different groups; (c) PLS-DA loading plot w*c [1]2w*c [2] explaining the separation above.
doi:10.1371/journal.pone.0070827.g005
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Although PC was the most abundant class of phospholipids and

the second most diverse lipid class in C. sorokiniana, it was less

important than PC and PG in PLS-DA analysis (Figure 4C), with

less inoculum-associated changes than PG and PE. Figure 8

showed the change of all the key PC species under different

inoculum sizes. The most abundant PC contained the acyl chain

moite of C34:2. Thus, the phospholipids composed of C16 and

C18 acyl chains might account for the majority of the most

abundant phospholipids species in C. sorokiniana [28]. PC with

short acyl chains, such as PC32:3, PC34:6, PC34:5 and PC34:2,

were relatively stable in exponential phase while their contents

were decreased with increasing inoculum sizes in the stationary

phase. In contrast, the concentration of the long chain PC in

IN106 was extremely higher than the others (p,0.05).

As aforementioned, the effect of inoculum sizes on phospholipid

profiling of C. sorokiniana was mainly observed in IN106, with

increased PG and PC, and reduced PE. Lots of evidence suggested

that content distribution of phospholipids could change with the

variation of temperature, light condition and nutrition supplement

[61,62,63]. PC is the main component in plasmalemma system

such as mitochondria and endoplasmic reticula, and it is also the

minor phopholipid in chloroplasts. Moreover, PC is necessary for

form of the DAG backbone of the glycolipids and it could be

hydrolyzed by phospholipase D (PLD) to produce PA, acting as an

important second messenger in response to various biotic and

abiotic stresses [54,64].

PE is another major constituent of microalgal plasma

membranes. Some PE species are induced in plant cultures under

anoxia stress and increased level of PE may provide some

additional protection [27,65,66]. Membranes with high PE

content can undergo laminar-hexagonal transition, which could

not only affect membrane-membrane contact and bilayer fusion

during processes of vesicle formation and vesicle-mediated protein

trafficking [67], but also involve the integration of proteins to

membranes, lateral movement in the membrane and folding and

stabilization of certain protein complexes [68]. The significant

increase of PE in IN106 might indicate a good growth status of C.

sorokiniana.

As the only structural phospholipid in thylakoids and inner

envelope membrane, PG was found to be essential for the

dimerization of photosystem II(PSII) [69] and trimerization of

Light Harvesting Complexes II (LHCII) [70] and PSI [71]. Recent

research of the crystal structure of PSII from a cyanobacterium

Thermosynechococcus elongatus revealed that PG served as additional

lubrication for removal and insertion of CP43, a component of PS

II in higher plants and microalgae. Furthermore, two PG species

were located at the side of plastoquinone-plastoquinol (PQ-PQH2)

exchange cavity and covered by a loop of D2, indicating PG might

play an important role in oxygen diffusion to the cytoplasmic side

of PSII [72]. Yu and Benning constructed a sulfoquinovosyl

diacylglycerol (SQDG) and PG-deficient double mutant resulting

in pale yellow cotyledons and leaves with reduced chlorophyll

content and a severely compromised growth with an impaired

photosynthetic capacity [73]. Pineau constructed two mutants of

Chlamydomonas reinhardtii characterized by a remarkable reduction

in their PG contents together with a complete loss in its D3-trans

hexadecenoic acid-containing form, also lost PSII activity [74]. All

these results indicated that PG not only was the essential

component for formation of the thylakoid membranes, but also

might be an important part involved in photosynthesis. Conse-

quently, the change of phospholipids in this study might be in

relation to inoculum-associated variation of the light condition in

C. sorokiniana cultures. Apparently, the higher the inoculum size,

the lower average light intensity would be for individual cells.

However, the content of each PG species in IN107 was much

lower than the one in IN106, because the change of light condition

was not the only culture environment factor affected by inoculum

sizes. Thus, PG could be potential metabolic engineering targets

by engineering the key genes in the PG biosynthesis and

metabolism pathways.

Figure 6. The biomarker PG content of C. sorokiniana under different inoculum sizes. Error bars represent standard error (n$6). **, p,0.005.
doi:10.1371/journal.pone.0070827.g006
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Tian has observed the phenomenon of the nutrition deficiency

and cell stress caused by high inoculum size in yeast cells [27]. We

have already analyzed the differences in the metabolite finger-

prints against the metabolite variations of inoculum sizes,

compared with those of C. sorokiniana in IN106 [28]. It’s clear

that almost all detected metabolites in IN106 relatively had higher

abundance than those under other conditions, especially in

exponential phase. We also found that the highest photosynthe-

sis-related protein expressions were mostly detected under the

inoculum sizes of 16106 cells mL21, which suggested the culture

under this inoculum size exploited more protein synthesis potency

of C. sorokiniana [31]. Combing all these results, the growth

condition in IN106 was probably better than the other culture

conditions in this study. Our results also suggested that culture

process optimization of C. sorokiniana could be carried out based on

the inoculum sizes of IN106; based on our previous study, the

production per day of microalgae biofuel from C. sorokiniana was

increased with increasing inoculums sizes [28]. Considering the

changes of biofuel production [28] and photosynthesis related

proteins [31] and phospholipids in this study according to

inoculums sizes, it could be proposed that although activities of

metabolism and photosynthesis were weaker than in IN106, the

maximum biofuel productivity was observed in IN107 due to

faster growth. Thus, the light limitation and cell stress displayed in

IN107 suggested that careful selection of a reasonable inoculum

size might be an important approach to improve the growth and

biofuel production of C. sorokiniana.

Conclusions
Research has shown high accumulation of phospholipids as a

percentage of their total lipids mass in photosynthetic microalgae

and suggested that lipids (biofuels) are the primary target for

processors engaged in microalgae cultivation [75]. Thus purpose

of this work was to identify the phospholipid profiling in C.

sorokiniana, and then to find the effect of inoculum sizes on

phospholipid profile. The phospholipidome under different

inoculum size cultures was investigated by LC-MS. PLS-DA

analysis showed a clear discrimination from the culture with the

inoculum sizes of 16106 cells mL21 to the others; and the key

phospholipids responsible for this separation were PG and PE,

which means the degree of membrane density and the fluidity of

thylakoid membrane might play an important role in inoculum-

associated mircoalgal growth and metabolism, and thus thylakoid

membrane would be potential metabolic engineering targets for

Figure 7. The biomarker PE content of C. sorokiniana under different inoculum sizes. Error bars represent standard error (n$6). **, p,0.005.
doi:10.1371/journal.pone.0070827.g007
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improvement of biofuel production and productivity from industry

microalgae.
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