
Phospholipid Remodeling in Physiology and Disease

Bo Wang, Peter Tontonoz

Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen 
School of Medicine, University of California, Los Angeles, California 90272, USA;

Abstract

Phospholipids are major constituents of biological membranes. The fatty acyl chain composition 

of phospholipids determines the biophysical properties of membranes and thereby affects their 

impact on biological processes. The composition of fatty acyl chains is also actively regulated 

through a deacylation and reacylation pathway called Lands’ cycle. Recent studies of mouse 

genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which 

catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play 

important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have 

been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in 

pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating 

lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting 

evidence also suggests that changes in LPCAT activity may be potentially involved in pathological 

conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. 

Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may 

provide new therapeutic options for these conditions.
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1. INTRODUCTION

Phospholipids are composed of two hydrophobic fatty acyl chains and one hydrophilic head 

group. Along with cholesterol, they are the major constituents of biological membranes. 

Phospholipid bilayers fulfill important structural functions by segregating cellular contents 

from the surrounding environment, forming subcellular organelles and providing platforms 

for a variety of cellular processes. Phospholipids are also substrates for the generation of 

bioactive molecules involved in signal transduction, such as eicosanoids, 

lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA), and diacylglycerol (1–3). The 

major structural phospholipids in mammalian membranes are glycerophospholipids, 
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including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine 

(PS), phosphatidylinositol (PI), and phosphatidic acid (PA). Among these 

glycerophospholipids, PC is the most abundant in mammalian cell membranes and 

subcellular organelles, accounting for ~40–50% of total phospholipids (2).

The fatty acyl moieties of membrane phospholipids exhibit considerable diversity in chain 

length and degree of saturation (double versus single bonds). These two parameters 

determine the biophysical properties of cell membranes, including their fluidity, curvature, 

and subdomain architecture. These factors in turn influence membrane-associated cellular 

processes, such as vesical trafficking, signal transduction, and molecular transport (1, 4). 

Although in vitro studies have greatly advanced our understanding of how phospholipids 

affect cellular processes, it is largely unknown how changes in phospholipid composition 

impact physiology, due to the difficulty of introducing specific changes in membrane 

composition in living organisms, especially higher organisms such as mammals. In 

mammalian cells, phospholipid composition is largely maintained through a remodeling 

process of deacylation and reacylation—a pathway referred to as Lands’ cycle (5). Due to 

the substrate specificity of the enzymes in this pathway, saturated and monosaturated fatty 

acyl chains are preferably linked at the sn-1 position and polyunsaturated fatty acids at the 

sn-2 position. The discovery of the lysophopholipid acyltransferase (LPLAT) family of 

phospholipid remodeling enzymes that catalyze the reacylation of lysophopholipids at the 

sn-2 position and thus modulate the fatty acyl composition of phospholipids has led to a 

better understanding of how phospholipid remodeling contributes to physiology in vivo.

Over the last five years, studies using genetic models have demonstrated that 

lysophophatidylcholine acyltransferases (LPCATs) play important roles in lipid metabolism 

and homeostasis by regulating the abundance of different PC species in multiple cell and 

tissue types. In this review, we focus on the biochemistry and function of PC remodeling and 

its links to mammalian physiology. We give special attention to newly appreciated roles for 

LPCATs in liver, intestine, and lung and their potential involvement in the pathogenesis of 

human diseases.

2. PHOSPHATIDYLCHOLINE METABOLISM

2.1. Phosphatidylcholine Biosynthesis (The Kennedy Pathway)

In mammals, the primary route for de novo PC synthesis is through the CDP-choline 

pathway, also known as the Kennedy pathway, which was first described by Kennedy & 

Weiss in 1956 (6) (Figure 1). The Kennedy pathway involves three enzymatic reactions: 

phosphorylation of choline by choline kinase, formation of CDP-choline from 

phosphocholine and CTP catalyzed by CTP:phosphocholine cytidylyltransferase (CT), and 

the replacement of cytidine monophosphate by diacylglycerol (DAG) to produce PC 

catalyzed by CDP-choline:1,2-diacylglycerol cholinephosphotransferase. In addition to the 

Kennedy pathway, the liver has a unique pathway for PC synthesis via three sequential 

methylations of the ethanolamine moiety of PE catalyzed by PE methyltransferase, which 

contributes to ~30% of hepatic PC synthesis (7).
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2.2. Phospholipid Remodeling (Lands’ Cycle)

As mentioned above, the fatty acyl chains in phospholipids are highly diverse and 

asymmetrically distributed. This distribution cannot be fully explained by the de novo 

synthesis pathway, as the enzymes in the Kennedy pathway have little fatty acyl–coenzyme 

A substrate specificity. The composition and asymmetrical distribution of fatty acyl chains in 

individual phospholipids are modified after their de novo synthesis by a remodeling process 

known as Lands’ cycle. In 1958, Lands first described the rapid turnover of sn-2 fatty acyl 

moiety of glycerophospholipids (5). He and colleagues proposed that membrane 

phospholipids are metabolically active and undergo a series of deacylation and reacylation 

reactions, which result in the incorporation of polyunsaturated fatty acids at the sn-2 position 

of phospholipids (8–10). Upon de novo synthesis, the fatty acyl chains at the sn-2 position of 

phospholipids are hydrolyzed by phospholipases A2 (PLA2s) to generate 1-acyl 

lysophopholipids, which are reacylated by LPLAT to incorporate another fatty acid to the 

sn-2 position and form a new phospholipid species.

3. LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES

Several PLA2s were identified and characterized in late 1980s (11, 12); however, LPLATs 

were not identified until the late 1990s (13), and the first LPCAT was cloned in the 2000s. In 

2006, two groups independently reported the cloning of the first LPCAT, Lpcat1, originally 

named Agpat9 or acyltransferase-like 2 (AT-like 2) (14, 15). In early 2007, Shimizu and 

colleagues (16) cloned a second Lpcat (Lpcat2, also called lysoPAFAT, Agpat11, or AT-like 

1), which possesses both acetyl-CoA:lysoPAF acetyltransferase activity that generates 

platelet-activating factor (PAF), and acyl-CoA:lysoPC acyltransferase activity that generates 

1-O-alkyl-PC. The two other mammalian LPCATs, LPCAT3 and LPCAT4, were cloned by 

several groups in 2008 (17–19).

LPCATs belong to two different families based on their amino acid sequences. LPCAT1 and 

LPCAT2 are members of acylglycerophosphate acyltransferase family, which contains four 

conserved domains designated as LPA acyltransferase motifs 1–4 (20, 21) and an 

endoplasmic reticulum (ER) localization sequence (22). On the other hand, LPCAT3 and 

LPCAT4 (also called MBOAT5 and MBOAT2, respectively) belong to the membrane-bound 

O-acyltransferase (MBOAT) family. They contain MBOAT motifs but lack the LPA 

acyltransferase motifs (17, 23). LPCAT3 and LPCAT4 are also ER membrane proteins.

LPCATs display distinct tissue distributions, enzymatic activities, and substrate preferences 

(Table 1). Multiple studies have demonstrated that LPCAT1 is primarily expressed in lung 

alveolar type II cells where it catalyzes the generation of the dipalmitoyl-PC (DPPC) 

component of pulmonary surfactant (14, 15, 24). LPCAT2 is highly expressed in 

inflammatory cells, including resident macrophages and casein-induced neutrophils; it is 

also present in skin, colon, spleen, and brain (16). In contrast, LPCAT3 is more widely 

expressed. It is abundant in testis, kidney, and metabolic tissues including liver, intestine, 

and adipose (17, 18, 25). The expression of LPCAT4 is selectively expressed in epididymis, 

brain, testis, and ovary (17). In addition to their primary lysoPC acyltransferase activity, 

each LPCAT possesses other enzymatic activities. For example, LPCAT1 and LPCAT2 have 

been demonstrated to have lysoPAF acetyltransferase activity that catalyzes the 
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incorporation of acetyl to the sn-2 site of lysoPAF in the biosynthesis of PAF (16, 26). 

LPCAT1 also display acyltransferase activity with LPG and LPA as acyl acceptors (14). 

LPCAT3 exhibits activities for lysoPE and lysoPS as substrates, and LPCAT4 possesses 

modest activity toward lysoPE as a substrate (17).

Most importantly, each LPCAT exhibits different acyl-CoA preferences. LPCAT1 prefers 

palmitoyl-CoA (16:0-acyl-CoA) as an acyl donor to synthesize dipalmitoyl PC [DPPC (14, 

15)], but it prefers linoleoyl-CoA (18:2-acyl-CoA) and linoleoyl-CoA (18:3-acyl-CoA) as 

substrates for its LPGAT activity. LPCAT2 shows the highest activity in the presence of 

acetyl-CoA or arachidonoyl-CoA (20:4-acyl-CoA) (16). In contrast, LPCAT3 and LPCAT4 

prefer polyunsaturated fatty acyl CoAs (18:2-acyl-CoA or 20:4-acyl-CoA) and oleoyl-CoA 

(18:1-acyl-CoA) as substrates, respectively (17, 25). Thus, the different substrate preferences 

and tissue expression patterns of LPCATs contribute to the tissue-selective remodeling of 

membrane PC species. As discussed below, LPCAT1 is highly expressed in lung, and 

catalyzes the production of DPPC, a major component of lung surfactant. In contrast, 

LPCAT3 is highly expressed in liver and intestine and catalyzes the production of 

arachidonoyl and linoleoyl PC.

4. LPCATS IN LIPID METABOLISM

Previous studies have documented that both de novo PC biosynthetic pathways are required 

for lipoprotein production and secretion. This is not surprising, as PC is the major 

phospholipid component of all plasma lipoproteins (reviewed extensively in 27–29). 

However, recent studies have demonstrated that both the quantity of PC and the fatty acyl 

chain composition of PC are important regulators of lipoprotein secretion and lipid 

metabolism in liver and intestine (Figures 2 and 3).

4.1. Lpcat3 Regulates Very Low-Density Lipoprotein Secretion

Among phospholipid remodeling enzymes, the role of Lpcat3 in lipid metabolism is by far 

the best characterized. The initial suggestion that Lpcat3 may function in lipid metabolism 

came from the observations that the gene encoding Lpcat3 is a direct transcriptional target of 

LXR (25, 30) and PPARs alpha and gamma (18, 31), two lipid-activated nuclear receptors 

that play important roles in regulating lipid homeostasis (32–34). Furthermore, Lpcat3 is 

highly expressed in metabolic tissues, including liver, intestine, and adipose tissue. In liver, 

Lpcat3 is the most abundant Lpcat and accounts for more than 90% of the total lysoPC 

acyltransferase activity (18, 35, 36).

We and others have shown that acute knockdown of Lpcat3 in mouse liver with a specific 

shRNA-expressing adenovirus increases plasma triglyceride levels accompanied with 

reduced hepatic triglyceride (25, 35). This is likely caused by the accumulation of lysoPC, 

which in turn increases microsomal triglyceride transfer protein (MTP) expression and 

facilitates apoB-containing very low-density lipoprotein (VLDL) assembly and secretion 

(35). Conversely, mice acutely over-expressing human LPCAT3 in liver for several days 

show reduced VLDL secretion and lowered hepatic triglyceride levels, perhaps due to the 

fact that, at reduced levels, lysoPC no longer suppresses fatty acid β-oxidation in 

hepatocytes (37). These mice also displayed beneficial lipoprotein profiles with increased 
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levels of protective ApoE-rich high-density lipoprotein (HDL) in plasma. The effect of long-

term activation or overexpression of LPCAT3 remains to be determined.

Surprisingly, permanently deleting Lpcat3 in mouse hepatocytes results in metabolic 

phenotypes that differ from those described above for the acute knockdown. These 

differences are likely due to the more extensive changes in membrane phospholipids 

expected with the complete absence of hepatic Lpcat3 that begins prenatally. Mice lacking 

Lpcat3 in hepatocytes show reduced plasma triglycerides and hepatic steatosis and secrete 

lipid-poor VLDL (36, 38). In contrast to the acute knockdown of Lpcat3, lysoPC does not 

accumulate to an appreciable degree in the livers of Lpcat3 knockout mice, most likely 

because the excess lysoPC is channeled into the increased biosynthesis of saturated and 

monounsaturated PCs. Earlier studies demonstrated that mice lacking genes involved in the 

de novo PC synthesis (e.g., Pemt and CT-α) exhibited poor VLDL lipidation and impaired 

VLDL secretion, as evidenced by reduced ApoB protein in plasma (39–42). In contrast, 

ApoB levels in plasma are not altered in Lpcat3-deficient mice, indicating that they retain 

the ability to secrete ApoB (38). Rather, the small size of plasma VLDL particles, together 

with the reduced triglyceride-rich ApoB-containing particles in the Golgi fraction of Lpcat3-

deficient livers, revealed that Lpcat3 impacts the second step of VLDL assembly—the bulk 

triglyceride addition to lipid-poor ApoB particles and the generation of mature VLDL.

Mechanistically, these phenotypes can be traced to decreases in ER membrane mobility and 

curvature caused by loss of linoleoyl and arachidonoyl phospholipids. Membranes 

containing higher amounts of these polyunsaturated phospholipids are more fluid and 

dynamic. Biophysical studies have suggested that greater lipid transport is generally 

observed with more fluid and highly curved membrane surfaces (43). Interestingly, 

proteomic studies have identified LPCAT3 as a component of the VLDL transport vesicle, 

indicating that LPCAT3 travels with primordial VLDL particles as they bud from the ER and 

move to the Golgi (44). Therefore, it is likely that Lpcat3 modifies the linoleoyl- and 

arachidonoyl-PC composition of both membranes and lipoprotein particles during VLDL 

assembly, thereby generating a local membrane environment that facilitates lipid transport 

and bulk lipidation. Another study has suggested that high levels of polyunsaturated 

phospholipids that accumulate in membranes as a result of Lpcat3 activity enable 

triglyceride to locally cluster in high density and that this clustering promotes efficient 

triglyceride transfer (36).

The induction of Lpcat3 expression in liver also appears to be an important contributor to the 

pharmacological effects of LXR agonists. LXR activation promotes VLDL secretion. This 

effect was previously believed to be due, at least in part, to the induction of SREBP-1c–

dependent lipogenesis and increased expression of phospholipid transfer protein (PLTP). 

This process transfers phospholipids into nascent VLDL, allowing particle expansion (45, 

46). Studies with Lpcat3-deficient mice suggest that as an LXR target gene, Lpcat3 also 

mediates some effects of LXR on VLDL secretion. Mice lacking Lpcat3 in liver secrete less 

VLDL in response to synthetic LXR agonist treatment compared to controls (38).
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4.2. Role of Lpcat3 in Hepatic SREBP-1c Processing and Lipogenesis

LXR activation strongly promotes lipogenesis in liver. This effect has been primarily 

attributed to its role in the transcriptional activation of SREBP-1c and its downstream 

lipogenic target genes, including Fasn and Scd-1 (47–49). We recently demonstrated that 

LXR activation also promotes SREBP-1c posttranslational processing through the induction 

of Lpcat3 expression (50). We showed that the incorporation of polyunsaturated fatty acids 

into phospholipids in ER membranes by Lpcat3 facilitates SREBP-1c processing and 

thereby enhances lipogenesis. Conversely, Lpcat3 deficiency in mouse hepatocytes reduces 

polyunsaturated phospholipid levels in ER membranes, reduces nuclear SREBP-1c levels, 

and blunts the lipogenic response to LXR agonist treatment.

The mechanism by which ER membrane phospholipid composition regulates SREBP-1c 

processing is not yet clear. It has been shown that the effect of Lpcat3 and membrane fatty 

acyl chain composition on SREBP-1c processing is SCAP dependent and therefore 

presumably involves the transport of SREBP-1c from ER to Golgi. We hypothesize that the 

flexible polyunsaturated fatty acyl chains in the local environment of the SREBP-1c/SCAP/

Insig complex increase membrane dynamics and facilitate the release of the SREBP-1c/

SCAP complex from the ER. In agreement with this model, prior studies reported that 

processing of the SREBP ortholog in Drosophila S2 cells could be inhibited by saturated PE, 

the predominant phospholipid in Drosophila membranes (51). Another study showed that 

SREBP-1 activity is also affected by changes in total cellular levels of phospholipids (52). 

Reducing the total cellular phospholipid levels by inhibiting enzymes involved in 

phospholipid de novo biosynthesis pathway activates SREBP-1 processing by disrupting 

COPII-dependent ER–Golgi transport and causing the mislocalization of site 1 protease 

(S1P) and S2P to ER.

Lpcat3 appears to mediate lipogenesis both in physiological contexts such as feeding, as 

well as in pathological conditions such as obesity, in which SREBP-1c activity and 

lipogenesis are known to be enhanced (53, 54). Mass spectrometry analysis revealed that 

polyunsaturated phospholipid levels are selectively increased in the ER of wild-type mice 

during feeding and in obese mice at baseline. Furthermore, these changes in membrane 

composition are at least in part dependent on Lpcat3 activity. Inhibition of Lpcat3 activity by 

adenovirus encoding shRNA against Lpcat3 in obese mice reduces SREBP-1c processing, 

blunts lipogenesis, and ameliorates the development of fatty liver. These findings suggest 

that pharmacologic inhibition of LPCAT3 may be of potential therapeutic benefit in the 

setting of fatty liver disease.

4.3. Lpcat3 and Lipid Absorption in Intestine

It has long been recognized that PC in the intestinal lumen facilitates lipid absorption. 

Studies in rats with biliary fistulas showed that inclusion of PC or lysoPC in the infusate 

restored the lymphatic output of both triglyceride and phospholipid (55). Luminal PC 

secreted from liver along with bile acids promotes the solubilization and hydrolysis of 

dietary fat in the intestinal lumen (56). However, mice deficient in multidrug-resistant 

protein 2 (Mdr2), a PC-specific flippase that secretes PC into bile acid, show reduced 

chylomicron production without a defect in fat absorption even though they lack the 
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majority of luminal PC (57), suggesting that PC functions as more than a surfactant. PC 

accounts for >70% of the total phospholipids in chylomicrons (58). Therefore, adequate PC 

levels are important for chylomicron production within enterocytes. Like triglyceride, 

luminal PC is hydrolyzed into lysoPC in the lumen and then reacylated in enterocytes 

through lysoPC acyltransferase activity (59). Interestingly, infusion of choline in bile-

diverted rats only partially restored chylomicron output (55), suggesting that the CDP-

choline pathway may not be as critical as the Lpcat reacylation pathway in lipid absorption.

As in the liver, Lpcat3 is the most highly expressed Lpcat in intestine and accounts for 80–

90% of total lysoPC acyltransferase activity (36, 60). Recent studies have revealed that 

Lpcat3 in the small intestine plays a particularly important role in plasma lipid metabolism 

(60–62). Global Lpcat3 knockout mice are born normal but rapidly develop hypoglycemia 

and die shortly after birth on P2 (36, 38). Similarly, conditional knockout of intestinal 

Lpcat3 using Vilin-Cre results in hypoglycemia and death during lactation, suggesting that 

intestinal Lpcat3 is important for postnatal survival (61).

We and others have revealed that Lpcat3 activity is also a critical determinant of lipid 

absorption in intestine (60, 61) (Figure 3). Mice lacking Lpcat3 in intestine (Lpcat3Vil-Cre 

mice) have reduced serum triglyceride and cholesterol levels on chow diet. When challenged 

with a bolus of lipid, Lpcat3Vil-Cre mice exhibit a severe defect in fatty acid uptake into 

enterocytes, have reduced serum triglyceride output, and secrete smaller chylomicrons. In 

contrast to the liver, where loss of Lpcat3 mainly affects the lipidation rather than the 

secretion of VLDL, Lpcat3 deficiency in intestine reduces ApoB-48 levels in chylomicrons 

and promotes ApoB-48 accumulation in intestine. These findings point to impaired 

chylomicron secretion in addition to defective chylomicron lipidation.

Mechanistic studies showed that loss of Lpcat3 in intestine results in a selective defect in the 

incorporation of linoleate and arachidonate into membrane phospholipids. These changes, 

possibly together with an increase in saturated and monosaturated PC, lead to a marked 

decrease in membrane fluidity, thus impairing passive fatty acid transport across the apical 

membrane of enterocytes. Li et al. (60) reported that the expression of CD36 and FATP4, 

two putative fatty acid transporters, was reduced in enterocytes of Lpcat3 global knockout 

mice and suggested that this may contribute to the impaired fatty acid uptake. However, 

most studies argue against an essential role for these proteins in dietary lipid uptake. It has 

long been debated whether fatty acids are transported across the enterocyte apical membrane 

via passive diffusion or by carrier-mediated processes (63). In vitro studies utilizing Caco2 

cells suggest that a passive transport dominates, especially when the fatty acid concentration 

is high. Such studies have shown that the rate of fatty acid uptake is linear, protease resistant, 

and temperature independent (64, 65). In agreement with these observations, deletion of 

either CD36 or FATP4 in mouse intestine does not appear to dramatically alter fatty acid 

uptake (66, 67).

Furthermore, our lab showed that acute administration of polyunsaturated PC increases 

passive fatty acid uptake in the Lpcat3-deficient intestine, demonstrating that altered 

membrane composition per se is the proximal cause of the defect. These observations are 

consistent with the hypothesis that the increased abundance of polyunsaturated PC (both AA 
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and LA) in the apical membrane facilitates the flip-flop of fatty acids into the bilayer (68, 

69). Therefore, our studies favor a biophysical model in which passive transport of fatty 

acids across a permissive enterocyte membrane predominates in the context of bolus lipid 

challenge in vivo. Whether Lpcat3 deficiency-induced changes in membrane fluidity and 

dynamics also contribute to the impaired chylomicron transport and secretion remains to be 

investigated.

In addition to defective triglyceride absorption, Lpcat3Vil-Cre mice also have lower serum 

cholesterol levels (60–62), likely due to reduced chylomicron and HDL production from the 

intestine. The expression of NPC1L1, a protein critical for intestinal cholesterol absorption 

(70), was reported to be reduced in the Lpcat3-deficient intestine. Studies have differed as to 

whether cholesterol absorption is substantially reduced in the knockout mice (60, 62). One 

study also reported a decrease in HDL-cholesterol levels in Lpcat3Vil-Cre mice, which the 

authors attributed to decreased expression of ABCA1 and reduced ApoA-I secretion (62). 

Intestinal ABCA1 activity has been shown to produce approximately 30% of the total 

plasma HDL pool in mice (71). However, it remains unclear how loss of Lpcat3 and the 

subsequent changes in membrane phospholipid composition affect expression of genes 

involved in cholesterol transport.

Interestingly, our studies also revealed an unexpected function for intestinal Lpcat3 in 

supporting the survival of mice on a lipid-rich diet (61). Loss of intestinal Lpcat3 renders 

mice unable to survive a high-fat diet due to the combined effect of defective lipid 

absorption and dramatically reduced food intake. Mice lacking Lpcat3 in intestine stop 

eating once switched to a high-fat diet or Western diet. They continue to resist eating and 

rapidly lose body weight, even though they exhibit signs of starvation. The suppression of 

food intake appears to be dependent on the amount of fat present in the diet. There is no 

difference in food consumption between Lpcat3Vil-Cre mice and controls on chow diet, and 

they are able to adapt to a 30% fat diet after several days. These observations suggest that 

the inability to process dietary fat triggers one or more signals that inhibit food intake in 

Lpcat3Vil-Cre mice.

GLP-1 and PYY are two such factors that have been demonstrated to control appetite (72, 

73), and both are highly induced upon high-fat diet feeding in Lpcat3Vil-Cre mice (61). These 

hormones are secreted from enteroendocrine L cells in the distal small intestine, most likely 

in response to luminal fatty acids. We postulate that the reduced fatty acid uptake in the 

duodenum and jejunum of Lpcat3Vil-Cre mice results in more fatty acids reaching the ileum, 

where they trigger the secretion of gut hormones. Our data suggest that the excessive GLP-1 

secretion indeed contributes to anorexia in Lpcat3Vil-Cre mice, as administration of a GLP-1 

receptor antagonist partially rescues food intake. High-fat feeding also induces the 

biosynthesis of intestinal oleoylethanolamide (OEA), a lipid messenger that inhibits food 

intake by activating the paraventricular nuclei in the hypothalamus and peripheral sensory 

fibers (74, 75). Interestingly, intestinal and serum OEA levels are hyperinduced in high-fat 

diet–fed Lpcat3Vil-Cre mice, suggesting that they may also contribute to reduced food intake.
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4.4. Lpcat3 and Adipogenesis

Lpcat3 is the most highly expressed LPCAT in adipose tissue. Recent in vitro studies in 

preadipocyte cell lines suggested that Lpcat3 may be involved in adipogenesis. Using 

C3H10T1/2 cells, a mesenchymal stem cell line capable of differentiating to adipocyte-like 

cells, Eto et al. (76) showed that the expression of Lpcat3 and lysophopholipid 

acyltransferase activity are increased during the differentiation of adipocytes. Consistent 

with this change in gene expression, levels of arachidonoyl phospholipids, including PC and 

PE, were increased in adipocytes. Arachidonic acid in phospholipids is a substrate for the 

biosynthesis of eicosanoids, some of which have been proposed to act as endogenous ligands 

for PPARγ (77). Eto and colleagues suggest that Lpcat3-mediated arachidonic acid 

incorporation into phospholipids may promote production of endogenous lipid ligands for 

PPARγ, although this hypothesis remains to be tested directly.

Another study showed that knockdown of Lpcat3 in 3T3-L1 preadipocytes impairs their 

adipogenesis and differentiation (78). Lpcat3 inhibition was found to reduce levels of 

polyunsaturated phospholipids, such as linoleoyl and arachidonoyl phospholipids, and 

decrease the expression of adipogenesis-related genes, such as SREBPs, PPARγ, and C/

EBPs, perhaps through effects on the Wnt/β-catenin pathway. While these cellular studies 

indicate that loss of Lpcat3 expression can impair adipogenesis, the in vivo physiological 

roles of Lpcat3 in adipose tissue and its potential impact on systemic metabolism remain to 

be determined.

4.5. Role of LPCAT1 and LPCAT2 in Lipid Droplet Formation

Lipid droplets (LDs) are intracellular organelles that store neutral lipids for use as an energy 

source in membrane synthesis and in production of signaling lipids (79). LDs consist of a 

neutral lipid core surrounded by a monolayer of phospholipids and proteins. As is true for 

other intracellular membranes, PC is the major phospholipid component of LD membranes, 

comprising 50–60% of the total phospholipids (80, 81). It has been shown that PC functions 

as a surfactant to limit coalescence and size of LD. Moreover, during LD expansion, new PC 

is synthesized via recruitment of carboxyltransferase (CT) (82). Inhibiting PC biosynthesis 

increases the size of LDs, presumably because larger droplets require less phospholipid to 

cover their surface area compared to smaller droplets (82, 83).

Recent studies have demonstrated that LPCAT1 and LPCAT2 can also localize to the surface 

of LDs in a variety of mammalian cells (84–86). Interestingly, LDs have been shown to 

possess lysoPC acyltransferase activity, which correlates with LPCAT1 and LPCAT2 

expression (84). Similar to PC de novo synthesis, eliminating LPCAT1 or LPCAT2 

expression alters LD morphology and increases LD size (84, 86, 87). However, the PC de 

novo synthesis and remodeling pathways appear to affect LD metabolism through different 

mechanisms. Knockdown of LPCAT1 or LPCAT2 increases LD size without changing the 

neutral lipid pool, suggesting that the increase in LD size likely results from an adjustment 

of the surface-to-volume ratio rather than the formation of more neutral lipids (86). In 

contrast, reducing CT expression results in increased LDs with a higher triglyceride content, 

possibly by switching lipid metabolism from PC to triglyceride biosynthesis (86, 88).
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What is the function of LPCAT activity on LDs? Studies suggest that LPCATs either provide 

the PC required for the fission of LDs through acylation of lysoPC, or they change the 

composition of PC species on the LD surface monolayer, which thereby changes the 

biophysical properties of the monolayer and reduces the tendency of LDs to coalesce (84, 

86). Recently, M’barek et al. (87) reported that lysoPC may be involved in the determination 

of LD size through regulating LD budding from ER in the absence of LPCAT1 activity. They 

showed that lysoPC in the ER reduces the ER membrane tension and facilitates LD budding. 

They hypothesized that inhibition of LPCAT1 likely increases the accumulation of lysoPC in 

the ER, which in turn should favor LD budding and result in smaller LDs. However, they 

observed larger LDs in the absence of LPCAT1. They reasoned that lysoPC is rapidly 

recycled to lysoPA and PA by the action of lysophopholipase D. Indeed, knockdown of 

LPCAT1 together with pharmacological inhibition of lysophopholipase D resulted in smaller 

LDs. These data suggested that lysoPC in ER membranes may be involved in regulating LD 

metabolism. However, inhibition of two other ER-localized LPCATs, LPCAT3 and 

LPCAT4, has no effect on LD size, indicating that LPCAT activity on LDs and not on the 

ER is important for LD remodeling (86).

LDs play critical cellular and physiological roles in a variety of biological processes, such as 

lipid storage, fatty acid trafficking, and the activation of transcription factors (79). Whether 

and how LPCAT1/2-mediated LD remodeling may affect any of these processes has not be 

well studied. Dupont et al. (89) reported that LDs contribute to autophagic initiation by 

acting as a cellular store for neutral lipids. They demonstrated that neutral lipids in LDs are 

mobilized into phospholipids necessary for autophagosome membrane formation and 

growth. Consequently, inhibition of LPCAT2 reduces autophagosome formation, identifying 

LPCAT2 as an LD-dependent regulator of autophagy (89). In a recent study, Delmas and 

colleagues (90) demonstrated that LPCAT2-mediated LD production contributes to 

chemotherapy resistance in colorectal cancer. They showed that LD content in colorectal 

cancer cells positively correlates with LPCAT2 expression. Overexpression of LPCAT2 

promotes LD formation and chemotherapy resistance, most likely by blocking 

chemotherapy-induced caspase activation, ER stress, calreticulin protein membrane 

translocation, and subsequent cell death. These findings indicate that targeting LPCAT2-

mediated LD formation may be a therapeutic approach for restoring chemotherapy 

sensitivity in colorectal cancer cells.

5. LPCAT3 IN INTESTINAL STEM CELL HOMEOSTASIS

Recent work from our laboratory has uncovered an unexpected role of phospholipid 

remodeling in modulating intestinal stem cell (ISC) proliferation and intestinal homeostasis 

(91). As mentioned above, loss of Lpcat3 in intestine results in severe lipid malabsorption, 

accompanied by mucosal hypertrophy in the duodenum and jejunum with profound 

lengthening of villi and longer small intestines (61). Further studies demonstrated that 

mucosal hypertrophy is not just a compensatory response to malabsorption but also a direct 

consequence of Lpcat3 deletion in intestinal epithelium that is driven by changes in 

membrane phospholipid composition. We showed that deletion of Lpcat3 in adult mice 

promotes stem cell and progenitor cell proliferation, as evidenced by increased crypt height 

and stem/progenitor cell numbers in the crypts of Lpcat3-deficient mice. Ex vivo analysis of 
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intestinal organoid cultures demonstrated that loss of Lpcat3 increased organoid growth and 

the self-renewal of ISCs. Lpcat3 deficiency in the intestine increased the saturation of fatty 

acyl chains in membrane phospholipids. Moreover, supplementation of polyunsaturated PC 

rescued organoid growth and self-renewal, confirming that hyperproliferation of ISC and 

progenitor cell in the absence of Lpcat3 is a consequence of altered membrane composition.

Gene expression profiling revealed that loss of Lpcat3 activates the cholesterol biosynthesis 

pathway in enterocytes, an effect likely mediated by increased nuclear SREBP2 protein 

levels. Accordingly, the levels of free cholesterol were increased in Lpcat3-deficient crypts. 

Furthermore, cholesterol itself appears to act as a mitogen for ISCs. Increasing cellular 

cholesterol content, either by overexpression of SREBP2 or providing excess exogenous 

cholesterol, was sufficient to drive intestinal stem cell proliferation. Conversely, 

pharmacologic inhibition of cholesterol synthesis normalized crypt hyperproliferation in 

Lpcat3-deficient organoids and mice, suggesting that cholesterol biosynthesis mediates the 

effect of Lpcat3 deficiency on ISC proliferation.

ISCs have been shown to be the cells of origin for the intestinal tumors in mice carrying 

mutations in tumor suppressor gene adenomatous polyposis coli (Apc) (92, 93). In 

agreement with these observations, loss of LPCAT3 or overexpression of SREBP2 markedly 

promotes intestinal tumor formation in Apcmin mice and leads to poor survival. Moreover, 

suppression of cholesterol biosynthesis decreases tumor initiation and growth, implicating 

enhanced cholesterol synthesis as a major contributor to tumorigenesis in Lpcat3-deficient 

mice.

Previous studies have suggested links between phospholipid metabolism and intestinal 

tumori-genesis. Polymorphisms in the secretory phospholipase A2 (Pla2g2a) gene, which 

encodes an enzyme catalyzing the deacylation of sn-2 fatty acids in Lands’ cycle, influences 

the incidence of intestinal tumors in Apcmin mice (94, 95). Loss of Pla2g2a increases 

Apcmin-induced tumor number (96), whereas overexpression of Pla2g2a reduces tumor 

multiplicity and size (97). In contrast, deletion of another phospholipase A2 member, 

cytosolic phospholipase A2 (Pla2g4), has been reported to suppress Apcmin-induced 

tumorigenesis (98). Similarly, cholesterol consumption has long been associated with 

increased gastrointestinal cancer risk in epidemiological studies (99). However, the 

mechanisms underlying the effect of phospholipid remodeling and cholesterol on intestinal 

tumorigenesis have remained enigmatic. Our studies demonstrated that phospholipid 

remodeling and cholesterol availability are important for maintaining intestinal homeostasis 

and may contribute to tumorigenesis by modulating ISC and progenitor cell function.

How Lpcat3-dependent phospholipid remodeling activates cholesterol biosynthesis in the 

intestine remains to be determined. Our studies suggest that Lpcat3 deficiency likely 

promotes the processing of the SREBP2 precursor from. As mentioned above, the 

processing of SREBP1, but not SREBP2, is regulated by ER phospholipid composition in 

the liver (50). In contrast, LPCAT3 deficiency selectively affects the activation of the 

SREBP2 pathway in the intestine. Thus, phospholipid remodeling likely affects the SREBP1 

and SREBP2 pathways in a tissue-specific manner. Several signaling pathways, such as the 

PI3K/AKT/mTOR and p53 pathways, have been shown to regulate SREBP activity in cancer 
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cells, potentially linking cell proliferation with lipid biosynthesis (100–102). Interestingly, 

prior studies have demonstrated that membrane phospholipid composition can modulate the 

activity of cellular signaling pathways, including the AKT pathway (103). In the future it 

will be important to determine whether Lpcat3 modulates any of these signaling pathways 

and whether they may mediate effects of Lpcat3 on sterol synthesis.

6. LPCAT1 IN PULMONARY SURFACTANT HOMEOSTASIS

Pulmonary surfactant is essential for the proper function of lung. Pulmonary surfactant, 

composed of 90% lipid and 10% protein, functions to lower the surface tension at the air–

liquid interface for efficient gas exchange and to prevent alveolar collapse and small airway 

closure (104). Deficiency in surfactant production is known to be involved in the 

pathogenesis of several pulmonary diseases, including neonatal respiratory distress 

syndrome (105) and acute respiratory distress syndrome (106). DPPC constitutes ~50% of 

surfactant lipid and is primarily responsible for the surface tension–lowering property of 

surfactant (107). Although some of the DPPC can be synthesized de novo through the 

Kennedy pathway (108), ~55–75% of DPPC is produced via the remodeling pathway (109). 

Lpcat1, the most abundant Lpcat in alveolar type II cells, is responsible for the biosynthesis 

of DPPC (14, 15). Consistent with increased production of surfactant in the fetal lung toward 

the end of gestation (110), expression of Lpcat1 rises significantly in late stages of 

embryonic development and is induced by glucocorticoids and keratinocyte growth factor 

(14), both of which are known to regulate phospholipid biogenesis in alveolar type II cells 

(111).

More importantly, mice bearing a hypomorphic allele of Lpcat1 generated by gene trapping 

(Lpcat1GT/GT) exhibit perinatal mortality due to respiratory failure, with signs of respiratory 

distress such as atelectasis and hyaline membranes (24). Expression of Lpcat1 and lysoPC 

acyltransferase activity are reduced in newborn Lpcat1GT/GT mice and are directly correlated 

with saturated PC content and survival. These findings demonstrate that Lpcat1 activity in 

the lung is required for the biosynthesis of saturated PCs that are essential for successfully 

transitioning to air breathing at birth.

In addition to its essential role in DPPC biosynthesis, Lpcat1 appears to be involved in the 

transport of DPPC in alveolar type II cells. Shannon and colleagues (112) showed that 

Lpcat1 directly interacts with START domain–containing protein 10 (StarD10), a 

phospholipid binding protein, to initiate the trafficking of DPPC from the ER to the 

cytoplasmic lamellar body for storage prior to secretion, suggesting that Lpcat1 likely 

performs functions beyond its acyltransferase activity in modulating surfactant homeostasis 

in lung.

7. LPCATS IN PATHOLOGICAL CONDITIONS

Recent studies have shown that LPCATs not only play important roles in lipid metabolism 

and homeostasis but also contribute to several pathological conditions, including 

nonalcoholic fatty liver disease (NAFLD), hepatitis C virus (HCV) infection, 

atherosclerosis, and cancer.
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7.1. LPCATs in Nonalcoholic Fatty Liver Disease

NAFLD encompasses a spectrum of progressive diseases that occur in the absence of 

excessive alcohol consumption, ranging from simple steatosis to nonalcoholic steatohepatitis 

(NASH), liver fibrosis, and cirrhosis (113). It is generally accepted that the pathogenesis of 

NAFLD is initiated by increased flux of free fatty acids (FFAs) in the liver resulting from an 

imbalance between FFA formation (circulating FFAs, de novo lipogenesis, and dietary 

uptake) and utilization (oxidation and triglyceride synthesis) that promotes hepatic 

lipotoxicity and ER stress (113). Persistent lipotoxicity and ER stress induce hepatocellular 

injury, inflammation, the activation of stellate cells, and ultimately progression into NASH 

and fibrosis.

Phospholipid metabolism has long been shown to affect the development of NAFLD. Mice 

lacking CT-α or Pemt develop NAFLD, probably due to decreased PC/PE ratios and 

impaired VLDL secretion (114, 115). Recent studies demonstrated that LPCATs may also 

contribute to the pathogenesis of NAFLD. Attempts to identify diagnostic markers of 

NAFLD have found that serum lysoPC levels are decreased in NASH patients (116–118). 

Similar decreases in serum lysoPC levels were observed in a mouse NASH model induced 

by a methionine- and choline-deficient (MCD) diet (119). In agreement with reduced lysoPC 

levels, the expression of Lpcat was increased in the livers of MCD diet–fed mice, suggesting 

that LPCATs may influence the development of NAFLD by modulating the levels of their 

substrates.

Lipidomics analysis in liver tissues showed that levels of polyunsaturated PC, including 

linoleoyl and arachidonoyl PC, are decreased in steatosis and NASH patients compared to 

controls (120, 121). Moreover, matrix-assisted laser desorption ionization–imaging mass 

spectrometry (MALDIIMS) analysis revealed distinct distributions of several PC species in 

control, steatotic, and NASH livers (120). It is well recognized that different zones exist in 

liver lobules due to proximity to the blood flow. These are defined as zone 1 (periportal), 

zone 2 (midzonal), and zone 3 (pericentral) (122). Previous studies have demonstrated that 

hepatocytes from different zones show metabolic heterogeneity, leading to zonation of 

metabolic processes (123). MALDI-IMS showed that in normal obese livers, 

polyunsaturated PC 34:2 and PC 36:4 display an azonal and zone 1–enriched distribution, 

respectively, while monounsaturated PC 34:1 shows limited zone 1 accumulation (120). In 

contrast, PC 34:2 distribution is zone 3 dominant in steatotic livers, whereas PC 36:4 and PC 

34:1 display similar distributions as in normal obese livers. Interestingly, the zonal 

distribution of phospholipids is largely lost in NASH specimens, suggesting that 

phospholipid zonation may be involved in the pathogenesis of NASH. Similarly, Hall et al. 

(124) observed the loss of zonal distribution in both diet-induced NASH mouse models and 

human patients, despite the fact that they reported slightly different zonal distributions for 

some PC species in normal and steatotic livers. How the zonal distribution of PCs is 

regulated and whether the change in lipid zonation is a cause or effect of NAFLD are not 

clear. LPCAT2 has been shown to be primarily localized in zone 3 in liver (124) and can be 

induced by proinflammatory cytokines (119, 125), suggesting that LPCAT2 may contribute 

to the zonal distribution of some PC species. Given that LPCAT3 is the most abundant 

hepatic LPCAT that catalyzes the biosynthesis of polyunsaturated PC and given its important 
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roles in regulating lipid metabolism, it would be interesting to determine if LPCAT3 may be 

involved in the regulation of PC zonal distribution and the pathogenesis of NAFLD.

7.2. LPCAT1 in Hepatitis C Virus Infection

HCV infection is known to alter lipid metabolism in the host liver to promote viral 

replication and propagation (126). HCV infection increases lipogenesis, reduces β-oxidation 

of fatty acids, and leads to hepatic steatosis in both human patients and animal models (127). 

Inhibition of lipogenesis has been shown to effectively suppress HCV infection, highlighting 

the importance of cellular lipid constituents for HCV replication (128, 129). Furthermore, 

HCV co-opts the hepatic VLDL assembly, maturation, and secretion pathway to produce 

infectious HCV virions, which are released from hepatocytes as hybrid lipo-viro-particles 

with viral proteins attached to the surface of VLDL (130, 131). As major neutral lipid 

storage organelles and the triglyceride source of VLDL assembly, LDs have been shown to 

play a crucial role in HCV infection (126). HCV-encoded core and nonstructural protein 5A 

proteins directly bind to LDs (132, 133), which not only provide a platform for HCV 

assembly and secretion via the VLDL pathway but also regulate HCV infection through 

modulating the interferon response to HCV and the stability of HCV proteins (126).

Given the important roles of phospholipids in LDs and VLDL metabolism, it is conceivable 

that phospholipids may have roles in HCV infection. In a recent study, Beilstein et al. (134) 

demonstrated that HCV infection in primary human hepatocytes and Huh7.5.1 cells inhibits 

gene expression of LPCAT1. LPCAT1 depletion increases the production of HCV particles 

with high infectivity, likely through remodeling LD metabolism and modulating VLDL 

secretion. In agreement with previous studies, they found that inhibition of LPCAT1 

increases the size of LDs and triglyceride storage. However, in contrast to a previous report 

that showed reduced secretion of ApoB-containing lipoprotein particles in Huh7 cells (86), 

Beilstein and colleagues found that knockdown of LPCAT1 increases the secretion of 

triglyceride-rich lipoprotein particles. Nevertheless, this study supports the notion that HCV 

hijacks the LD metabolism of host cells for the benefit of HCV morphogenesis.

7.3. Lpcat3 in Endoplasmic Reticulum Stress and Inflammation in Liver

ER is a crucial organelle for protein folding and maturation, lipid biosynthesis, and calcium 

and redox homeostasis (135). Perturbations of ER homeostasis induce ER stress, which 

triggers the activation of unfolded protein response (UPR). Chronic UPR can initiate 

inflammatory responses and contribute to the pathogenesis of metabolic diseases, such as 

obesity, type 2 diabetes, liver diseases, and atherosclerosis (136, 137). Increased levels of 

saturated fatty acids induce ER stress and the UPR, which likely involve changes in ER 

membrane composition (138). Knockdown of stearoyl-CoA desaturase 1 (SCD1) in 

mammalian cells increases the amount of saturated fatty acids in phospholipids and induces 

UPR (139).

Our studies have shown that Lpcat3 is involved in the regulation of ER homeostasis through 

the modulation of membrane phospholipid composition (25). As a target of LXRs, Lpcat3 

mediates the function of LXR activation in suppressing ER stress induced by saturated fatty 

acids in vitro and hepatic lipid accumulation in ob/ob mice in vivo. LXR activation increases 

Wang and Tontonoz Page 14

Annu Rev Physiol. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the expression of Lpcat3, which drives the incorporation of polyunsaturated fatty acids into 

phospholipids, thereby reducing ER membrane saturation. Conversely, adenovirus-mediated 

acute knockdown of Lpcat3 in liver exacerbates ER stress. Furthermore, inhibition of Lpcat3 

activity also increases hepatic inflammation by regulating the activation of inflammatory 

kinase c-Src through altering the composition of membrane microdomains. Lpcat3 activity 

also impacts the availability of free arachidonic acid for the production of lipid inflammatory 

mediator prostaglandin E2, which also contributes to inflammation. Interestingly, we did not 

observe basal ER stress and inflammation in Lpcat3 liver-knockout mice, likely due to 

compensatory responses in membrane composition that prevent induction of the ER stress 

response in the setting of chronic Lpcat3 deletion (38).

7.4. LPCAT3 in Atherosclerosis

Atherosclerosis is a chronic inflammatory disease initiated by subendothelial retention of 

cholesterol-rich, ApoB-containing lipoproteins in arteries (140, 141). Modification of 

lipoprotein particles induces local inflammation, activates endothelial cells, and leads to the 

infiltration of monocytes. These monocytes differentiate into tissue macrophages, which 

phagocytose the modified lipoproteins through scavenger receptors and become lipid-laden 

foam cells (142, 143). Foam cells secrete proinflammatory mediators, including cytokines, 

chemokines, and reactive oxygen species, which contribute to unresolved inflammation and 

the progression of lesions into more advanced plaques.

LPCAT3 may be involved in atherogenesis by affecting several aspects of this processes. 

LPCAT3 increases the content of polyunsaturated fatty acid–containing phospholipids, 

which are prone to be oxidized to produce Ox-PL. Moreover, LPCAT3 was shown to 

mediate the effect of LXR on arachidonic acid distribution and the release of bioactive lipid 

mediator eicosanoids in macrophages (144). Both Ox-PL and eicosanoids have been shown 

to play proatherogenic roles in atherosclerosis (145, 146). LPCAT3 has also been shown to 

modulate the polarization of macrophages (147), which are known to play central roles in 

atherosclerosis (143). A recent study showed that the expression of LPCAT3 is decreased 

with the progression of atherosclerosis accompanied with decreased arachidonoyl-PC and 

increased lysoPC in the lesions (148), suggesting that LPCAT3 may have some roles in 

atherosclerosis progression. Further studies using in vivo models are needed to better 

understand the roles of LPCAT3 in atherosclerosis.

7.5. LPCATs in Cancer

Uncontrolled cell proliferation in cancer requires an adequate supply of energy and cellular 

building blocks, including phospholipids. In addition to their roles as biomass components, 

phospholipids play regulatory roles as signaling molecules that engage specific receptors 

and transcription factors (1, 149). Recent studies revealed that phospholipid composition and 

the expression of LPCATs are altered in tumors from a variety of tissues, including liver, 

colon, prostate, and breast. As discussed above, loss of Lpcat3 in mouse intestine reduces 

the composition of polyunsaturated phospholipids and promotes tumor initiation and growth 

in Apcmin mice (91). In addition, other LPCATs have also been demonstrated to contribute 

to tumor development in various tissues.
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Upregulation of LPCAT1 has been observed in multiple tumors, including clear renal cell 

carcinoma (150), oral squamous cell carcinoma (151), hepatoma (152), as well as 

esophageal (153), gastric (154), breast (155), colorectal (156), and prostate cancers (157–

159). LPCAT1 expression correlates with the prognosis and survival in several tumors (150, 

155, 157, 158) and may be used as a diagnostic marker in others (153, 157). Overexpression 

of LPCAT1 has been shown to increase cell proliferation, migration, and metastasis in 

several cancer cell lines (150, 152, 156). However, the underlying mechanisms are not clear. 

Consistent with LPCAT1 enzymatic activity, the levels of saturated phospholipids are 

increased in these tumors (150, 152, 154). Whether changes of these PC levels affect the 

activity of any signaling pathways that control the behaviors of cancer cells has not been 

studied. LPCAT1 may also contribute to tumor growth through its lysoPAF acetyltransferase 

activity to produce PAF, a lipid mediator that plays important roles in cell proliferation (151, 

159).

As described above, LPCAT2 affects chemoresistance in colorectal cancer by modulating 

LD metabolism (90). Interestingly, LPCAT4 was also shown to be upregulated in colorectal 

cancer and is responsible for the elevated 16:0/16:1 PC levels in tumors (160). Whether and 

how 16:0/16:1 PC species drive colorectal cancer cell proliferation have yet to be 

investigated. LPCAT2 was also reported to be overexpressed in cervical and breast cancers 

(161) and was identified as a susceptibility gene in aggressive prostate cancer in animal 

models and genome-wide association studies in human patients (162). Because the possible 

involvement of LPCATs and phospholipid metabolism in cancer has only recently emerged, 

future mechanistic studies are needed to better understand how LPCATs and phospholipid 

remodeling influence cancer initiation and progression.

8. CONCLUSION

The development of genetic mouse models has enabled great progress in characterizing 

functions of LPCATs in physiology. Indeed, the roles of LPCAT1 in lung surfactant 

homeostasis and LPCAT3 in lipid metabolism are now well appreciated. Recent studies also 

suggest that loss or amplification of LPCATs results in development of several pathological 

conditions. How LPCATs and phospholipid remodeling specifically cause disease remains to 

be fully elucidated. Translating recent findings obtained in animal models to human 

pathophysiology will also be important. Further basic and translational research will be 

needed to develop novel strategies for manipulating LPCAT activities as potential 

therapeutics for these diseases.
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Figure 1. 
PC metabolism in mammalian cells. PC is synthesized de novo through the Kennedy 

pathway. Choline is first phosphorylated by choline kinase to generate phosphocholine, 

followed by the formation of CDP-choline catalyzed by CT. Finally, CDP-choline is 

converted into PC by CPT. In liver, PC can also be generated through the PEMT pathway in 

which PE is sequentially methylated by PEMT. De novo synthesized PC undergoes 

remodeling in a process called Lands’ cycle, which determines the acyl chain linked to PC 

species at the sn-2 position. Fatty acyl chains at sn-2 site of PC are hydrolyzed by PLA2s. 

The resulting lysoPC is reacylated by LPCATs. LPCATs catalyze the incorporation of 

another fatty acyl chain into the sn-2 site of lysoPC to produce a new PC species. 

Abbreviations: CMP, cytidine monophosphate; CPT, CDP-choline:1,2-diacylglycerol 

cholinephosphotransferase; CT, CTP:phosphocholine cytidylyltransferase; DAG, 

diacylglycerol; LPCAT, lysophosphatidylcholine acyltransferase; PC, phosphatidylcholine; 

PEMT, phosphatidylethanolamine N-methyltransferase; SAH, S-adenosyl homocysteine; 

SAM, S-adenosyl methionine.
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Figure 2. 
Roles of Lpcat3 in VLDL secretion and SREBP-1c–mediated lipogenesis in liver. In wild-

type mice, Lpcat3 catalyzes the incorporation of polyunsaturated fatty acids into 

phospholipids. Polyunsaturated phospholipids facilitate SREBP-1c transport and processing, 

thereby promoting lipogenesis. Increased abundance of polyunsaturated phospholipids in 

endoplasmic reticulum creates a dynamic membrane environment that facilitates the transfer 

of triglyceride to pre-VLDL, leading to the efficient lipidation of VLDL. In contrast, loss of 

Lpcat3 in liver reduces membrane arachidonoyl phospholipids and decreases membrane 

mobility and curvature, which impacts the bulk triglyceride addition to lipid-poor ApoB 

particles and thus produces smaller VLDL particles. Similarly, reduced membrane mobility 

in Lpcat3-deficient liver impairs SREBP-1c transport and processing, leading to reduced 

lipogenesis. Abbreviations: C, C terminus; COPII, coat protein complex II; ER, endoplasmic 

reticulum; KO, knockout; Lpcat, lysophosphatidylcholine acyltransferase; SCAP, sterol 

regulatory element-binding protein cleavage-activating protein; SRE, SREBP response 

element; TG, triglyceride; VLDL, very low-density lipoprotein.
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Figure 3. 
Lpcat3 and phospholipid remodeling in lipid absorption in small intestine. Loss of LPCAT3 

in intestine reduces polyunsaturated phospholipid content and membrane fluidity, impairs 

passive fatty acid transport across the apical membrane of enterocytes and decreases 

chylomicron assembly and secretion. In wild-type mice, Lpcat3 activity increases 

polyunsaturated phospholipid levels and membrane fluidity, which is essential for efficient 

fatty acid transport into enterocytes for TG synthesis and chylomicron assembly, when 

challenged with a bolus of lipids. Lpcat3 deficiency reduces the expression of NPC1L1 and 

ABCA1 in the enterocytes, which leads to decreased cholesterol absorption and cholesterol 

transfer to pre-β HDL to produce HDL. Abbreviations: ER, endoplasmic reticulum; HDL, 

high-density lipoprotein; KO, knockout; Lpcat, lysophosphatidylcholine acyltransferase; 

TG, triglyceride.
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Table 1

Properties of various lysophosphatidylcholine acyltransferases (LPCATs)

Family Enzyme
Other 

symbols Enzymatic activity
Substrate 
preference Product Tissue distribution

Cellular 
localization

AGPAT LPCAT1 AGPAT9
AYTL2

LysoPC 
acyltransferase
LysoPAF 
acetyltransferase
LysoPG 
acyltransferase

16:0-CoA
Acetyl-CoA
18:2-CoA
18:3-CoA

DPPC
PAF
PG

Lung (alveolar type 
II cells) ≫ spleen > 
brain

ER
Lipid droplet

LPCAT2 lysoPAFAT
AGPAT11
AYTL1

LysoPAF 
acetyltransferase
LysoPC 
acyltransferase

Acetyl-CoA
20:4-CoA

PAF
PC

Macrophage ≫ 
neutrophil ≫ skin > 
brain, heart, stomach, 
colon, spleen

ER
Lipid droplet

MBOAT LPCAT3 MBOAT5 LysoPC 
acyltransferase
LysoPE 
acyltransferase
LysoPS 
acyltransferase

20:4-CoA
18:2-CoA
20:4-CoA
18:2-CoA
20:4-CoA
18:2-CoA

PC
PE
PS

Testis, liver, small 
intestine, adipose 
tissue, kidney

ER

LPCAT4 MBOAT2 LysoPC 
acyltransferase
LysoPE 
acyltransferase

18:1-CoA
18:1-CoA

PC
PE

Epididymis, brain, 
testis, ovary

ER

Abbreviations: DPPC, dipalmitoyl-PC; ER, endoplasmic reticulum; MBOAT, membrane-bound O-acyltransferase family; PAF, platelet-activating 

factor; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine.
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