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Abstract

Background: Mutation of the epidermal growth factor receptor (EGFR) results in a discordant cell signaling, leading to the
development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such
mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based
methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational
network modeling.

Methodology/Principal Findings: Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992), one of the
multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved
manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-
known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven
insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical
reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics.

Conclusions/Significance: Our integrative approach provided a mechanistic description of the disorders of mutated EGFR
signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell
signaling.
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Introduction

EGFR is a receptor tyrosine kinase that is widely expressed in

epithelial tissues and plays important roles in information transfer

from extracellular signals to the intercellular region, regulating

many biological activities such as cell proliferation, differentiation,

and survival. There is some evidence that the mutation of EGFR

triggers the deregulation of the EGFR signal transduction system

and is strongly associated with abnormal cell behavior [1,2].

Therefore, the necessity to gain a deeper insight into mutation-

initiated aberrant signaling has emerged as a major concern to

understanding the ErbB signaling networks. However, the

mechanism by which EGFR mutation alter downstream signaling

is not yet completely understood at the system level mainly

because of the absence of established methodologies to generate

and analyze quantitative information on mutant EGFR signaling

on a network-wide scale. Thus, an integrated platform is required

for evaluating the system-level properties of cell-specific signaling

dynamics.

In recent years, there have been great improvements in

proteome analysis using tandem mass spectrometry coupled with

liquid chromatography (LC-MS/MS) technology, thereby en-

abling large-scale identification of peptides and some types of

protein modifications [3,4]. Moreover, the establishment of

protein labeling methods has enabled the quantitative measure-

ment of proteins and peptides in samples on a proteome-wide scale

[5,6]. Recent time-course activation data from the LC-MS/MS

experiments have provided a global view of EGFR signal

transduction systems [7], accelerating system-level understanding

of signal processing based on numerical and statistical analyses [8–

13].

Because the complexity of biological networks prevents the

intuitive understanding of signaling networks, many numerical

representations of signal transduction, particularly in the ErbB
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signal transduction system, have also been investigated [14–27]. In

our recent study, we constructed a numerical model of EGFR

signaling based on the hybrid functional Petri net with extension

(HFPNe) [25]. HFPNe is a computational modeling architecture

that can describe not only continuous events but also discrete

events [28–32] and enables the analysis of temporal data on

biological entities within the data assimilation framework [33–35].

The data assimilation framework was originally developed and

successfully implemented in geophysics to predict geological

phenomena such as El Nino-Southern Oscillation by integrating

a high-dimensional computational model and limited observed

data [36] and is considered to be applicable for the construction of

a reliable signal transduction model using time-dependent

phosphoproteomic data.

EGFR signal transduction is initiated by receptor autopho-

sphorylation triggered by ligand binding. Phosphorylated EGFR

(pEGFR) serves as an adaptor for cellular proteins that can

recognize phosphorylated tyrosine residues and subsequently

catalyzes tyrosine phosphorylation of recruited proteins. Recently,

comprehensive in vitro analyses of binding proteins for each

autophosphorylation site in the ErbB family receptors were

conducted using mass spectrometry and protein microarray [37–

39]. The results from the protein microarray analysis indicated

that phosphorylated Y992 (pY992) bound to multiple cellular

proteins, serving as a multifunctional docking site of EGFR [38].

Under in vivo conditions, Y992 has been shown to bind to several

EGF signaling modulators such as phospholipase C gamma 1

(Plcc1) [40], Vav2 [41], and RAS p21 protein activator (RasGAP)

[42], and also to act as a dephosphorylation target of protein

tyrosine phosphatase, non-receptor type 1 (PTP1B) [43], and

protein tyrosine phosphatase, non-receptor type 11 (Shp2) [44]. Of

these EGF signaling modulators, Plcc1 and Vav2 are known as

positive regulators of mitogen-activated protein kinase (MAPK)

pathway, whereas RasGAP is known to negatively regulate the

MAPK pathway by enhancing the catalytic activity of Ras.

Therefore, mutation at Y992 of EGFR would be expected to cause

complex bidirectional effects on downstream signaling networks,

and is particularly suitable as a model system to evaluate the

performance of our approach.

Here, we report a novel phosphoproteomics-based framework

to analyze the system-wide effect of single point mutation at Y992

of EGFR. We measured EGF-induced temporal activation of

tyrosine phosphorylation-mediated signaling in two NIH3T3-

derived cells expressing either wild-type EGFR (WT) or mutant

EGFR with substitution of tyrosine to phenylalanine at position

992 (Y992F) (the numbering system excludes the 24 amino acid

signal peptide of EGFR). The phosphotyrosine-dependent pro-

teome dynamics in these two cell types characterized an unbiased

landscape of the aberrant Y992F signaling. On the basis of the

quantitative profiles, our computational modeling approach

described the quantitative differences in EGFR signaling between

WT and Y992F cells, presenting potential factors for generating

the aberrant signaling dynamics.

Results and Discussion

Identification and Quantitation of EGF-Induced
Phosphoproteome in WT and Y992F
To elucidate the global differences in EGF-induced signaling

dynamics between WT and Y992F cells, we performed quantita-

tive proteomic analysis of phosphotyrosine-dependent signaling

molecules. Stable isotope labeling by amino acids in cell culture

(SILAC) was applied for time-dependent comprehensive quanti-

tation of phosphotyrosine-dependent proteins using a nano-flow

LC-MS/MS system as previously described [45] (Figure 1A).

From the eight independent measurements (Figure 1B), 383

peptides were identified and assigned to 147 proteins in total

(Table S1). Relative quantitation of the identified proteins was

performed using the AYUMS algorithm [46] and MSQuant

software [47] (Figure S1, Table S1). For each identified protein,

relative activation values in each measurement were combined

and normalized by that of WT at 5 min of EGF stimulation (Table

S1). In order to extract EGF-dependent molecules of phosphotyr-

osine signaling, we adopted 1.5 as the threshold of fold change for

the time-course activation data on either of the two cells. In this

criterion, 41 proteins were extracted (Table S1) and used for

further computational analyses. Among the 41 proteins, 15

proteins were quantified by a single peptide and 26 proteins were

quantified by multiple peptides (Table S1). All experimental data

were generated for this study using the methods described in our

prior publication [45].

Figure 1. Strategy for measuring the quantitative behaviors of
EGF-induced tyrosine phosphoproteome in WT and Y992F
cells. A. Flowchart for SILAC experiment. Each cell population encoded
with isotopically labeled arginine (Arg-0, Arg-6, or Arg-10) is stimulated
with EGF for the time intervals indicated. Tyrosine phosphoproteins are
enriched from equally mixed cell lysates using phospho-tyrosine
specific antibodies. The purified complexes were digested in solution
and directly applied to nano-flow LC-MS/MS system for protein
identification and quantitation. B. An experimental design for acquiring
temporal profiles of tyrosine phosphoproteome upon EGF stimulation.
Temporal profiles were generated through integration of eight
independent mass spectrometric measurements. For each time period,
relative quantitative values were normalized to the values for WT at
5 min.
doi:10.1371/journal.pone.0013926.g001
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Temporal Profiles of Phosphotyrosine-Dependent
Proteome Reveal the Global Impact of the Mutation at
Y992
To reveal the differences in signal transduction between the two

cells, we calculated two types of scores—activation score (A)

(Figure 2A) and deviation score (D) (Figure 2B) —which represent

the differences in the amount of phosphotyrosine-dependent

proteins and the deviation of the temporal pattern, respectively

(see Methods section and Table S1). As shown in Figure 2A, the

activation level of most of the proteins was increased or unchanged

in Y992F cells compared to that in the WT cells, although that of

EGFR was slightly decreased. Regarding temporal pattern, a

limited fraction of molecules showed distinct pattern changes

between the two cell types (Figure 2B). Modulators of EGFR

trafficking such as HGF-regulated tyrosine kinase substrate (Hrs),

zinc finger, FYVE domain containing 16 (ZFYVE16), and signal

transducing adaptor molecule (SH3 domain and ITAM motif) 2

(STAM2) showed differences in the peak time or amplitude of

activation; this clearly indicated that Y992F affected the regulation

of the EGFR degradation pathway. Moreover, sustained activa-

tion of extracellular signal-regulated kinase 1 (ERK1) was

remarkably observed in Y992F cells, whereas it was transiently

activated in WT cells. This apparent pattern conversion was not

observed in the upstream positive effectors of ERK1, such as

EGFR, Grb2, Shc, Shp2, and Plcc1.

Construction of EGFR Signal Transduction Model Based
on the HFPNe Architecture
The time-dependent profiles of the EGF-induced phosphopro-

teome measured in the WT and Y992F cells revealed their

qualitative and quantitative differences at the network level. To

elucidate the mechanisms underlying these alterations as a system,

we performed dedicated computational analysis using biochemical

simulation based on the HFPNe architecture. The computational

model for this study was essentially built based on the EGFR

models previously reported [25,26] with some modifications and

extensions using information from published literature (Material

S1). Our HFPNe-based EGFR model consists of sequential

activation of EGF signaling networks from EGF stimulation to

activation of the canonical MAPK cascade (Figure 3). To

investigate the regulatory mechanisms underlying EGFR degra-

dation pathway, we performed detailed modeling of the processes

for ubiquitin modification of EGFR and its sorting from the

plasma membrane compartment to the lysosomal compartment.

The detailed specification of the model is shown in Figure S2,

Table S2, and Table S3 and the electrical format of the model can

be found in Material S2.

The parameters in our EGFR model were optimized using a

sequential Monte Carlo method known as a particle filter as

described previously [33] to generate the temporal activation

dynamics of EGFR, Shc, Plcc1, Hrs, Casitas B-lineage lymphoma

b (Cbl-b), Shp2, and ERK1 measured by quantitative phospho-

proteomics (detailed procedures of parameter estimation can be

found in Material S1 ). Because our model contains many free

parameters, it is extremely difficult to estimate probabilistic

distributions of all parameters simultaneously within a feasible

time. Then, we conducted two-step parameter optimization. In the

first global optimization process, multiple parameters were varied

at the same time within the narrow range to estimate the global

parameter distributions. Next, local parameter distributions were

estimated by applying a particle filter to each parameter within the

broad range, while other parameters were varied according to the

probabilistic distributions obtained by the global optimization

process. We performed global optimization of 102 parameters to

generate the phosphorylation dynamics of EGFR, Shc, Plcc1, Hrs,

Cbl-b, Shp2, and ERK1 in the WT cells. Next, we estimated the

global parameter distributions of the Y992F model on the basis of

those in the WT model. In all, 64 parameters in the WT model

were fixed, and the remaining 54 parameters regarding the initial

abundance of signaling molecules, the binding processes of EGFR

to the related proteins, the phosphorylation processes catalyzed by

EGFR, and the EGFR regulation pathway were varied for further

parameter optimization. Finally, we estimated probabilistic

distribution of each parameter in the WT and Y992F model

(Figure S3). The final simulation results with the estimated

distribution of parameters accurately reproduced the experimental

data on both the WT (RMSE=0.16) and Y992F cells

(RMSE=0.16) (Figure 4).

Verification of the model accuracy
To evaluate the performance of our model, we compared the

significant parameter differences between the WT and Y992F

models with the already known properties of Y992F signaling

described in the literature. We defined 13 of up or down regulated

parameters that satisfy both fold-change$2.0 and p-value#0.001

simultaneously (Table 1). Our model suggested the increase in the

dissociation constants of Plcc1 from pEGFR. This result is

consistent with those of the previous studies indicating that Plcc1

preferentially bind to pY992 [40]. Regarding EGFR internaliza-

tion dynamics, Y992F mutation is known to increase the rate of

Figure 2. Distinct signal properties regarding WT and Y992F cells. A. The differential phosphorylation status between WT and Y992F cells.
The distribution of the activation score (A) of each protein, which indicates the fold-change of phosphorylation amount of Y992F versus that of WT. B.
The differential phosphorylation dynamics between WT and Y992F cells. The distribution of deviation score (D) of each protein, which indicates the
deviation of the phosphorylation pattern.
doi:10.1371/journal.pone.0013926.g002
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receptor internalization [48], and Y992-non-phosphorylated

EGFR undergoes internalization more rapidly than Y992-

phosphorylated EGFR [49]. In agreement with the above

biological evidence, our model showed that the EGFR internal-

ization rate was higher in the Y992F model than in the WT model

(Table 1). On the other hand, our model did not clearly indicate

corresponding differences of parameters regarding the interactions

of EGFR with RasGAP and Shc [42,38]. These results would

Figure 3. Schematic representation of HFPNe-based EGFR signal transduction model. Solid-line and dashed-line arrows denote direct
physical interactions and indirect associations or catalytic reactions, respectively.
doi:10.1371/journal.pone.0013926.g003

Figure 4. Comparison of simulation results with experimental data. The solid and dashed lines represent the averaged simulation results
from the WT and Y992F parameter distributions, respectively. The squares and triangles represent the normalized experimental data on WT and
Y992F, respectively. Root mean square error (RMSE) for each protein is indicated.
doi:10.1371/journal.pone.0013926.g004

Mutated EGFR Signaling Systems

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e13926



reflect uncertainties of these parameters indicating that additional

data is required for constraining the parameters. Our computa-

tional approach successfully captured a part of the already-known

biological consequences regarding Y992F mutation without over-

interpretation of the experimental data.

Parameter-Based Discovery of the Critical Reactions
Governing Cell-Specific Signaling
In the complex biological system, there are robust and fragile

parameters against the system behavior [50]. Hence, the

magnitude of fold change between the two models does not reflect

the importance of the parameters themselves. Thus, we evaluated

the importance of the 38 parameters that showed significant

difference (p-value#0.001) between the WT and Y992F models

on the basis of phenotypical impact. Each of the parameters in the

Y992F model was reset to the value in the WT model. Next, we

calculated the likelihood of the model to the observed activation

levels, which we termed as local parameter influence (LPI)

analysis. The result of our analysis revealed that most of the

parameters had a small effect on the re-simulation results, whereas

a few parameters had a great impact on the system behavior

(Figure 5, Table S4). Of the evaluated parameters, 12 parameters

mainly governed the activation dynamics of all the observed

proteins in the Y992F model. Of these 12 parameters, 6 defined

the initial abundance of EGFR, Src, Shp2, Grb2, Cbl, and growth

factor receptor bound protein 2-associated protein 1 (Gab1); 4

indicated the phosphorylation rates of Shc, Gab1, Shp2 and Plcc1;

and 2 indicated the binding constant of Grb2 to pEGFR and the

rate of EGFR ubiquitination.

Effect of Cellular Content on EGF Signaling Dynamics
With regard to initial protein abundance, the magnitude of fold

change between the two models was relatively small, but it had

more effect on the simulation results than those of the other

parameters. Then, we measured the differences in the total protein

abundance of EGFR, c-Cbl, Cbl-b, Grb2, Src family kinases

(SFKs), Shp2, Shc, and Erk1/2 between WT and Y992F cells in

order to compare the results with those predicted by the in silico

model. This analysis revealed that almost all the protein species,

except SFKs, showed good correlations (Pearson’s correlation

coefficient = 0.94, p-value = 0.002) between in silico and in vivo

(Figure 6A). These results strongly suggest that the distinct Y992F

cell signaling dynamics depend on the differences in cellular

context between the two cells to some extent. Next, we further

Table 1. Up or down regulated parameters with at least two-
fold change of the mean value for each parameter
distribution (p-value less than 0.001).

Description Log2-fold change

Up-regulated parameter

EGFR internalization* 4.1

Shp2_phosphorylation 3.6

EGFR_ubiqutination 3.0

EGFR_Plcc1_dissociation* 2.1

Shc_phosphorylation 1.5

PI3K_abundance 1.1

Gab1_phosphorylation 1.1

EGFR_deubiquitination 1.1

Down-regulated parameter

EGFR_dimer_dissociation 21.5

EGFR_binding 21.1

Parameters associated with the literature are indicated with an asterisk.
doi:10.1371/journal.pone.0013926.t001

Figure 5. Parameter-based discovery of the critical reactions
governing Y992F signaling. Each of the 38 estimated parameters in
the Y992F model was reset to the value in the WT model, and the
likelihood for the measured data was evaluated. The color bar shows
the log-transformed fold change of the likelihood against the value in
the original Y992F model. The likelihood for all the observed data was
calculated as a geometric average of the likelihood for the data for each
protein. The likelihood regarding the WT and Y992F models is indicated
as positive and negative controls, respectively.
doi:10.1371/journal.pone.0013926.g005
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examined the effect of total protein abundance on the signal

dynamics of Y992F by using our EGFR model. The parameters

that define the initial abundance of biological species in the WT

model were randomly varied between 0.1 and 10 fold in order to

reproduce the temporal activation data on Y992F cell signaling.

Constrained Y992F model estimation revealed that the alterations

in the total protein abundance alone could not completely

reproduce the signal dynamics of Y992F (RMSE=0.54)

(Figure 6B). Thus, we speculated that the reactions defined by

the other six parameters were mainly governed by pY992 in the

short-term EGFR signaling.

Model Prediction Reveals Quantitative Differences in
EGFR Degradation Pathway
Our LPI analysis revealed that the increase in EGFR

ubiquitination rate in Y992F model only influenced Cbl and Hrs

(Figure 5), which are EGFR degradation-related molecules that

showed distinct temporal activation patterns between WT and

Y992F cells. Therefore, we examined the quantitative differences

in the ubiquitin-dependent EGFR degradation pathway between

the two cells by using our EGFR model. EGFR monoubiquitina-

tion is catalyzed by activated Cbl family proteins, thereby

facilitating the lysosomal degradation of EGFR [51]. We have

Figure 6. Analysis of the effect of the cellular content on EGF signaling dynamics. A. Experimental validation of relative expression level of
model species. Upper right panel: predicted parameter value regarding the initial concentration of model species. Error bars represent standard
deviations of 1,000 samples from an ensemble of the WT and Y992F models. Left and lower right panel: western blot analysis of relative concentration
of model species. Unstimulated cell lysates of the WT and Y992F cells were dissolved by SDS-PAGE and probed using anti-EGFR, anti-Cbl, anti-Cbl-b,
anti-Grb2, anti-Src, anti-Shp2, anti-Shc, anti-Erk1/2, and anti-b-tubulin as a loading control. Quantitated band intensities were normalized to the
values for WT. With regard to Shc and Erk proteins, the intensities of three bands of Shc isoforms and two bands of Erk1 and Erk2 were combined,
respectively, for the calculation of the relative protein amount. Error bars represent standard deviations of triplicate samples. *P,0.05 (unpaired t-
test). B. The simulation results with the best estimated parameters regarding molecular abundance. We performed constrained parameter estimation
where the abundance of all the model species was allowed to change within 0.1–10 fold. The parameter set with 1.161026 of the likelihood was
selected as the best one through 60 steps of calculation. The solid line represents the simulation results of the model with the best parameters. The
squares represent the experimental data on the Y992F cells.
doi:10.1371/journal.pone.0013926.g006
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validated the model predictions regarding a decrease in the initial

expression level of EGFR and Cbl family proteins—c-Cbl and

Cbl-b—in Y992F cells (Figure 6A). This would probably affect the

amount of EGFR-bound Cbl. Our model predicted the decrease

in EGFR-bound Cbl per EGFR in Y992F cells compared to that

in the WT cells; this result was then validated by measuring the

level of Cbl-b co-immunoprecipitated with EGFR (Figure 7A).

Note that c-Cbl was not sufficiently detected in the same sample.

These results indicate that Cbl-b has dominant functions for

EGFR signaling in our cell lines, which is also supported by the

evidence that the number of mass detectable peptides derived from

c-Cbl was fewer than that of Cbl-b (Table S1). Because Cbl-b is a

ubiquitin ligase of EGFR, this decrease was considered to induce a

decrease in the amount of ubiquitinated EGFR in the Y992F cells.

Contrary to our intuitive prediction, however, increase in the

amount of ubiquitinated EGFR was observed in the Y992F model

(Figure 7B), which resulted in rapid EGFR degradation

(Figure 7C). These counterintuitive predictions were all success-

fully validated in the corresponding experiments (Figure 7B, C).

These results indicate that the increase in EGFR ubiquitination

rate is responsible for the alterations in EGFR degradation

pathway in Y992F cells and further suggest that the amount of

Y992F ubiquitination does not correlate with the amount of

EGFR-bound Cbl-b. There are some direct or indirect mecha-

nistic explanations that should be considered regarding the

relationships between EGFR mutation and the increase in EGFR

ubiquitination rate in the Y992F model. The former suggest that

EGFR mutation changes the receptivity of ubiquitination or that

un-modeled factors such as other components in the ubiquitina-

tion system or deubiquitinating enzymes are regulated by the

Y992 residue of EGFR. The latter could be supported by the

Signaling Flux Redistribution (SFR) concept [52], which indicates

that if one pathway is enhanced or impaired at the pathway

branches, an alternative pathway is down-regulated or enhanced

because the total signaling flux in a pathway junction is conserved.

One of the possible mechanisms along with the SFR concept is

that if there exist any novel positive regulators of EGFR

ubiquitination that bind to EGFR, impairment of other proteins

binding to EGFR can redistribute the positive signaling flux to the

EGFR ubiquitination pathway. Another explanation is also

Figure 7. Comparison of in silico (left) with in vivo (right) dynamics of EGFR degradation pathway. A, B. The temporal dynamics of
EGFR-bound Cbl-b and ubiquitinated EGFR. Extracted proteins were normalized to the initial expression amount of EGFR, and then subjected to EGFR
immunoprecipitation. Immunoblottings were performed to detect co-immunoprecipitated Cbl-b and ubiquitinated EGFR. Error bars represent the
deviations of two independent experiments. The simulated results were normalized to the initial abundance of EGFR predicted in silico. C. The
temporal dynamics regarding the total amount of EGFR. EGF-stimulated cell lysates were applied to immunoblots to detect total EGFR protein. Band
intensities and simulated results were normalized to the value at zero time point for each cell type. Error bars represent standard deviations of three
independent experiments. The raw data on the immunoblot experiments can be found in Figure S4.
doi:10.1371/journal.pone.0013926.g007
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associated with the model specification of the EGFR ubiquitina-

tion process. In our model, Cbl catalyzes ubiquitination of all non-

ubiquitinated EGFR in the phosphorylated state, irrespective of

whether signaling proteins bind to EGFR or not. Thus,

diminishing protein binding to EGFR promoted the dephosphor-

ylation of EGFR because the level of free EGFR, with which

phosphatases can interact, was increased, resulting in the decrease

of Cbl-substrate EGFR. However, if the binding of proteins to

EGFR inhibits the catalyzation of EGFR ubiquitination and only

free EGFR acts as the substrate of Cbl, decreased protein binding

to the mutated EGFR would promote efficient EGFR ubiquitina-

tion due to the increase in the amount of free EGFR.

Enhancement of Phosphorylation Rate Is Essential for
Reproducing Y992F Dynamics
Our computational model-based analyses indicated that the most

obvious characteristic feature of Y992 signaling is the increase in the

efficiency of the phosphorylation processes across the network

(Figure 5). Since phosphorylation efficiency is determined by the

balance between the rates of phosphorylation and dephosphoryla-

tion, there is a possibility that the decrease in dephosphorylation

rate can also reproduce the dynamics of Y992F signaling. To clarify

the aberrant processes in the Y992F cell, we re-estimated the Y992F

model from the WT model by changing the parameters including

both or either of the two processes. In all, four different

combinations of parameters (Type 1–4) were estimated by data

assimilation to reproduce the temporal activation data on Y992F,

where the remaining parameters were fixed at the values in the WT

model. Type 1 indicates an original combination of 54 parameters,

which is the hypothesized model in which both phosphorylation and

dephosphorylation are altered in the Y992F cell. Types 2 and 3 did

not include the parameters for dephosphorylation and phosphor-

ylation processes, respectively. These models were used to test the

hypothesis that either of process is not affected by Y992F mutation.

For Type 4 as a negative control, the parameters for both the

processes were unchanged. Figure 8 shows the likelihood distribu-

tion of the best models from the 10 independent parameter

estimation experiments using each type of parameter sets (the

likelihood and the value of each parameter set can be found in

Table S5). Type 2 retained the same degree of likelihood as that of

Type 1, whereas Type 3 showed a significant decrease in the

likelihood to the same extent as that of Type 4. Notably, Types 3

and 4 could not reproduce the enhancement of the activation level

of Shp2 and the sustained activation of ERK (Figure S5). These

results indicate that the increase in phosphorylation rates is essential

for Y992F signaling in our model.

Although the direct interpretation for the increase in phosphor-

ylation rates is that Y992F mutation increases the intrinsic tyrosine

kinase activity of EGFR, it is however reported to remain

unchanged by the mutation of Y992 [48]. This evidence strongly

suggests the contribution of some extrinsic factors that need to be

modeled, such as unknown kinase inhibitors like Mig6 [53,54], or

the alteration of the substrate specificity of EGFR caused by the

mutation [55]. An alternative possibility could be the involvement

of SFKs that are highly associated with EGF-induced tyrosine

phosphoproteome [45]. Because we assumed that the phosphor-

ylation of each molecule is defined by a single upstream kinase in

our model (Figure 3 and S2), estimation of the contribution of

multiple kinases to respective phosphorylation processes was

difficult. There was a large discrepancy regarding the abundance

of SFKs between the in silico prediction and the in vivo

measurement, indicating that the model for SFKs in EGF

signaling is incomplete. Therefore, more sophisticated models

containing not only inhibitory molecules but also the complex

involvement of multiple kinases are required for further clarifica-

tion of the regulatory mechanisms underlying the increase in the

phosphorylation rate on a network-wide scale.

Conclusion
Our study reported a phosphoproteomics-based framework for

providing a mechanistic view of aberrant signaling initiated by a

mutated receptor. The low-biased quantitative data on EGF-

induced tyrosine-phosphoproteomerevealed a network-wide en-

hancement in phosphotyrosine signaling, alteration in EGFR

degradation pathway, and aberrant temporal activation of ERK1

in the Y992F cells. Furthermore, our EGFR signaling model based

on the HFPNe architecture enabled reduction of the factors

responsible for mutational effect to several alterations in the reaction

parameters with consideration for different cellular contexts. Model-

based analyses indicated that Y992F mutation caused rapid EGFR

degradation through the up-regulation of EGFR ubiquitination and

aberrant temporal activation of ERK1 by network-wide activation

of tyrosine-phosphorylation; this suggests that pY992 strengthens

and attenuates phosphotyrosine singling by distinct regulatory

mechanisms. By applying our approach to disease-associated

genetic alterations of signaling molecules, it will be possible to

mechanistically describe the disorders of their cell signaling

networks at the system level. Mass spectrometry-based quantitative

phosphoproteomics, combined with computational network mod-

eling, will enable the theoretical representation of potential

therapeutic strategies for adjusting aberrant network behaviors.

Materials and Methods

SILAC Experiment
WT and Y992F cells expressing full-length human EGFR (WT)

and mutant EGFR with substitution of tyrosine to phenylalanine

Figure 8. The enhancement of the phosphorylation rate is
essential to reproduce the dynamics of Y992F signaling
networks. Parameter estimation for the Y992F model was performed
using different combinations of parameters indicated in the lower box
(Types 1–4). Type 1 contains all 54 parameters, Type 2 contains 40
parameters without dephosphorylation processes, Type 3 contains 49
parameters without phosphorylation processes, and Type 4 contains 35
parameters without both phosphorylation and dephosphorylation
processes. For each parameter combination, 10 independent parameter
estimation processes were performed with 60 steps per process
through data assimilation. The y-axis indicates the likelihood distribu-
tion of the best model within each process, while the x-axis indicates
the types for parameter combinations.
doi:10.1371/journal.pone.0013926.g008
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at position 992 (Y992F) (the numbering system excludes the 24

amino acid signal peptide of EGFR), respectively, were maintained

and used according to our previous study [56]. SILAC

experiments were carried out as described previously [45,57].

Briefly, WT and Y992F cells were labeled with L-arginine (Arg-0),

L-arginine-U-13C6 (Arg-6), or L-arginine-U-13C6-15N4 (Arg-10).

After overnight starvation, each cell population (5610-cm dishes

per condition) was stimulated with 150 ng/ml of EGF for the

indicated time intervals. The cells were washed three times with

cold phosphate buffered saline (PBS) and then lysed in TNE buffer

containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% NP40,

0.1% sodium deoxycholate, 1 mM Na3VO4, and protease

inhibitor cocktail (Roche Diagnostics). The protein concentration

of cell extracts was quantified using the bicinchoninic acid (BCA)

assay (Pierce Chemical Co.), according to the manufacturer’s

instructions. The cell lysates were mixed in ratios of 1:1:1 and

2:1:1 (Arg-0:Arg-6:Arg-10) in experiments 1–5 and in experiments

5–8, respectively, and then subjected to immunoprecipitation

process. Tyrosine phosphoproteins were captured using anti-

phosphotyrosine antibodies (4G10; Upstate and pTyr100; Cell

Signaling Technology) and eluted with 25 mM of phenyl

phosphate. The eluted proteins were digested by trypsin (Roche

Diagnostics) overnight at 37uC, followed by purification with Zip-

Tip C18 (Millipore).

Mass Spectrometry Measurement
The purified peptide mixtures were analyzed using a high-

resolution nanoflow reversed-phase liquid chromatography cou-

pled with quadrupole time-of-flight tandem mass spectrometer (Q-

Tof-2; Micromass Ltd.), as described previously [45]. The MS/

MS signals were then converted to text files by MassLynx (version

3.5, Micromass) under the default parameter settings. The peak

lists were searched against the RefSeq mouse (45,347 sequences;

July 3, 2006) and human (33,506 sequences; June 25, 2007)

sequences using Mascot software (version 2.2; Matrix Science)

with a mass tolerance of 500 ppm for parent peptide ions and

0.5 Da for fragment ions. The peptides were constrained to be

tryptic with a maximum of three missed cleavages. Acetylation of

N-terminal residues; oxidation of methionine residues, Arg-6, Arg-

10; and formation of pyroglutamic acid for peptides containing an

N-terminal glutamine were considered as variable modifications.

Protein identification was based on the criterion of having at least

one MS/MS data with Mascot scores that exceeded the thresholds

(p,0.05). The annotated MSMS spectra of peptides used for

single peptide identification can be found in Material S3. If a

subset of peptides was matched to multiple proteins, the protein

that was supported by the most peptides over the eight mass

spectrometric measurements was selected as the representative. A

randomized decoy database generated by Mascot program

estimated a false discovery rate at 0.09% for all the identified

peptides. Regarding the proteins identified, quantitation was made

on the basis of the mass spectra of SILAC-encoded peptides with

Mascot scores (§20) using the AYUMS algorithm [46] and the

MSQuant software (version 1.4.0a16) [47]. Pearson’s correlation

coefficient between the duplicate measurements of Y992F and WT

(Exps. 3–5 versus Exps. 6–8 in Figure 1B) using the independent

SILAC-encoded cell populations were calculated as 0.90,

indicating good biological reproducibility. To combine the

duplicate time-series data regarding Y992F cell signaling, the

average value of two time-series data normalized to the value at

5 min of Y992F activation were multiplied by the ratio of Y992F

to WT activation at 5 min. For the proteins for which the value at

5 min was not measured in Exp. 8 (Figure 1B), either value of

1 min or 20 min was used for normalization. The procedures for

protein identification and quantitation were strictly compliant with

those reported previously [45].

Functional Scoring
Differential activation profiles of EGFR downstream pathways

were characterized on the basis of the fold change of phosphotyr-

osine-dependent proteins and the deviation of time-dependent

activation patterns between the two cells. The activation score A of

each protein is defined as

A~

log2
m
Y992F t1ð Þ
mWT t1ð Þ

, n~1

log2

P

n{1

i~1

m
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:

where mWT(ti) and mY992F(ti) denote the relative quantitative

values at the time point of ti with regard to WT and Y992F,

respectively, which were normalized to the values for WT at

5 min. The activation score A represents the ratio of the area

under the curve of temporal dynamics data on the Y992F cells to

that on the WT cells.

The deviation score D of each protein is defined as

D~
1

n

X

n

i~1

nY992F tið Þ{nWT (ti)ð Þ2, n~3,5

where nWT(ti) and nY992F(ti) denote the relative quantitative values

at the time point ti with regard to WT and Y992F, respectively,

which were each normalized to the values at 5 min. The

calculated scores are indicated in Supplementary information

(Table S1).

Biochemical Simulation Analysis
Cell Illustrator Online (version 4.0; GNI) was used for

constructing and performing simulation with 10-ms time-steps on

our EGFR signal transduction model. Parameter optimization was

performed on the basis of particle filtering to estimate an ensemble

of the WT and Y992F models [33] (see Supplementary Text). In

order to compare the experimental data with the corresponding

simulation results, the SILAC experiment data were normalized by

the following procedures. First, the temporal data on each protein

were normalized by the value forWT at 5 min. Second, the value at

time zero for each protein was subtracted from the values at all the

time points. Finally, the value at each time point was renormalized

by the value for WT at 5 min. Statistical analyses were performed

using the R software (version 2.11.1). We used Welch’s t-test for

comparison of parameter distributions between the WT and Y992F

models. Bonferroni correction was applied to adjust the p-values.

Computing time was provided by HA8000 cluster system, Super-

computing Division, Information Technology Center, the Univer-

sity of Tokyo.

Western Blot Analysis
WT and Y992F cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% (v/v) fetal

bovine serum and antibiotics at 37uC in 5% CO2. The cells

treated with EGF (150 ng/ml) were lysed in TNE buffer. The total

cell lysates were mixed with 56 Laemmli buffer and boiled for

5 min at 100uC. For western blotting of EGFR-bound Cbl-b and

ubiquitinated EGFR, the total cell lysates were immunoprecipi-
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tated with anti-EGFR (sc-120; Santa Cruz Biotechnology) at 4uC

for 1 h. The immunocomplexes were recovered on protein G-

agarose (Roche Diagnostics) by incubating overnight at 4uC. After

the purified complexes were washed three times with lysis buffer,

they were solubilized in Laemmli buffer, followed by boiling for

5 min at 100uC. Protein samples were separated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and transferred to polyvinylidene difluoride (PVDF) membranes.

After the membranes were blocked in 3% bovine serum albumin/

TBS-Tween 20 (TBS-T) at 4uC overnight, they were washed in

TBS-T and incubated with the following primary antibodies at

room temperature for 1 h: EGFR (sc-03; Santa Cruz Biotechnol-

ogy), Cbl (sc-170; Santa Cruz Biotechnology), Cbl-b (sc-8006;

Santa Cruz Biotechnology), mono ubiquitin (MMS-258; Cov-

ance), Shp2 (3752; Cell Signaling Technology), Shc (610081; BD

Transduction Laboratories), Grb2 (610111; BD Transduction

Laboratories), Src (2109; Cell Signaling Technology), Erk1/2

(9102; Cell Signaling Technology), and b-tubulin (T5293;

SIGMA). The membranes were then washed three times with

TBS-T and incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies at room temperature for 1 h.

The membranes were washed three times with TBS-T, developed

using Immobilon Western (Millipore) and detected by Las3000

mini (FujiFilm). Quantification of the band intensities and back

ground subtraction were conducted using Multi Gauge software

(version 3.0; FujiFilm).

Supporting Information

Figure S1 Representative mass spectra of SILAC-encoded

peptide. Mass spectra of the SILAC-encoded peptide YLVIQG-

DER from the epidermal growth factor receptor isoform a

observed in each experiment are shown. In experiments 1–5, the

SILAC-encoded cell lysates were mixed in a ratio of 1:1:1 (Arg-

0:Arg-6:Arg-10), while in experiments 6–8, 5 min of EGF-

stimulated cell lysate from Arg-0-encoded WT cells was mixed

with Y992F cell lysates in a ratio of 2:1:1 (Arg-0:Arg-6:Arg-10) to

ensure the identification of WT-enriched peptides.

Found at: doi:10.1371/journal.pone.0013926.s001 (0.82 MB TIF)

Figure S2 The reaction scheme of the EGFR signal transduction

pathway. Single- and double-sided solid-line arrows denote

irreversible and reversible state changes, respectively. Dashed-line

arrows denote catalytic reactions or indirect association. Double

solid-head arrows denote summation into a sigma-state. E, EGF;

Er, EGFR; Er2, EGFR dimer; G, Grb2; S, Shc; R, RasGAP; H,

Shp2; P, Plcc1; O, Sos; C, Cbl; A, Gab1; I, PI3K; Hr, Hrs; Sr,

Src; P2, PIP2; P3, PIP3; RsD, RasGDP; RsT, RasGTP; W,
degradation; @EX, at extracellular compartment; @PM, at

plasma membrane compartment; @E, at endosomal compart-

ment; @L, at lysosomal compartment. Sigma denotes summation

of each state; p denotes tyrosine phosphorylation; ub denotes

ubiquitination; pt denotes serine/threonine phosphorylation;

* denotes activation; and a dot denotes binding. [ ] denotes

additional modification of the molecule. {,} denotes alternative

condition of the molecule. The numbers attached to the arrows

represent the reaction indexes indicated in Table S2B.

Found at: doi:10.1371/journal.pone.0013926.s002 (0.78 MB TIF)

Figure S3 Parameter distributions of the WT and Y992F

models. Probability densities of the model parameters were

estimated using kernel density estimation based on an ensemble

of WT and Y992F models. Mean of each ensemble and p-value

obtained from unpaired t-test adjusted by Bonferroni method were

indicated.

Found at: doi:10.1371/journal.pone.0013926.s003 (1.37 MB

PDF)

Figure S4 Western blot analysis of the EGF signaling molecules.

A. The temporal dynamics of EGFR-bound Cbl-b and ubiquiti-

nated EGFR. WT and Y992F cells were stimulated with 150 ng/

ml of EGF for the time intervals indicated. Extracted proteins were

normalized to the initial expression amount of EGFR, and then

subjected to EGFR immunoprecipitation. Immunoblotting was

performed to detect ubiquitinated EGFR and co-immunoprecip-

itated Cbl-b. B. Measurement of EGF-induced degradation of

EGFR. WT and Y992F cells were stimulated with 150 ng/ml of

EGF for the time intervals indicated. Extracted protein samples

were dissolved by SDS-PAGE probed using anti-EGFR and anti-

b-tubulin antibodies as a loading control.

Found at: doi:10.1371/journal.pone.0013926.s004 (0.66 MB TIF)

Figure S5 The simulation results of the best model estimated

using the different combinations of parameters (Types 1–4). The

solid lines represent the simulation results of the model

corresponding to each parameter type indicated in Figure 8.

The squares represent the experimental data on the Y992F cells.

Found at: doi:10.1371/journal.pone.0013926.s005 (1.06 MB

TIF)

Table S1 Results of the SILAC experiments.

Found at: doi:10.1371/journal.pone.0013926.s006 (0.16 MB

XLS)

Table S2 EGFR model description.

Found at: doi:10.1371/journal.pone.0013926.s007 (0.08 MB

XLS)

Table S3 Model parameters.

Found at: doi:10.1371/journal.pone.0013926.s008 (0.10 MB

XLS)

Table S4 Results of the LPI analysis.

Found at: doi:10.1371/journal.pone.0013926.s009 (0.03 MB

XLS)

Table S5 Parameter estimation experiments using different

combinations of parameters.

Found at: doi:10.1371/journal.pone.0013926.s010 (0.08 MB

XLS)

Material S1 Supplementary Materials and Methods

Found at: doi:10.1371/journal.pone.0013926.s011 (0.06 MB

DOC)

Material S2 Electronic format files of EGFR model.

Found at: doi:10.1371/journal.pone.0013926.s012 (0.15 MB ZIP)

Material S3 Annotated MSMS spectra of peptides used for

single peptide identification.

Found at: doi:10.1371/journal.pone.0013926.s013 (4.19 MB

PDF)
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