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Phosphorus (P), an essential element required for crop growth has no substitute. The

global food security depends on phosphorus availability in soil for crop production.

World phosphorus reserves are fast depleting and with an annual increase of 2.3%

in phosphorus demand, the current reserves will be exhausted in coming 50–100

years. India and other Western countries are forced to import phosphorus fertilizers at

high costs to meet their agricultural demands due to uneven distribution of phosphate

rocks on earth. The present study from India, aims to draw attention to an unnoticed

source of phosphorus being wasted as parboiled rice mill effluent and subsequent

bio-recovery of the valuable element from this unconventional source. The research

was conducted in West Bengal, India, a state with the highest number of parboiled

rice mills where its effluent carries on an average ∼40mg/L of soluble phosphorus.

Technology to recover and recycle this wastewater P in India in a simple, inexpensive

mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and

cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the

excess phosphorus from the effluent as polyphosphate inclusions and its subsequent

recycling as slow and moderate release phosphorus biofertilizers to aid plant growth,

preventing phosphorus loss and pollution, is a contemporary venture to meet the need

of the hour. These polyphosphate accumulating microorganisms play a dual role of

remediation and recovery of phosphorus, preliminarily validated in laboratory scale.

Keywords: global food security, parboiled rice mill effluent, phosphorus pollution, microalgae and cyanobacteria,

polyphosphates, phosphorus biofertilizers, phosphorus scarcity

GLOBAL PHOSPHORUS SCENARIO

Phosphorus (P), the 11th most abundant element found in earth’s crust, is necessary for
survival of life, as it is the main backbone of DNA, RNA, and ATP, the key components
of a living cell (Cordell and White, 2011). Phosphorus is a limiting nutrient for crop
growth having no substitute and hence, food security worldwide depends on the P availability
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in soil for crop production (Cordell et al., 2011). In most soils, the
amount of available P is ∼1µmol/L but requirement estimated
is ∼30µmol/L (Adhya et al., 2015). Eighty two percent of
the phosphate rocks, a non-renewable source of P which takes
around 10–15 million years to form (Cordell et al., 2009) are
mined globally and added to soil as P fertilizers to address
the problem of P scarcity in soil for optimum crop production
(Adhya et al., 2015). Around 0.007% of the total P present on the
earth’s crust (4 × 106 billion metric tons) is found as phosphate
rock resources which contain about 5–13% P, out of which only
20% reserves can be exploited by mining economically (Cordell
andWhite, 2011). Present estimations predict the total phosphate
rock resources to be around 300 billion metric tons (MT) and
the reserves as 71 billion MT (Subba Rao et al., 2015). These
P reserves are fast dwindling and with an increase of 2.3% per
annum in annual P demands (Adhya et al., 2015), the current
reserves are expected to be depleted in the coming 50–100 years
(Cordell et al., 2009).

India and other Western European countries are totally
dependent on imports to meet their P demands (Cordell et al.,
2009) because the distribution of phosphate rocks is uneven with
Morocco having approximately 85% of the global share, followed
by China with 6% and the US with 3% (Obersteiner et al.,
2013). India imports around 90% of its P fertilizer requirement
to overcome P deficiency in soil and enhance crop production to
meet the demands of its fast growing population (Bagyaraj et al.,
2015) and is the largest importer of phosphate rocks in the world,
importing about 30% of the total world trade (Subba Rao et al.,
2015). The consumption of P fertilizer in India increased from
5.3× 104 MT in 1960–1961 to 7.3× 106 MT in 2009–2010 and is
expected to reach 1.4×107 MT by 2030–2031 (Abrol et al., 2015).
An estimated 8.1 million MT of P2O5 (i.e., phosphorus fertilizer)
was consumed in Indian agriculture in 2010–2011 to produce 235
million MT of food (Subba Rao et al., 2015). It is predicted that
the food grain necessity of India will cross 300 million MT by the
year 2025, compelling the use of around 13.1 millionMT of P2O5

as fertilizer for crop production and leading to huge monetary
loss of INR 7.81 billion (Elanchezhian et al., 2015).

On the other hand, approximately 1.9 × 107 MT of P is
mined per annum from phosphate rocks for application to soil
but only one- fifth of this amount really reaches the consumers
(Cordell et al., 2011) and the rest is lost at various stages, with
up to 80% of loss occurring due to erosion of agricultural soils
(Obersteiner et al., 2013), culminating in eutrophication of water
bodies. Processes need to be planned to minimize losses and
recycle P from agricultural lands (estimated at around 8 MT
P) and the food commodity chain (estimated at around 2 MT
P) (Cordell et al., 2009). An integrated approach is needed to
overcome the problems of phosphorus dearth and over-use of
phosphorus fertilizers causing pollution of soil and water.

Recovery of inorganic phosphorus into phosphates of calcium,
iron, aluminum and magnesium-ammonium (struvite) from
wastewater or sludge is yet to be widely accepted in developing
countries, while the direct use of wastewater or waste sludge
for agriculture is not recommended because of its associated
toxic compounds like heavy metals, etc. (Sartorius et al., 2012).
New techniques should be designed to extract P from alternative

renewable phosphorus sources, like manure (around 15 MT P),
human excreta (around 3 MT P) and food residues (around
1.2 MT P) (Cordell et al., 2009). New phosphorus sources
should be investigated to recycle P, e.g., the animal bone wastes
in Ethiopia could generate 28–58% of the annual phosphorus
fertilizer supplies over the period 2008–2011 (Simons et al.,
2014). Our research presented here falling in the same line, aims
to draw attention to an unheeded point source of P pollution
in the environment—the parboiled rice mill effluent (RME),
from where phosphorus can be recovered and used in future as
biofertilizers for plant growth improvement.

THE CONTEXT OF PARBOILED RICE MILL
EFFLUENT AS A PHOSPHORUS SOURCE

In the parboiling process, paddy is soaked in water and
subsequently steamed and dried, before milling. This helps to
minimize the breakage of rice and reduce the loss of nutrients
during milling (Rathnayake et al., 2010). The effluent generated
after parboiling contains a high load of pollutants including
phosphorus and is discharged in the nearby land and water
bodies increasing pollution of soil and surface water. The source
of this high amount of P in RME is phytic acid (inositol
hexakisphosphate, IP6), or phytate in its salt form. It is a saturated
cyclic acid and principal storage form of phosphorus in rice
brans. Phytase is the enzyme that catalyzes hydrolysis of phytic
acid and releases a usable form of inorganic phosphorus. Soaking
of paddy before processing by parboiled rice millers stimulates
phytase of grains to hydrolyze stored phytate (Faria et al., 2006),
releasing a great quantity of inorganic phosphorus in water,
and subsequently increasing the inorganic phosphorus load of
parboiled RME.

Official statistical data about P content of parboiled RME is
surprisingly lacking in published literature and therefore escaped
global attention, despite its “highly polluted status” earned
because of high COD (437–4500mg/L), BOD (211–2223mg/L)
and TSS (62–1258mg/L) as reported by public funded research in
India (CPCB, 2007; Asati, 2013; Haridas, 2013). The P content of
rice mill effluent from U.S. and Brazil was reported to be 98 mg/L
(EPA, 1974) and 34–143 mg/L (Faria et al., 2006), respectively. In
United States, rice mill industry uses 1400–2100 liters of water
per MT of rice in addition to water used in boilers (EPA, 1974).
In Sri Lanka, up to 604 × 103 L of RME is discharged to the
environment per 8 MT of soaked paddy without being treated
(Rathnayake et al., 2010). From Brazil, the volume of RME is
estimated to be 2000 L per MT of rice, equivalent to 5.04 × 1011

L of effluent per year (de los Santos et al., 2012).
Based on our study conducted on a representative state of

India, West Bengal, with highest production of rice (12.43 ×

106 MT per year) where more than 16925 parboiled rice mills
are operational (CPCB, 2008), we observed that phosphorus
content lies in the range of 30–72mg/L in the effluent. The
average concentration of soluble phosphorus in the RME samples
collected from West Bengal is ∼40mg/L. In India, the lowest
possible average outflow of effluent from each parboiling rice
mill is about 100,000 L/day (Varshney, 2012). Assuming this,
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total soluble phosphorus wasted will amount to 4 kg/day by
a single rice mill. Thus, in West Bengal alone approximately
67,700 kg (i.e., 67.7 MT) soluble phosphorus is wasted per
day. If we presume that there are 340 working days in a
parboiled rice mill per annum, then only in the state of West
Bengal, India about 23,018 MT of soluble phosphorus is wasted
per year. The latest price of superphosphate fertilizer is INR
25,244 per MT (Indexmundi, 2015). Superphosphate contains
45% P2O5 or 19.8% soluble phosphorus in it. So, the price
of 198 kg soluble phosphorus is INR 25,244. Therefore, almost
INR 3 billion is wasted in the form of soluble phosphorus
present in RME discharged per annum in West Bengal only.
The total volume of RME generated in India amounts to
20 × 106 L per annum per rice mill (Varshney, 2012) and
so, for approximately 57,850 parboiled rice mills in India
(CPCB, 2008), the actual figure per annum becomes too
large, resulting in a massive loss for Indian economy in the
current perspective and an enormous waste burden on Indian
environment.

There are definite guidelines existing in India for the level of
pollutants in RME discharge but no minimum permissible limit
for P is assigned. According to the Environment (Protection)
Act of India, 1986 of Central Pollution Control Board (CPCB),
every rice mill is supposed to have a functional full-fledged
Effluent Treatment Plant (ETP) consisting of biological treatment
process (CPCB, 2007). Due to the high cost of establishment
and maintenance of the existent ETP, a majority of rice mills
in India flout the CPCB guidelines (Business Standard, 2015;
Paul et al., 2015). Under this paradox, our group established a
simplified low-cost phosphorus recovery process by assimilation
of this excess phosphorus into insoluble polyphosphate through
luxury uptake of scavenger microalgae and cyanobacteria (Ray
et al., 2013). The single aerobic free flow tank unit for treatment
of RME, biomass harvest after P recovery, followed by release
of the treated effluent to adjacent agricultural plots is a simpler
and cheaper technique than the elaborate ETP consisting of four
operational units, even considering the annual operational and
maintenance cost after its installation.

Upflow Anaerobic Sludge Blanket (UASB) reactor (Haridas,
2013) and Enhanced Biological Phosphorus Removal (EBPR),
two key recognized technologies to bio-remediate wastewater
are not considered appropriate for P-removal and recovery from
RME. UASB accounts for negligible removal of phosphorus
and results in consequent increase of P concentration under
anaerobic conditions (de los Santos et al., 2012; Khan et al.,
2013). The stringent criteria and complexity of EBPR with its
high establishment cost rendered it unsuitable for parboiled rice
mill industry in India.Moreover, the wastewater sludge generated
in EBPR is bulky and mostly contaminated with heavy metals,
harmful pathogens and other toxic substances which interfere
with crop growth and often not recommended to be used as
agricultural fertilizer (Sartorius et al., 2012; Yuan et al., 2012).
On the contrary, the proposed strategy simply resembles the
growth of microalgae and cyanobacteria in eutrophicated water
bodies. Our test microorganisms grow in RME in an open free
flow tank under tropical environment and once introduced, out-
compete other organisms native to RME and over-populate the

effluent within a short time, while their biomass can be used as
biofertilizers without any risk of contamination from external
sources.

MICROALAGAE AND
CYANOBACTERIA—PHOSPHORUS
SEQUESTRATION AS POLYPHOSPHATES

Polyphosphates (poly-P) are linear polymers containing
tens to hundreds of orthophosphate residues linked by
phosphoanhydride bonds. Poly-P is a very rich source of
energy supporting growth and survival of organisms in adverse
situations for a long period. Cyanobacteria and microalgae grow
and uptake inorganic phosphorus and store it within their cells
as poly-P granules to cope with unfavorable conditions like
salt stress, osmotic stress, UV radiation, and fluctuations of
pH and temperature in the environment (Achbergerová and
Nahalka, 2011). Since last few years, microalgal species like
Chlorella sp. and Scenedesmus sp. and cyanobacterial species like
Aphanothece sp., Spirulina sp., Arthrospira sp., and Phormidium
sp. have been used extensively in removal of nutrients from
wastewater (Ray et al., 2013). The novelty of present research lies
in the concept that microalgae and cyanobacteria are not only
used for excess P removal from RME, but also the assimilated
phosphorus as poly-P in their cells is utilized in soil as slow
and moderate release phosphorus biofertilizers to optimize
plant growth. The release of plant available phosphorus from
the insoluble poly-P present in the biomass depends on the
activity of phosphorus-solubilizing organisms (PSOs) existing
in the soil, making the whole process very slow and steady and
thus, supplying P within the “critical value” for crops in the
rhizosphere. It reduces the probability of excess P supply (Ray
et al., 2013) and controls consequent escape of P as soil run-off
originating from unrestrained use of inorganic fertilizers.

PHOSPHORUS REMEDIATION AND
RECYCLING FROM PARBOILED RME—A
LABORATORY SCALE ENDEAVOR

In the present study, RME samples were collected from 113
different parboiled rice mills located in three districts of West
Bengal, India (33 from Hooghly, 50 from Burdwan, and 30
from Birbhum). The initial inorganic P level in the effluent
was measured by Molybdenum Blue method (Krishnaswamy
et al., 2009) (Figure 1A). Four environmental isolates comprising
of three cyanobacterial genera, Cyanobacterium sp. isolate
Fardillapur (Accession No. JX023443), Lyngbya sp. isolate 2.1
(Accession No. KF644563) and Anabaena sp. isolate A2C2
(Accession No. KF644564), and one microalgal genus, Chlorella
sp. isolate 10.2 (Accession No. KJ654316) established earlier from
different P-rich eutrophicated niches (Ray et al., 2013), were
tested for their growing capability in highly acidic RME (pH 4.2).
0.02 g of each pure culture isolate was inoculated in 15ml of
the different RME samples collected and incubated for 24 days
at 28◦C under 12:12 h light: dark conditions. After 24 days, the
accumulated poly-P was extracted and quantified from equal dry
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FIGURE 1 | Soluble phosphorus in parboiled rice mill effluent and its remediation by microalgae and cyanobacteria as polyphosphate accumulators.

(A) Box plot showing the phosphorus concentration in the rice mill effluent samples collected from West Bengal, India. “n” is the number of rice mills from where the

samples were collected. Solid line in the box represents median values. Box represents 25–75% percentiles; range bar represents 5 and 95% percentiles, and dots

beyond these bars represent values outside the 95% confidence interval. (B) Percentage removal of phosphorus from a rice mill effluent sample (initial phosphorus

concentration was 35mg/L) by different microalgae and cyanobacteria over a period of 21 days. All the bars on the graph represent the average data of 10 replicate

experiments. Error bars were calculated on the basis of standard deviation of the data using the software Microsoft Excel. (C) Cell-free extract of polyphosphate

granules stained with the Toluidine Blue dye as observed under bright field microscope. (D–G) DAPI staining of polyphosphate granules present in Chlorella sp. isolate

10.2 (Accession No. KJ654316), Cyanobacterium sp. isolate Fardillapur (Accession No. JX023443), Lyngbya sp. isolate 2.1 (Accession No. KF644563) and Anabaena

sp. isolate A2C2 (Accession No. KF644564) observed under confocal microscope. The yellowish-green fluorescence indicates the presence of polyphosphate

granules in the cells whereas the cells devoid of the granules emit blue fluorescence.

weight of all the cyanobacterial and microalgal cells following an
established protocol standardized in our laboratory (Mukherjee
and Ray, 2015a). The cell free extract of poly-P granules were
stained by Toluidine Blue dye using Albert’s staining method
(Albert, 1920) (Figure 1C). The poly-P granules within the cells
were visualized by confocal microscopy after staining with DAPI
(Figures 1D–G) following a standardized protocol developed in
our laboratory (Mukherjee and Ray, 2015b).

In a laboratory scale study, 5 liter of RME in an aerobic free
flow system with light source was inoculated separately with
∼5 g biomass of 25 days old culture of the microalgae and
cyanobacteria along with one un-inoculated control. The soluble
P level and growth trend was recorded at an interval of every
3 days till 21 days and the final removal percentage of P from
RME at the end of 21 days, by microalgae and cyanobacteria
was estimated (Figure 1B). After 21 days, microalgal and
cyanobacterial biomass was harvested and dried. The average
weight of the harvested microalgal and cyanobacterial biomass
increased from ∼5 to 50 g after bioremediation of RME.
Approximately 84mg of poly-P was accumulated on an average
by the microalgal and cyanobacterial strains from the initial
175mg of soluble P present in the 5 liter RME. Thus, the net
recovery percentage of P from the RME in the form of poly-P

through luxurious P-assimilation by experimental organisms is
48% and soluble phosphorus worth almost INR 1.44 billion is
expected to be recovered per annum in West Bengal only.

Two gram of dried biomass of each cyanobacteria and
microalgae (containing poly-P) was mixed with 5 kg of non-
sterile soil (pH-7.13) in separate pots. The soil had 0.3% organic
carbon and contained 17.13mg of soluble P, 12mg nitrate-
nitrogen and 7mg ammonium-nitrogen, per kg of soil. Similarly,
575mg of superphosphate and NPK (20: 20: 13) was mixed with
5 kg of soil following the standard recommended dose. The pots
were sown with rice seedlings and watered at regular intervals
and incubated at a constant 30◦C temperature and 60% humidity
in a greenhouse for 115 days under 12:12 h light: dark conditions.

The net increase in plant available P concentration in
soil recorded at different time intervals signified the release
of soluble phosphorus from the insoluble poly-P, at 2–4 cm
and 8–10 cm depth of soil as depicted in Figure 2A. The
release of P from the poly-P was significantly comparable
with the release of phosphorus from the commercial
phosphate fertilizers- superphosphate and NPK (20: 20:
13). The biomass added to the non-sterile soil gets degraded
by soil decomposers and its poly-P reservoir is exposed.
Organic acids and phosphatases released by PSOs present
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FIGURE 2 | Recycled polyphosphates as substitute to phosphorus fertilizers. (A) Table showing the rate of conversion of polyphosphates accumulated by the

microalgae and cyanobacteria into soluble phosphorus and comparison of its release to conventional chemical phosphorus fertilizers commercialized widely in India.

(B) Polyphosphate releases soluble phosphorus at a comparable (maximum at 45 days) but slower rate (as reflected in initial 10 days) with recommended dose of

superphosphate and NPK at 8–10 cm depth of soil. All the points on the graph represent the average data of 10 replicate experiments. Error bars were calculated on

the basis of standard deviation of the data using the software SigmaPlot 13.0.
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in the rhizospheric zone liberate inorganic plant available P
from polyphosphates (Gopalakrishnan et al., 2012; Sharma
et al., 2013), leading to a slow but steady increase of soluble
phosphorus content in soil over 45 days vis-à-vis the non-sterile
soil supplemented with recommended dose of conventional
P-fertilizers and also without any fertilizer as comparative
control (Figure 2B).

A slower release of P from poly-P rich biomass is evident
from the initial 10 days’ slope (Figure 2B) in contrast to the
commercial chemical P fertilizers which releases P readily after
their application to the soil. The fall in soil test phosphorus
(STP) after 45 days in soil supplemented with biomass was
also observed to be more gradual (Figure 2B) than conventional
fertilizers, indicating more persistent release of P. In addition,
the released soluble P should be available in the rhizospheric
region of the crops. The maximum rhizosphere zone length of
rice is reported to be 10–15 cm (Gopalakrishnan et al., 2012).
In all 10 replicate experiments for P release, maximum release
was observed at 8–10 cm depth of soil (Figure 2A) and the
result is presented graphically in Figure 2B. Thus, the mode
of P release from poly-P from the decaying microalgal and
cyanobacterial biomass is entirely a soil microbe-dependent
natural phenomenon.

THE FUTURE OUTLOOK

In conclusion, the present venture provides a new avenue in
the research area of polyphosphate granule accumulation by
cyanobacteria and microalgae wherein these organisms play a
dual role of bioremediation and recovery of phosphorus which
was being wasted and its subsequent application as biofertilizers
for crop growth. The present work can pave way for curbing

the P shortage problem in low and middle income countries like
India, Sri Lanka, Brazil, etc. where rice is the staple food crop and
cut down imports of P fertilizers. Further studies are required to
enhance the ability of the studied organisms to sequester more
P from the RME and more P hyper-accumulating species have
to be identified having high bioremediation capabilities. A large
scale application of this viewpoint in parboiled rice mill crowded
areas could be a much sought after goal to make this kind of
P-recovery successful. We opine that the developing countries
can venture out to this kind of phosphorus recycling and
substitute the high cost inorganic P-fertilizers with microalgal
and cyanobacterial polyphosphates only if it is encouraged by the
policy makers.
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