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Abstract. Real-world applications could benefit from the ability to
automatically generate a fine-grained ranking of photo aesthetics. How-
ever, previous methods for image aesthetics analysis have primarily
focused on the coarse, binary categorization of images into high- or
low-aesthetic categories. In this work, we propose to learn a deep con-
volutional neural network to rank photo aesthetics in which the relative
ranking of photo aesthetics are directly modeled in the loss function. Our
model incorporates joint learning of meaningful photographic attributes
and image content information which can help regularize the complicated
photo aesthetics rating problem.

To train and analyze this model, we have assembled a new aesthet-
ics and attributes database (AADB) which contains aesthetic scores and
meaningful attributes assigned to each image by multiple human raters.
Anonymized rater identities are recorded across images allowing us to
exploit intra-rater consistency using a novel sampling strategy when com-
puting the ranking loss of training image pairs. We show the proposed
sampling strategy is very effective and robust in face of subjective judge-
ment of image aesthetics by individuals with different aesthetic tastes.
Experiments demonstrate that our unified model can generate aesthetic
rankings that are more consistent with human ratings. To further validate
our model, we show that by simply thresholding the estimated aesthetic
scores, we are able to achieve state-or-the-art classification performance
on the existing AVA dataset benchmark.

Keywords: Convolutional neural network · Image aesthetics rating ·
Rank loss · Attribute learning

1 Introduction

Automatically assessing image aesthetics is increasingly important for a variety
of applications [1,2], including personal photo album management, automatic
photo editing, and image retrieval. While judging image aesthetics is a subjective
task, it has been an area of active study in recent years and substantial progress
has been made in identifying and quantifying those image features that are
predictive of favorable aesthetic judgements by most individuals [1–5].
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Fig. 1. Classification-based methods for aesthetic analysis can distinguish high- and
low-quality images shown in the leftmost and rightmost columns, but fail to provide
useful insights about borderline images displayed in the middle column. This observa-
tion motivates us to consider rating and ranking images w.r.t aesthetics rather than
simply assigning binary labels. We observe that the contribution of particular photo-
graphic attributes to making an image aesthetically pleasing depends on the thematic
content (shown in different rows), so we develop a model for rating that incorporates
joint attributes and content. The attributes and ratings of aesthetics on a scale 1 to 5
are predicted by our model (displayed on top and right of each image, respectively).

Early works formulate aesthetic analysis as a classification or a regression
problem of mapping images to aesthetic ratings provided by human raters [4–8].
Some approaches have focused on designing hand-crafted features that encap-
sulate standard photographic practice and rules of visual design, utilizing both
low-level statistics (e.g. color histogram and wavelet analysis) and high-level
cues based on traditional photographic rules (e.g. region composition and rule
of thirds). Others have adopted generic image content features, which are orig-
inally designed for recognition (e.g. SIFT [9] and Fisher Vector [10,11]), that
have been found to outperform methods using rule-based features [12]. With
the advance of deep Convolutional Neural Network (CNN) [13], recent works
propose to train end-to-end models for image aesthetics classification [2,3,14],
yielding state-of-the-art performance on a recently released Aesthetics Visual
Analysis dataset (AVA) [15].

Despite notable recent progress towards computational image aesthetics clas-
sification (e.g. [1–3]), judging image aesthetics is still a subjective task, and it
is difficult to learn a universal scoring mechanism for various kinds of images.
For example, as demonstrated in Fig. 1, images with obviously visible high- or
low-aesthetics are relatively easy to classify, but existing methods cannot gener-
ate reliable labels for borderline images. Therefore, instead of formulating image
aesthetics analysis as an overall binary classification or regression problem, we
argue that it is far more practical and useful to predict relative aesthetic rankings
among images with similar visual content along with generating richer descrip-
tions in terms of aesthetic attributes [16,17].

To this end, we propose to train a model through a Siamese network [18] that
takes a pair of images as input and directly predicts relative ranking of their aes-
thetics in addition to their overall aesthetic scores. Such a structure allows us to
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deploy different sampling strategies of image pairs and leverage auxiliary side-
information to regularize the training, including aesthetic attributes [1,3,7] and
photo content [4,15,19]. For example, Fig. 1 demonstrates that photos with dif-
ferent contents convey different attributes to make them aesthetically pleasing.
While such side information has been individually adopted to improve aesthetics
classification [1,3], it remains one open problem to systematically incorporate all
the needed components in a single end-to-end framework with fine-grained aes-
thetics ranking. Our model and training procedure naturally incorporates both
attributes and content information by sampling image pairs with similar content
to learn the specific relations of attributes and aesthetics for different content
sub-categories. As we show, this results in more comparable and consistent aes-
thetics estimation results.

Moreover, as individuals have different aesthetics tastes, we argue that it is
important to compare ratings assigned by an individual across multiple images in
order to provide a more consistent training signal. To this end, we have collected
and will publicly release a new dataset in which each image is associated with a
detailed score distribution, meaningful attributes annotation and (anonymized)
raters’ identities. We refer to this dataset as the “Aesthetics with Attributes
Database”, or AADB for short. AADB not only contains a much more balanced
distribution of professional and consumer photos and a more diverse range of
photo qualities than available in the exiting AVA dataset, but also identifies rat-
ings made by the same users across multiple images. This enables us to develop
novel sampling strategies for training our model which focuses on relative rank-
ings by individual raters. Interestingly, this rater-related information also enables
us to compare the trained model to each individual’s rating results by computing
the ranking correlation over test images rated by that individual. Our experi-
ments show the effectiveness of the proposed model in rating image aesthetics
compared to human individuals. We also show that, by simply thresholding rated
aesthetics scores, our model achieves state-of-the-art classification performance
on the AVA dataset, even though we do not explicitly train or tune the model
for the aesthetic classification task.

In summary, our main contributions are three-fold:

1. We release a new dataset containing not only score distributions, but also
informative attributes and anonymized rater identities. These annotations
enable us to study the use of individuals’ aesthetics ratings for training our
model and analyze how the trained model performs compared to individual
human raters.

2. We propose a new CNN architecture that unifies aesthetics attributes and
photo content for image aesthetics rating and achieves state-of-the-art per-
formance on existing aesthetics classification benchmark.

3. We propose a novel sampling strategy that utilizes mixed within- and cross-
rater image pairs for training models. We show this strategy, in combination
with pair-wise ranking loss, substantially improves the performance w.r.t. the
ranking correlation metric.
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2 Related Work

CNN for Aesthetics Classification: In [2,3,14], CNN-based methods are pro-
posed for classifying images into high- or low-aesthetic categories. The authors
also show that using patches from the original high-resolution images largely
improves the performance. In contrast, our approach formulates aesthetic predic-
tion as a combined regression and ranking problem. Rather than using patches,
our architecture warps the whole input image in order to minimize the overall
network size and computational workload while retaining compositional elements
in the image, e.g. rule of thirds, which are lost in patch-based approaches.

Attribute-Adaptive Models: Some recent works have explored the use of
high-level describable attributes [1,3,7] for image aesthetics classification. In
early work, these attributes were modeled using hand-crafted features [7]. This
introduces some intrinsic problems, since (1) engineering features that capture
high-level semantic attributes is a difficult task, and (2) the choice of describable
attributes may ignore some aspects of the image which are relevant to the over-
all image aesthetics. For these reasons, Marchesotti et al. propose to automati-
cally select a large number of useful attributes based on textual comments from
raters [20] and model these attributes using generic features [12]. Despite good
performance, many of the discovered textual attributes (e.g. so cute, those eyes,
so close, very busy, nice try) do not correspond to well defined visual charac-
teristics which hinders their detectability and utility in applications. Perhaps the
closest work to our approach is that of Lu et al., who propose to learn several
meaningful style attributes [3] in a CNN framework and use the hidden features
to regularize aesthetics classification network training.

Content-Adaptive Models: To make use of image content information such as
scene categories or choice of photographic subject, Luo et al. propose to segment
regions and extract visual features based on the categorization of photo con-
tent [4]. Other work, such as [15,19], has also demonstrated that image content
is useful for aesthetics analysis. However, it has been assumed that the category
labels are provided both during training and testing. To our knowledge, there is
only one paper [21] that attempts to jointly predict content semantics and aes-
thetics labels. In [21], Murray et al. propose to rank images w.r.t aesthetics in
a three-way classification problem (high-, medium- and low-aesthetics quality).
However, their work has some limitations because (1) deciding the thresholds
between nearby classes is non-trivial, and (2) the final classification model out-
puts a hard label which is less useful than a continuous rating.

Our work is thus unique in presenting a unified framework that is trained
by jointly incorporating the photo content, the meaningful attributes and the
aesthetics rating in a single CNN model. We train a category-level classifica-
tion layer on top of our aesthetics rating network to generate soft weights of
category labels, which are used to combine scores predicted by multiple content-
adaptive branches. This allows category-specific subnets to complement each
other in rating image aesthetics with shared visual content information while
efficiently re-using front-end feature computations. While our primary focus is
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Table 1. Comparison of the properties of current image aesthetics datasets. In addition
to score distribution and meaningful style attributes, AADB also tracks raters’ iden-
tities across images which we exploit in training to improve aesthetic ranking models.

AADB AVA [15] PN [5] CUHKPQ [6,22]

Rater’s ID Y N N N

All real photo Y N Y Y

Attribute label Y Y N N

Score dist Y Y Y N

Fig. 2. Our AADB dataset consists of a wide variety of photographic imagery of real
scenes collected from Flickr. This differs from AVA which contains significant numbers
of professional images that have been highly manipulated, overlayed with advertising
text, etc.

on aesthetic rating prediction, we believe that the content and attribute predic-
tions (as displayed on the right side of images in Fig. 1) represented in hidden
layers of our architecture could also be surfaced for use in other applications
such as automatic image enhancement and image retrieval.

3 Aesthetics and Attributes Database

To collect a large and varied set of photographic images, we download images
from the Flickr website1 which carry a Creative Commons license and manually
curate the data set to remove non-photographic images (e.g. cartoons, draw-
ings, paintings, ads images, adult-content images, etc.). We have five different
workers then independently annotate each image with an overall aesthetic score
and a fixed set of eleven meaningful attributes using Amazon Mechanical Turk
(AMT)2. The AMT raters work on batches, each of which contains ten images.
For each image, we average the ratings of five raters as the ground-truth aes-
thetic score. The number of images rated by a particular worker follows long tail
distribution, as shown later in Fig. 6 in the experiment.

After consulting professional photographers, we selected eleven attributes
that are closely related to image aesthetic judgements: interesting content,

1 www.flickr.com.
2 www.mturk.com.

www.flickr.com
www.mturk.com
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object emphasis, good lighting, color harmony, vivid color, shallow depth

of field, motion blur, rule of thirds, balancing element, repetition, and
symmetry. These attributes span traditional photographic principals of color,
lighting, focus and composition, and provide a natural vocabulary for use in
applications, such as auto photo editing and image retrieval. The final AADB
dataset contains 10,000 images in total, each of which have aesthetic quality
ratings and attribute assignments provided by five different individual raters.
Aggregating multiple raters allows us to assign a confidence score to each
attribute, unlike, e.g., AVA where attributes are binary. Similar to previous
rating datasets [15], we find that average ratings are well fit by a Gaussian
distribution. For evaluation purposes, we randomly split the dataset into valida-
tion (500), testing (1,000) and training sets (the rest). The supplemental material
provides additional details about dataset collection and statistics of the resulting
data.

Table 1 provides a summary comparison of AADB to other related public
databases for image aesthetics analysis. Except for our AADB and the existing
AVA dataset, many existing datasets have two intrinsic problems (as discussed
in [15]), (1) they do not provide full score distributions or style attribute anno-
tation, and (2) images in these datasets are either biased or consist of examples
which are particularly easy for binary aesthetics classification. Datasets such as
CUHKPQ [6,22] only provide binary labels (low or high aesthetics) which can-
not easily be used for rating prediction. A key difference between our dataset
and AVA is that many images in AVA are heavily edited or synthetic (see Fig. 2)
while AADB contains a much more balanced distribution of professional and
consumer photos. More importantly, AVA does not provide any way to identify
ratings provided by the same individual for multiple images. We report results
of experiments, showing that rater identity on training data provides useful side
information for training improved aesthetic predictors.

Consistency Analysis of the Annotation: One concern is that the annota-
tions provided by five AMT workers for each image may not be reliable given
the subjective nature of the task. Therefore, we conduct consistency analysis on
the annotations. Since the same five workers annotate a batch of ten images,
we study the consistency at batch level. We use Spearman’s rank correlation ρ

between pairs of workers to measure consistency within a batch and estimate
p-values to evaluate statistical significance of the correlation relative to a null
hypothesis of uncorrelated responses. We use the Benjamini-Hochberg proce-
dure to control the false discovery rate (FDR) for multiple comparisons [23]. At
an FDR level of 0.05, we find 98.45% batches have significant agreement among
raters. This shows that the annotations are reliable for scientific research. Further
consistency analysis of the dataset can be found in the supplementary material.

4 Fusing Attributes and Content for Aesthetics Ranking

Inspired by [2,24], we start by fine-tuning AlexNet [13] using regression loss to
predict aesthetic ratings. We then fine-tune a Siamese network [18] which takes
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image pairs as input and is trained with a joint Euclidean and ranking loss
(Sect. 4.2). We then append attribute (Sect. 4.3) and content category classifica-
tion layers (Sect. 4.4) and perform joint optimization.

4.1 Regression Network for Aesthetics Rating

The network used in our image aesthetics rating is fine-tuned from AlexNet [13]
which is used for image classification. Since our initial model predicts a continu-
ous aesthetic score other than category labels, we replace the softmax loss with
the Euclidean loss given by lossreg = 1

2N

∑N

i=1 ‖ŷi − yi‖
2
2, where yi is the aver-

age ground-truth rating for image-i, and ŷi is the estimated score by the CNN
model. Throughout our work, we re-scale all the ground-truth ratings to be in
the range of [0, 1] when preparing the data. Consistent with observations in [2],
we find that fine-tuning the pre-trained AlexNet [13] model performs better than
that training the network from scratch.

4.2 Pairwise Training and Sampling Strategies

A model trained solely to minimize the Euclidean loss may still make mistakes in
the relative rankings of images that have similar average aesthetic scores. How-
ever, more accurate fine-grained ranking of image aesthetics is quite important
in applications (e.g. in automating photo album management [25]). Therefore,
based on the Siamese network [18], we adopt a pairwise ranking loss to explic-
itly exploit relative rankings of image pairs available in the AADB data (see
Fig. 3(a)). The ranking loss is given by:

lossrank =
1

2N

∑

i,j

max
(

0, α − δ(yi ≥ yj)(ŷi − ŷj)
)

(1)

where δ(yi ≥ yj) =

{

1, if yi ≥ yj

−1, if yi < yj

, and α is a specified margin parameter.

By adjusting this margin and the sampling of image pairs, we can avoid the

Fig. 3. Architectures for our different models. All models utilize the AlexNet front-end
architecture which we augment by (a) replacing the top softmax layer with a regression
net and adopting ranking loss in addition to Euclidean loss for training, (b) adding an
attribute predictor branch which is then fused with the aesthetic branch to produce a
final attribute-adapted rating and (c) incorporating image content scores that act as
weights to gate the combination of predictions from multiple content-specific branches.
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need to sample triplets as done in previous work on learning domain-specific
similarity metrics [18,26,27]. Note that the regression alone focuses the capacity
of the network on predicting the commonly occurring range of scores, while
ranking penalizes mistakes for extreme scores more heavily.

In order to anchor the scores output by the ranker to the same scale as user
ratings, we utilize a joint loss function that includes both ranking and regression:

lossreg+rank = lossreg + ωrlossrank, (2)

where the parameter ωr controls the relative importance of the ranking loss and
is set based on validation data. The network structure is shown in Fig. 3(a).

Such a structure allows us to utilize different pair-sampling strategies to
narrow the scope of learning and provide more consistent training. In our work,
we investigate two strategies for selecting pairs of images used in computing
the ranking loss. First, we can bias sampling towards pairs of images with a
relatively large difference in their average aesthetic scores. For these pairs, the
ground-truth rank order is likely to be stable (agreed upon by most raters).
Second, as we have raters’ identities across images, we can sample image pairs
that have been scored by the same individual. While different raters may have
different aesthetics tastes which erode differences in the average aesthetic score,
we expect a given individual should have more consistent aesthetic judgements
across multiple images. We show the empirical effectiveness of these sampling
strategies in Sect. 5.

4.3 Attribute-Adaptive Model

Previous work on aesthetic prediction has investigated the use of attribute labels
as input features for aesthetics classification (e.g. [7]). Rather than independently
training attribute classifiers, we propose to include additional activation layers
in our ranking network that are trained to encode informative attributes. We
accomplish this by including an additional term in the loss function that encour-
ages the appropriate attribute activations. In practice, annotating attributes for
each training image is expensive and time consuming. This approach has the
advantage that it can be used even when only a subset of training data comes
with attribute annotations. Our approach is inspired by [3] which also integrates
attribute classifiers, but differs in that the attribute-related layer shares the same
front-end feature extraction with the aesthetic score predictor (see Fig. 3(b)).
The attribute prediction task can thus be viewed as a source of side-information
or “deep supervision” [28] that serves to regularize the weights learned during
training even though it is not part of the test-time prediction, though could be
enabled when needed.

We add an attribute prediction branch on top of the second fully-connected
layer in the aesthetics-rating network described previously. The attribute predic-
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tions from this layer are concatenated with the base model to predict the final
aesthetic score. When attribute annotations are available, we utilize a K-way
softmax loss or Euclidean loss, denoted by lossatt, for the attribute activations
and combine it with the rating and ranking losses

loss =lossreg + ωrlossrank + ωalossatt (3)

where ωa controls relative importance of attribute fine-tuning. If we do not have
enough data with attribute annotations, we can freeze the attribute layer and
only fine-tune through the other half of the concatenation layer.

4.4 Content-Adaptive Model

The importance of particular photographic attributes depends strongly on image
content [4]. For example, as demonstrated by Fig. 1, vivid color and rule of thirds
are highly relevant in rating landscapes but not for closeup portraits. In [15,19],
contents at the category level are assumed to be given in both training and
testing stages, and category-specific models are then trained or fine-tuned. Here
we propose to incorporate the category information into our model for joint
optimization and prediction, so that the model can also work on those images
with unknown category labels.

We fine-tune the top two layers of AlexNet [13] with softmax loss to train
a content-specific branch to predict category labels3 (as shown by ContClass
layer in Fig. 3(c)). Rather than making a hard category selection, we use the
softmax output as a weighting vector for combining the scores produced by the
category specific branches, each of which is a concatenation of attribute feature
and content-specific features (denoted by Att fea and Cont fea respectively in
Fig. 3(c)). This allows for content categories to be non-exclusive (e.g. a photo
of an individual in a nature scene can utilize attributes for either portrait and
scenery photos). During training, When fine-tuning the whole net as in Fig. 3(c),
we freeze the content-classification branch and fine-tune the rest network.

4.5 Implementation Details

We warp images to 256 × 256 and randomly crop out a 227 × 227 window to
feed into the network. The initial learning rate is set at 0.0001 for all layers, and
periodically annealed by 0.1. We set weight decay 1e−5 and momentum 0.9. We
use Caffe toolbox [29] extended with our ranking loss for training all the models.

To train attribute-adaptive layers, we use softmax loss on AVA dataset which
only has binary labels for attributes, and the Euclidean loss on the AADB dataset
which has finer-level attribute scores. We notice that, on the AVA dataset,
our attribute-adaptive branch yields 59.11% AP and 58.73% mAP for attribute

3 Even though category classification uses different features from those in aesthetics
rating, we assume the low-level features can be shared across aesthetics and category
levels.
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prediction, which are comparable to the reported results of style-classification
model fine-tuned from AlexNet [2]. When learning content-adaptive layers on the
AVA dataset for classifying eight categories, we find the content branch yields
59% content classification accuracy on the testing set. If we fine-tune the whole
AlexNet, we obtain 62% classification accuracy. Note that we are not pursuing
the best classification performance on either attributes or categories. Rather,
our aim is to train reasonable branches that perform well enough to help with
image aesthetics rating.

5 Experimental Results

To validate our model for rating image aesthetics, we first compare against sev-
eral baselines including the intermediate models presented in Sect. 4, then ana-
lyze the dependence of model performance on the model parameters and struc-
ture, and finally compare performance of our model with human annotation in
rating image aesthetics.

5.1 Benchmark Datasets

AADB dataset contains 10,000 images in total, with detailed aesthetics and
attribute ratings, and anonymized raters’ identity for specific images. We split
the dataset into training (8,500), validation (500) and testing (1,000) sets. Since
our dataset does not include ground-truth image content tags, we use cluster-
ing to find semantic content groups prior to training content adaptive models.
Specifically, we represent each image using the fc7 features, normalize the fea-
ture vector to be unit Euclidean length, and use unsupervised k-means for clus-
tering. In our experimental comparison, we cluster training images into k = 10
content groups, and transform the distances between a testing image and the
centroids into prediction weights using a softmax. The value of k was chosen
using validation data (see Sect. 5.3). Figure 4 shows samples from four of these
clusters, from which we observe consistencies within each cluster and distinctions
across clusters.

AVA dataset contains approximately 250,000 images, each of which has
about 200 aesthetic ratings ranging on a one-to-ten scale. For fair comparison, we
follow the experimental practices and train/test split used in literature [2,3,15]
which results in about 230,000 training and 20,000 test images. When fine-tuning
AlexNet for binary aesthetics classification, we divide the training set into two
categories (low- and high-aesthetic category), with a score threshold of 5 as
used in [2,3,15]. We use the subset of images which contain style attributes and
content tags for training and testing the attribute-adaptive and content-adaptive
branches.
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5.2 Performance Evaluation

To evaluate the aesthetic scores predicted by our model, we report the ranking
correlation measured by Spearman’s ρ between the estimated aesthetics scores
and the ground-truth scores in the test set [30]. Let ri indicate the rank of the ith
item when we sort the list by scores {yi} and r̂i indicate the rank when ordered
by {ŷi}. We can compute the disagreement in the two rankings of a particular
element i as di = ri−r̂i. The Spearman’s ρ rank correlation statistic is calculated

as ρ = 1−
6
∑

d2

i

N3−N
, where N is the total number of images ranked. This correlation

coefficient lies in the range of [−1, 1], with larger values corresponding to higher
correlation in the rankings. The ranking correlation is particularly useful since it
is invariant to monotonic transformations of the aesthetic score predictions and
hence avoids the need to precisely calibrate output scores against human ratings.
For purposes of comparing to existing classification accuracy results reported on
the AVA dataset, we simply threshold the estimated scores [ŷi > τ ] to produce
a binary prediction where the threshold τ is determined on the validation set.

5.3 Results

For comparison, we also train a model for binary aesthetics classification by
fine-tuning AlexNet (AlexNet FT Conf). This has previously been shown to be
a strong baseline for aesthetic classification [2]. We use the softmax confidence
score corresponding of the high-aesthetics class as the predicted aesthetic rating.
As described in Sect. 4, we consider variants of our architecture including the
regression network alone (Reg), along with the addition of the pairwise ranking
loss (Reg+Rank), attribute-constraint branches (Reg+Rank+Att)andcontent−
adaptivebranches(Reg+Rank+Cont). We also evaluate different pair-sampling
strategies including within- and cross-rater sampling.

Model Architecture and Loss Functions: Tables 2 and 3 list the perfor-
mance on AADB and AVA datasets, respectively. From these tables, we notice
several interesting observations. First, AlexNet FT Conf model yields good rank-
ing results measured by ρ. This indicates that the confidence score in softmax

Fig. 4. Example images from four content clusters found in the training set. These clus-
ters capture thematic categories of image content present in AADB without requiring
additional manual labeling of training data.
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Table 2. Performance compari-
son of different models on AADB
dataset.

Methods ρ

AlexNet FT Conf 0.5923

Reg 0.6239

Reg + Rank (cross-rater) 0.6308

Reg + Rank (within-rater) 0.6450

Reg + Rank (within- & cross-) 0.6515

Reg + Rank + Att 0.6656

Reg + Rank + Cont 0.6737

Reg+Rank+Att+Cont 0.6782

Table 3. Performance comparison of
different models on AVA dataset.

Methods ρ ACC (%)

Murray et al. [15] - 68.00

SPP [31] - 72.85

AlexNet FT Conf 0.4807 71.52

DCNN [3] - 73.25

RDCNN [3] - 74.46

RDCNN semantic [19] - 75.42

DMA [2] - 74.46

DMA AlexNet FT [2] - 75.41

Reg 0.4995 72.04

Reg + Rank 0.5126 71.50

Reg + Att 0.5331 75.32

Reg + Rank + Att 0.5445 75.48

Reg + Rank + Cont 0.5412 73.37

Reg+Rank+Att+Cont 0.5581 77.33

can provide information about relative rankings. Second, the regression net out-
performs the AlexNet FT Conf model, and ranking loss further improves the
ranking performance on both datasets. This shows the effectiveness of our rank-
ing loss which considers relative aesthetics ranking of image pairs in training
the model. More specifically, we can see from Table 2 that, by sampling image
pairs according to the the averaged ground-truth scores, i.e. cross-rater sam-
pling only, Reg + Rank (cross-rater) achieves the ranking coefficient ρ = 0.6308;
whereas if only sampling image pairs within each raters, we have ρ = 0.6450 by
by Reg + Rank (within-rater). This demonstrates the effectiveness of sampling
image pairs within the same raters, and validates our idea that the same individ-
ual has consistent aesthetics ratings. When using both strategies to sample image
pairs, the performance is even better by Reg + Rank (within- & cross-), lead-
ing to ρ = 0.6515. This is possibly due to richer information contained in more
training pairs. By comparing the results in Table 3 between “Reg” (0.4995) and
“Reg+Rank” (0.5126), and between “Reg+Att” (0.5331) and “Reg+Rank+Att”
(0.5445), we clearly observe that the ranking loss improves the ranking corre-
lation. In this case, we can only exploit the cross-rater sampling strategy since
rater’s identities are not available in AVA for the stronger within-rater sampling
approach. We note that for values of ρ near 0.5 computed over 20000 test images
on AVA dataset, differences in rank correlation of 0.01 are highly statistically
significant. These results clearly show that the ranking loss helps enforce overall
ranking consistency.

To show that improved performance is due to the side information (e.g.
attributes) other than a wider architecture, we first train an ensemble of eight
rating networks (Reg) and average the results, leading to a rho = 0.5336 (c.f.
Reg + Rank + Att which yields rho = 0.5445). Second, we try directly training



674 S. Kong et al.

Table 4. Ranking performance
ρ vs. rank loss weighting ωr in
Eq. 2.

ωr 0.0 0.1 1 2

AADB 0.6382 0.6442 0.6515 0.6276

AVA 0.4995 0.5126 0.4988 0.4672

Table 5. Ranking performance (ρ) of
“Reg + Rank” with different numbers of
sampled image pairs on AADB dataset.

#ImgPairs 2million 5million

cross-rater 0.6346 0.6286

within-rater 0.6450 0.6448

within- & cross-rater 0.6487 0.6515

the model with a single Euclidean loss using a wider intermediate layer with
eight times more parameters. In this case we observed severe overfitting. This
suggests for now that the side-supervision is necessary to effectively train such
an architecture.

Third, when comparing Reg+Rank with Reg+Rank+Att, and Reg+Rank
with Reg + Rank + Cont, we can see that both attributes and content further
improve ranking performance. While image content is not annotated on the
AADB dataset, our content-adaptive model based on unsupervised K-means
clustering still outperforms the model trained without content information. The
performance benefit of adding attributes is substantially larger for AVA than
AADB. We expect this is due to (1) differences in the definitions of attributes
between the two datasets, and (2) the within-rater sampling for AADB, which
already provides a significant boost making further improvement using attributes
more difficult. The model trained with ranking loss, attribute-constraint and
content-adaptive branches naturally performs the best among all models. It is
worth noting that, although we focus on aesthetics ranking during training,
we also achieve the state-of-the-art binary classification accuracy in AVA. This
further validates our emphasis on relative ranking, showing that learning to rank
photo aesthetics can naturally lead to good classification performance.

Model Hyperparameters: In training our content-adaptive model on the
AADB dataset which lacks supervised content labels, the choice of cluster num-
ber is an important parameter. Figure 5 plots the ρ on validation data as a
function of the number of clusters K for the Reg+Cont model (without ranking
loss). We can see the finer clustering improves performance as each content spe-
cific model can adapt to a sub-category of images. However, because the total
dataset is fixed, performance eventually drops as the amount of training data
available for tuning each individual content-adaptive branch decreases. We thus
fixed K = 10 for training our unified network on AADB.

The relative weightings of the loss terms (specified by ωr in Eq. 2) is another
important parameter. Table 4 shows the ranking correlation test performance
on both datasets w.r.t. different choices of ωr. We observe that larger ωr is
favored in AADB than that in AVA, possibly due to the contribution from the
within-rater image pair sampling strategy. We set ωa (in Eq. 3) to 0.1 for jointly
fine-tuning attribute regression and aesthetic rating. For the rank loss, we used
validation performance to set the margin α to 0.15 and 0.02 on AVA and AADB
respectively.
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Number of Sampled Image Pairs: Is it possible that better performance
can be obtained through more sampled pairs instead of leveraging rater’s infor-
mation? To test this, we sample 2 and 5 million image pairs given the fixed
training images on the AADB dataset, and report in Table 5 the performance of
model “Reg + Rank” using different sampling strategies, i.e. within-rater only,
cross-rater only and within-&cross-rater sampling. It should be noted the train-
ing image set remains the same, we just sample more pairs from them. We can
see that adding more training pairs yields little differences in the final results,
and even declines slightly when using higher cross-rater sampling rates. These
results clearly emphasize the effectiveness of our proposed sampling strategy
which (perhaps surprisingly) yields much bigger gains than simply increasing
the number of training pairs by 2.5x.

Classification Benchmark Performance: Our model achieves state-of-the-
art classification performance on the AVA dataset simply by thresholding the
estimated score (Table 3). It is worth noting that our model uses only the whole
warped down-sampled images for both training and testing, without using any
high-resolution patches from original images. Considering the fact that the fine-
grained information conveyed by high-resolution image patches is especially use-
ful for image quality assessment and aesthetics analysis [2,3,14], it is quite
promising to see our model performing so well. The best reported results [2]
for models that use low resolution warped images for aesthetics classification are
based on Spatial Pyramid Pooling Networks (SPP) [31] and achieves an accu-
racy of 72.85%. Compared to SPP, our model achieves 77.33%, a gain of 4.48%,
even though our model is not tuned for classification. Previous work [2,3,14] has
shown that leveraging the high-resolution patches could lead to additional 5%
potential accuracy improvement. We expect a further accuracy boost would be
possible by applying this strategy with our model.

Fig. 5. Dependence of model perfor-
mance by varying the number of con-
tent clusters. We select K = 10 clus-
ters in our experiments on AADB.

Fig. 6. Panels show (left) the number of
images labeled by each worker, and the
performance of each individual rater w.r.t
Spearman’s ρ (Right). Red line shows our
model’s performance. (Color figure online)
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Table 6. Human perf. on
the AADB dataset.

#Images #Workers ρ

>0 190 0.6738

>100 65 0.7013

>200 42 0.7112

Our best – 0.6782

Table 7. Cross dataset train/test
evaluation.

Spearman’s ρ Test

AADB AVA

Train AADB 0.6782 0.1566

AVA 0.3191 0.5154

5.4 Further Comparison with Human Rating Consistency

We have shown that our model achieves a high level of agreement with average
aesthetic ratings and outperforms many existing models. The raters’ identities
and ratings for the images in our AADB dataset enable us to further analyze
agreement between our model each individual as well as intra-rater consistency.
While human raters produce rankings which are similar with high statistical
significance, as evaluated in Sect. 3, there is variance in the numerical ratings
between them.

To this end, we calculate ranking correlation ρ between each individual’s rat-
ings and the ground-truth average score. When comparing an individual to the
ground-truth, we do not exclude that individual’s rating from the ground-truth
average for the sake of comparable evaluations across all raters. Figure 6 shows
the number of images each rater has rated and their corresponding performance
with respect to other raters. Interestingly, we find that the hard workers tend
to provide more consistent ratings. In Table 6, we summarize the individuals’
performance by choosing a subset raters based on the number of images they
have rated. This clearly indicates that the different human raters annotate the
images consistently, and when labeling more images, raters contribute more sta-
ble rankings of the aesthetic scores.

Interestingly, from Table 6, we can see that our model actually performs above
the level of human consistency (as measured by ρ) averaged across all workers.
However, when concentrating on the “power raters” who annotate more images,
we still see a gap between machine and human level performance in terms of
rank correlation ρ.

5.5 Cross-Dataset Evaluation

As discussed in Sect. 3, AVA contains professional images downloaded from a
community based rating website; while our AADB contains a much more bal-
anced distribution of consumer photos and professional photos rated by AMT
workers, so has better generalizability to wide range of real-world photos.

To quantify the differences between these datasets, we evaluate whether mod-
els trained on one dataset perform well on the other. Table 7 provides a compar-
ison of the cross-dataset performance. Interestingly, we find the models trained
on either dataset have very limited “transferability”. We conjecture there are two
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reasons. First, different groups of raters have different aesthetics tastes. This can
be verified that, when looking at the DPChallenge website where images and rat-
ings in the AVA dataset were taken from. DPChallenge provides a breakdown of
scores which shows notable differences between the average scores among com-
menters, participants and non-participants. Second, the two datasets contain
photos with different distributions of visual characteristics. For example, many
AVA photos are professionally photographed or heavily edited; while AADB con-
tains many daily photos from casual users. This observation motivates the need
for further exploration into mechanisms for learning aesthetic scoring that is
adapted to the tastes of specific user groups or photo collections [32].

6 Conclusion

We have proposed a CNN-based method that unifies photo style attributes and
content information to rate image aesthetics. In training this architecture, we
leverage individual aesthetic rankings which are provided by a novel dataset that
includes aesthetic and attribute scores of multiple images by individual users.
We have shown that our model is also effective on existing classification bench-
marks for aesthetic judgement. Despite not using high-resolution image patches,
the model achieves state-of-the-art classification performance on the AVA bench-
mark by simple thresholding. Comparison to individual raters suggests that our
model performs as well as the “average” mechanical turk worker but still lags
behind more consistent workers who label large batches of images. All these
observations motivate us to study individual-oriented mechanism for aesthetics
rating, as an example of subjective problem study.
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