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Eta photo- and electroproduction off the nucleon is investigated in an effective lagrangian ap-
proach that contains Born terms and both vector meson and nucleon resonance contributions. In
particular, we review and develop the formalism for coincidence experiments with polarization de-
grees of freedom. The different response functions appearing in single and double polarization
experiments have been studied. We will present calculations for structure functions and kinemat-
ical conditions that are most sensitive to details of the lagrangian, in particular with regard to
contributions of nucleon resonances beyond the dominant S11(1535) resonance.

∗This work has been supported by the Deutsche Forschungsgemeinschaft (SFB 201).

2



I. INTRODUCTION

The advent of new electron accelerators and intense photon sources has given rise to a renewed interest in photo-and
electroproduction of eta mesons. Previous attempts of the late 60’s to study this process were severely limited by
large error bars [1–6], and also a few later measurements did not substantially improve the data basis [7,8]. The
recent data of the TAPS collaboration at MAMI have shown, however, that this situation is rapidly changing by use
of modern accelerators and detection equipment [9]. The high-quality data for angular distributions and total cross
sections for photon energies between threshold and 790 MeV may be considered to be a qualitative break-through in
the experimental field. Similarly, data at the higher energies up to 1150 MeV will be provided soon by the Phoenics
collaboration at ELSA [10]. At present, the data basis for electroproduction of eta mesons is still very scarce. It is
limited to a few older Bonn data [11] with large error bars and a more recent investigation of the Elan collaboration
at ELSA at very small momentum transfer, Q2 = 0.056GeV2 [12].
Since eta production is strongly dominated by the resonance S11(1535), its coupling to other resonances is difficult
to extract even from very precise angular distributions. Instead, polarization observables will have to play a major
role in order to constrain the small resonance couplings. Such experiments have been proposed, e.g., at the laser
backscattering facilities LEGS at Brookhaven and GRAAL at Grenoble. The experiments at GRAAL will cover the
energy range up to 2 GeV in the c.m. frame and provide a first look at η′ production. Moreover, a series of experiments
has been planned at CEBAF to study both η and η′ production by use of polarization degrees of freedom [13].
In contrast to the isovector pions which excite both ∆(T = 3/2) as well as N∗(T = 1/2) resonances, the isoscalar eta
meson can couple only to resonances with T = 1/2. However, a fascinating property of the eta is its strong coupling
to the S11(1535) and a very weak coupling to all other N∗ resonances. Since the S11(1535) has a 45 - 55% branching
ratio for eta decay, the eta is the ideal probe to ”tag” and investigate this resonance. In comparison the S11(1650)
has only a 1 % branching ratio for eta decay. This fact has been explained in the quark model by a strong mixing
between these two resonances [14]. It is less obvious why none of the other resonances seems to couple strongly to
the eta. In particular, the neighbouring dipole excitation D13(1520) has a branching ratio of the order of 10−3. The
coupling of the Roper resonance P11(1440) to the eta meson is difficult to determine, because the resonance mass is
below threshold. A previously reported strong coupling to the P11(1710) has been dropped in the last issue of the
Particle Data Group [15], because the presented evidence is not convincing. Further resonances with branching ratios
of the order of 1 % or less are the states D15(1675), D13(1700) and P13(1720) [15,16]. All of these states appear as
resonances in πN phase shift analyses, but precisely the S11(1535) is not a good candidate for a resonance in the πN
system. The speed-plot of the πN S-wave phase shift shows a very untypical form for a resonance [17,18], probably
because of a strong cusp effect due to the coupling to the eta channel.
SU(3) flavour symmetry relates the coupling constant between the eta and the nucleon to the pion-nucleon interaction,

g2ηNN

4π
=

1

3
(3− 4

D

D + F
)2
g2πNN

4π
. (1)

The resulting value ranges between 0.8 and 1.9 and depends strongly on the strength parameters F and D of the
two types of octet meson-baryon couplings. A previous analysis has shown, however, that much smaller values of the
order of 0.4 are necessary to fit the data for eta photoproduction [19]. In the same analysis, the forward-backward
asymmetry of the angular distribution [9] gave rise to the interesting observation that pseudoscalar (PS) coupling is
to be favoured over pseudovector (PV) coupling. This finding seems to contrast the derivation of low energy theorems
(LET), which require PV coupling for reasons of chiral invariance. However, such theorems are probably irrelevant
for eta production because of the following reasons. LET describes the dominant S-wave multipole E0+ by a power
series in the ratio of eta and nucleon mass, mη/mN . Obviously, this expansion is not expected to converge well. Even
in the much more favourable case of pion photoproduction with µ = mπ/mN ≈ 1/7, the low-energy limit of E0+ is
difficult to predict. As has been shown in detailed calculations within the framework of chiral perturbation theory
[20], higher loop effects play a major role and even a calculation up to terms in µ3 does not seem to be sufficient.
Second, the S11(1535) is close to threshold and dominates the cross section. In view of such a nearby singularity in
the complex energy plane, a power series expansion in mη is not expected to work near eta threshold. Third, the
physical η and η′ mesons are combinations of the corresponding particles in the SU(3) octet and singlet with a mixing
angle of about −20◦. In this way the UA(1) anomaly of the axial singlet current will also affect the eta meson, and
the corresponding axial current will not be conserved, even in the Goldstone limit of massless particles.
As has been pointed out, the slight backward peaking of the angular distributions can be explained by PS coupling
between eta and nucleon, while a calculation with PV coupling would lead to a forward peaked cross section. The
difference between the two schemes is due to a sign change in the P -wave M1− multipole. This multipole would also
be affected by a sizeable eta branch of the N∗(1440) or Roper resonance. Though there are no indications of such an
effect at present, a careful study of the smaller multipoles in eta photoproduction is certainly well motivated.
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Previous attempts to describe eta photoproduction have involved Breit-Wigner functions for the resonances [21]
or relativistic lagrangians to describe resonant and nonresonant contributions [22]. In a basically nonrelativistic
approximation, coupled-channel calculations have been developed to treat the reactions πN → πN , πN → ππN and
πN → ηN in a unitary way [23–25]. Unfortunately the corresponding 3×3 S-matrix of the hadronic sector is not
sufficiently well determined by the existing data, which leaves a considerable model dependence. It is interesting to
see that a generalized Lie model can describe the hadronic data perfectly well, both with and without an explicit
resonance [26]. In the latter case the resonance-like structure of the data is built up by a cusp effect due to the strong
π − η coupling. Though the two models lead to completely different singularities in the complex energy plane, the
present data are not sufficient to discard one or the other option.
In the following calculations we will follow the model of Bennhold and Tanabe [23], which has already been applied to
eta photoproduction in the region of the S11(1535). We will extend the model to higher energies and include higher
resonances in a phenomenological way. Moreover, we will study the potential of polarization degrees of freedom in
both photo- and electroproduction. It is our main aim to select kinematical situations and polarization observables
most favourable for identifying higher multipole contributions in the presence of the strong S-wave transition.
In Sect. 2 we will outline the formalism to describe photo- and electroproduction up to the most general polarization
experiment. The ingredients of a phenomenological model for eta production will be discussed in Sect. 3. Our results
for photo- and electroproduction observables will be presented in Sects. 4 and 5, respectively, followed by a brief
conclusion in Sect. 6.

II. FORMALISM AND POLARIZATION DEGREES OF FREEDOM

To lowest order of the fine structure constant α = e2/4π ≈ 1/137 the electron interacts with the currents of the
hadronic system through the exchange of one virtual photon with well defined energy, ω = εf − εi, and momentum

transfer, ~q = ~kf−~ki. The Lorentz vectors ki = (εi, ~ki) and kf = (εf , ~kf ) characterize the kinematics of the incident and
outgoing electron. In contrast to a photoproduction experiment, where photon energy and momentum are related
by q2 = ω2 − ~q2 = 0, the virtual photon offers the possibility of an independent variation of photon energy and
momentum, leading to information on the spatial structure of the hadronic system. As a consequence the kinematical
situation in an electron scattering experiment (see also Fig. E) is determined by three independent kinematical
variables, which are usually chosen to be the invariant energy W , the scattering angle in the c.m. system Θ and
the momentum transfer Q2 = −q2. In a photoproduction experiment only two kinematical variables are required to
describe the kinematics uniquely. In this case the usual choice of variables is the scattering angle Θ and the photon
energy in the laboratory system ν.

The nucleon is characterized by the Lorentz vector Pi = (Ei, ~Pi) and Pf = (Ef , ~Pf ) in the initial and final

state, respectively, and the 4-momentum of the eta meson is denoted by k = (ωη, ~k). Of course, the whole formalism
presented here can be easily applied to other pseudoscalar meson electroproduction experiments, e.g. pion production.
The threshold photon energy for eta production is

νthr =
2mNmη +m2

η +Q2

2mN
. (2)

Using the notation [27], the differential cross section for the electroproduction process can be written as

dσ =
εi
ki

me

εi

mN

Ei

me

εf

d3kf
(2π)3

1

2ωη

d3k

(2π)3
mN

Ef

d3Pf

(2π)3

×(2π)4δ(4)(Pi + q − k − Pf )

× | 〈Pf , k | Jµ | Pi〉q−2〈kf | jµ | ki〉 |2 , (3)

where the phase space is evaluated in the laboratory frame, and jµ and Jµ denote the electromagnetic currents of the
electron and the hadronic system, respectively.
The most general lorentz- and gauge invariant current operator Jµ for the production of a pseudoscalar particle off

a nucleon between nucleon Dirac spinors is given by the CGLN parametrization [28] of the transition current,

~J =
4πW

m

[

iσ̃F1 +
(

σ · ~̂k
)(

σ × ~̂q
)

F2 + i~̃k
(

σ · ~̂q
)

F3

+i~̃k
(

σ · ~̂k
)

F4 + i~̂q
(

σ · ~̂q
)

F5 + i~̂q
(

σ · ~̂k
)

F6

]

, (4)

ρ =
4πW

m

[

i
(

σ · ~̂k
)

F7 + i
(

σ · ~̂q
)

F8

]

=
~q · ~J
ω

, (5)
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with all vectors expressed in the c.m. frame and ~̃σ = ~σ − (~σ · ~̂q)~̂q etc. In this parametrization the first four terms

represent the purely transverse component, ~JT , of the current ~J , while the fifth and sixth term are the longitudinal

part, ~JL. The longitudinal component of the current is related to the scalar density ρ via current conservation,
qµJ

µ = 0, and, as a consequence,

| ~q | F5 = ωF8 , | ~q | F6 = ωF7 . (6)

The CGLN amplitudes are complex functions of three independent kinematical variables, Fi = Fi(W,Θ, Q
2). The

degree of transverse polarization of the virtual photon,

ε =

(

1 +
2~q 2

Q2
tan2

Θe

2

)−1

, (7)

is invariant under collinear transformations, and ~q and Θe may be expressed in the lab or c.m. frame, while the
longitudinal polarization,

εL =
Q2

ω2
ε , (8)

is frame-dependent. Using standard techniques (see e.g. [29] or [30]), the differential cross section for an electropro-
duction experiment is

dσ

dΩfdεfdΩη
= Γ

dσv
dΩη

, (9)

where the flux of the virtual photon field is given by

Γ =
α

2π2

εf
εi

klabγ

Q2

1

1− ε
, (10)

and the virtual differential cross section is

dσv
dΩη

=
dσT
dΩη

+ εL
dσL
dΩη

+ [2εL (1 + ε)]1/2
dσTL

dΩη
cosφη

+ε
dσTT

dΩη
cos 2φη + h [2εL (1− ε)]

1/2 dσTL′

dΩη
sinφη

+h
(

1− ε2
)1/2 dσTT ′

dΩη
. (11)

In this expression klabγ =
(

W 2 −m2
i

)

/2mi denotes the ”photon equivalent energy”, the laboratory energy necessary
for a real photon to excite a hadronic system with c.m. energy W . Note that all kinematical variables appearing
in the virtual photon cross section dσv/dΩη have to be expressed in the c.m. frame. The individual contributions
dσi/dΩη (i = T, L, TL, TT, TL′, TT ′) are usually parametrized in terms of response functions which depend on the
independent kinematical variables.
Experiments with three types of polarization can be performed in eta production: electron beam polarization,

polarization of the target nucleon and polarization of the recoil nucleon. Target polarization will be described in

the frame {x, y, z} in Fig. E, with the z-axis pointing into the direction of the photon momentum ~̂q, the y-axis

perpendicular to the reaction plane, ~̂y = ~̂q × ~̂k/ sinΘη, and the x-axis given by ~̂x = ~̂y × ~̂z. For recoil polarization

we will use the frame {x′, y′, z′}, with the z′-axis defined by the momentum vector of the outgoing eta meson ~̂k, the

y′-axis as for target polarization and the x′-axis given by ~̂x′ = ~̂y′ × ~̂z′. The most general expression for a coincidence
experiment considering all three types of polarization is

dσv
dΩη

=
| ~k |
kcmγ

PαPβ{Rβα
T + εLR

βα
L

+ [2εL (1 + ε)]
1/2

(cRβα
TL cosφη +sRβα

TL sinφη)

+ε(cRβα
TT cos 2φη +

sRβα
TT sin 2φη)

+h [2εL(1− ε)]1/2 (cRβα
TL′ cosφη +

sRβα
TL′ sinφη)

+h(1− ε2)1/2Rβα
TT ′}, (12)
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where Pα = (1, ~P ) and Pβ = (1, ~P ′). Here ~P = (Px, Py, Pz) denotes the target and ~P ′ = (Px′ , Py′ , Pz′) the recoil
polarization vector. The zero components P0 = 1 lead to contributions in the cross section which are present in the
polarized as well as the unpolarized case. In an experiment without target and recoil polarization α = β = 0, so the

only remaining contributions are R00
i . The functions Rβα

i describe the response of the hadronic system in the process.
Summation over Greek indices is implied. An additional superscript s or c on the left indicates a sine or cosine
dependence of the respective contribution on the azimuthal angle. Some response functions vanish identically (see
Table I for a systematic overview ). The number of different response functions is further reduced by the equalities
listed in App. A, and in the most general electroproduction experiment 36 polarization observables can be determined.

The response functions Rβα
i are real or imaginary parts of bilinear forms of the CGLN amplitudes depending on the

scattering angle Θ.

TABLE I. Polarization observables in pseudoscalar meson electroproduction. A star denotes a response function which
does not vanish but is identical to another response function via a relation in App. A.

Target Recoil Target + Recoil

β − − − − x′ y′ z′ x′ x′ x′ y′ y′ y′ z′ z′ z′

α − x y z − − − x y z x y z x y z

T R00
T 0 R0y

T 0 0 Ry′
0

T 0 Rx′x
T 0 Rx′z

T 0 ∗ 0 Rz′x
T 0 Rz′z

T

L RL 0 R0y
L 0 0 ∗ 0 Rx′x

L 0 Rx′z
L 0 ∗ 0 ∗ 0 ∗

cTL cR00
TL 0 cR0y

TL 0 0 ∗ 0 cRx′x
TL 0 ∗ 0 ∗ 0 cRz′x

TL 0 ∗
sTL 0 sR0x

TL 0 sR0z
TL

sRx′
0

TL 0 sRz′0
TL 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

cTT cR00
TT 0 ∗ 0 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗

sTT 0 sR0x
TT 0 sR0z

TT
sRx′

0
TT 0 sRz′0

TT 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0
cTL′ 0 cR0x

TL′ 0 cR0z
TL′

cRx′
0

TL′ 0 cRz′0
TL′ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

sTL′ sR00
TL′ 0 sR0y

TL′ 0 0 ∗ 0 sRx′x
TL′ 0 ∗ 0 ∗ 0 sRz′x

TL′ 0 ∗

TT ′ 0 R0x
TT ′ 0 R0z

TT ′ Rx′
0

TT ′ 0 Rz′0
TT ′ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

In photoproduction the longitudinal components vanish, and the relevant response functions will be divided by the
transverse response function R00

T in order to obtain the polarization observables. The common descriptors of these
observables (see also [31] and [32]) can be found in Table II, the relation to the response functions in App. B.

TABLE II. Polarization observables in meson photoproduction. The entries in brackets denote polarization observables,
which also appear elsewhere in the table.

Photon Target Recoil Target + Recoil

− − − − x′ y′ z′ x′ x′ z′ z′

− x y z − − − x z x z

transverse unpolarized (T ) σ0 0 T 0 0 P 0 Tx′ −Lx′ Tz′ Lz′

transverse (linear pol.) (TT ) −Σ H (−P ) −G Ox′ (−T ) Oz′ (−Lz′) (Tz′) (−Lx′) (−Tx′)

transverse (circular pol.) (TT ′) 0 F 0 −E −Cx′ 0 −Cz′ 0 0 0 0
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In contrast to electroproduction, there are no new polarization observables in photoproduction accessible by triple
polarization experiments (beam + target + recoil polarization). As a consequence we may classify the differential
cross sections by the three classes of double polarization experiments:

• polarized photons and polarized target

dσ

dΩη
= σ0 {1− PTΣcos 2ϕ

+Px (−PTH sin 2ϕ+ P⊙F )

−Py (−T + PTP cos 2ϕ)

−Pz (−PTG sin 2ϕ+ P⊙E)} , (13)

• polarized photons and recoil polarization

dσ

dΩη
= σ0 {1− PTΣcos 2ϕ

+Px′ (−PTOx′ sin 2ϕ− P⊙Cx′)

−Py′ (−P + PTT cos 2ϕ)

−Pz′ (PTOz′ sin 2ϕ+ P⊙Cz′)} , (14)

• polarized target and recoil polarization

dσ

dΩη
= σ0 {1 + Py′P + Px (Px′Tx′ + Pz′Tz′)

+Py (T + Py′Σ)− Pz (Px′Lx′ − Pz′Lz′)} . (15)

In these equations σ0 denotes the unpolarized differential cross section, the transverse degree of photon polarization
is denoted by PT , P⊙ is the right-handed circular photon polarization and ϕ the angle between photon polarization
vector and reaction plane.
In conclusion there are 16 different polarization observables for real photon experiments. In electroproduction there

are four additional observables for the exchange of longitudinal photons and sixteen observables due to longitudinal-
transverse interference. However, as has become clear from the general form of the transition current Jµ, there are
only six independent complex amplitudes uniquely describing the electroproduction process. This corresponds to
six absolute values and five relative phases between the CGLN amplitudes, i.e. there are only eleven independent
quantities which completely and uniquely determine the transition current Jµ.
The aim of a so-called ”complete experiment” is the determination of the current Jµ for the process under inves-

tigation in a given kinematics. In order to carry through such a complete experiment, it should suffice to determine
eleven independent response functions. The ambitious program of a complete experiment was formulated by Barker
et al. in the sixties for the photoproduction case [31]. Although it would be interesting to pursue such a project for
eta production, we will concentrate in the following on the more physical aspects of this process. In particular our
theoretical investigations will supply information on an adequate selection of response functions and observables. In
the case of eta production it will be of special interest to study response functions which give clear information of the
eta meson coupling to higher resonances.

Another useful parametrization of the hadronic current ~J is based on a decomposition into spherical components

J±,0, with J± = ∓(Jx ± iJy)/
√
2 and J0 = Jz. Since the components of the current operator ~J are operators in

two-dimensional Pauli spinor space, we can represent them by 2× 2 matrices in terms of the helicity amplitudes Hi:

J+ =

(

H1 H2

H3 H4

)

, J− =

(

H4 −H3

−H2 H1

)

,

J0 =

(

H5 H6

H6 −H5

)

. (16)

The response functions are expressed by these helicity amplitudes in App. D. It is straightforward to calculate the
relation between CGLN and helicity amplitudes by comparing the matrix elements of the current operator (4) with
the definitions (16) transformed into the Cartesian basis. The resulting transformations are
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H1 =
−1√
2
sinΘ(F3 + F4 cosΘ), (17)

H2 =
−1√
2
(2F1 − 2F2 cosΘ + F4 sin

2 Θ), (18)

H3 =
−1√
2
F4 sin

2 Θ, (19)

H4 =
1√
2
sinΘ(2F2 + F3 + F4 cosΘ), (20)

H5 = F5 + F6 cosΘ, (21)

H6 = F6 sinΘ. (22)

Electroproduction data are usually analyzed in terms of multipoles El±, Ml± and Ll± characterizing the excitation
mechanism (electric (E), magnetic (M) or longitudinal (L)) and the orbital (l) and total angular momentum, which is
given by j = l± 1

2 . The relation between these meson production multipoles and the type of electromagnetic multipole
radiation EL, ML, CL responsible for resonance excitation can be read off from Table III. The connection with the
CGLN amplitudes can be established via a multipole series in terms of derivatives of the Legendre polynomials Pl

[33],

F1 =
∑

l≥0

{(Ml+ + El+)P
′
l+1

+ [(l + 1)Ml− + El−]P
′
l−1} , (23)

F2 =
∑

l≥1

[(l + 1)Ml+ + lMl−]P
′
l , (24)

F3 =
∑

l≥1

[(El+ −Ml+)P
′′
l+1

+(El− +Ml−)P
′′
l−1] , (25)

F4 =
∑

l≥2

(Ml+ − El+ −Ml− − El−)P
′′
l , (26)

F5 =
∑

l≥0

[(l + 1)Ll+P
′
l+1 − lLl−P

′
l−1] , (27)

F6 =
∑

l≥1

[lLl− − (l + 1)Ll+]P
′
l . (28)

The inversion of this set of equations is very useful for constructing phenomenological models:

El+ =

∫ 1

−1

dx

[

1

2(l + 1)
PlF1 −

1

2(l + 1)
Pl+1F2

+
1

2(l+ 1)

l

2l+ 1
(Pl−1 − Pl+1)F3

+
1

2(2l+ 3)
(Pl − Pl+2)F4

]

, (29)

El− =

∫ 1

−1

dx

[

1

2l
PlF1 −

1

2l
Pl−1F2

+
l + 1

2l(2l+ 1)
(Pl+1 − Pl−1)F3

+
1

2(2l− 1)
(Pl − Pl−2)F4

]

, (30)

Ml+ =

∫ 1

−1

dx

[

1

2(l + 1)
PlF1 −

1

2(l + 1)
Pl+1F2

+
1

2(l+ 1)(2l+ 1)
(Pl+1 − Pl−1)F3

]

, (31)
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Ml− =

∫ 1

−1

dx

[

− 1

2l
PlF1 +

1

2l
Pl−1F2

+
1

2l(2l+ 1)
(Pl−1 − Pl+1)F3

]

, (32)

Ll+ =

∫ 1

−1

dx
1

2(l + 1)
[PlF5 + Pl+1F6] , (33)

Ll− =

∫ 1

−1

dx
1

2l
[PlF5 + Pl+1F6] . (34)

The longitudinal multipole amplitudes Ll± are related to the scalar amplitudes Sl±, which originate from the time-like
component of the transition current (4), by current conservation,

ωSl± =| ~q | Ll± . (35)

Furthermore it is convenient to reconstruct the multipoles from amplitudes Al±, Bl± and Cl±, which are closely
related to the electromagnetic resonance couplings AN

1/2, A
N
3/2 and CN

1/2 to be discussed in Sect. III:

El+ =
1

l + 1
Al+ +

l

2(l + 1)
Bl+ , (36)

El− = −1

l
Al− +

l+ 1

2l
Bl− , (37)

Ml+ =
1

l + 1
Al+ − l + 2

2(l + 1)
Bl+ , (38)

Ml− =
1

l
Al− +

l − 1

2l
Bl− , (39)

Sl+ =
1

l + 1
Cl+ , (40)

Sl− = −1

l
Cl− . (41)

III. A MODEL FOR ETA ELECTROPRODUCTION

The dominant process for eta photoproduction is given by nucleon isobar excitation. In addition, background
contributions from Born terms and t-channel vector meson exchange will be considered.
The resonance contributions in the direct channel are parametrized in the usual manner (see e.g. [34] or [35]) by

means of Breit-Wigner helicity amplitudes Al±, Bl± and Cl± in the relevant partial wave. These amplitudes are
related to the multipole amplitudes through relations (36) to (41). In the construction of our model we will use the
following definitions for these amplitudes:

Al± = ±KAN
1/2, (42)

Bl± = ∓K
√

4

l(l + 2)
AN

3/2, (43)

Cl± = ±KCN
1/2. (44)

The factor K [36] describes the propagation and decay of an N∗ resonance and consists of a Breit-Wigner term and
a phase space factor for the partial wave,

K =

√

kcmγ

| ~k |
m

W

Γη

π (2J + 1)

M∗

M∗2 −W 2 − iWΓ
. (45)

The electromagnetic excitation of a resonance off the nucleon N (N ∈ {p, n}) is described by the electromagnetic
helicity amplitudes AN

1/2, A
N
3/2 and CN

1/2 (see e.g. [37] or [38]), which consist of a standard kinematical factor R =

9



√

2πα/kcmγ and the matrix elements of spherical components J
[j]
λ

int
of the electromagnetic current operator at the

photon-baryon vertex:

AN
1/2 = R〈N∗, Jz =

1

2
| J [1]

1

int
| N, Jz = −1

2
〉, (46)

AN
3/2 = R〈N∗, Jz =

3

2
| J [1]

1

int
| N, Jz =

1

2
〉, (47)

CN
1/2 = R〈N∗, Jz =

1

2
| J [0]

0

int
| N, Jz =

1

2
〉. (48)

The simplest choice for deriving these matrix elements is the non-relativistic quark model, which we will use in our
standard calculations. Within the framework of this model the current operator is given by

~J (~q) =
1

2mq

3
∑

j=1

(

ej
{

~pj , e
i~q·~xj

}

− iµj~q × ~σje
i~q·~xj

)

, (49)

ρ (~q) =

3
∑

j=1

eje
i~q·~xj . (50)

The charge of a constituent quark ej is given in units of the electric charge e, and the constituent quark magnetic
moment is given as µj = ej , because we treat the constituent quark as Dirac particles. For the wave functions of the
baryonic states relevant in eta production we apply standard harmonic oscillator wavefunctions with configuration
mixing in the S11 (1535) and D13 (1520) states according to [14]. The u- and d-quark masses are taken to be mq =
350 MeV [14], and for the oscillator spring constant we use the value of 300 MeV [14]. The matrix elements are
evaluated in the equal velocity frame. We will compare the electroproduction results obtained in this model (to be
called M1 in the following) with the relativized constituent quark model (M2) by Warns et al. [38], the relativistic
light cone calculation (M3) by Konen and Weber [39] and the light-front approach (M4) by Capstick and Keister [35].
Figs. E, E and E present the matrix elements AN

1/2, A
N
3/2 and CN

1/2 for the resonances S11, D13 and P11 as a function

of the momentum transfer Q2.
In (45) the branching fraction Γη/Γ for resonance decay into nucleon and eta meson determines the strength of

the coupling of the eta meson to the nucleon. In our model we use the branching fractions listed in Table III. For
all hadronic widths necessary in the description of the resonance contributions we introduce the energy dependence
suggested in [40] and [41], which results in the correct threshold behaviour of the multipole amplitudes with respect

to the momentum of the outgoing meson ~k [42],

El± ∼| ~k |l, Ml± ∼| ~k |l, Ll± ∼| ~k |l . (51)

The energy dependent total width of a resonance Γ(W ) is given by the sum over the partial widths of all possible
decay channels,

Γ(W ) =
∑

r

Γr(W ). (52)

We construct the energy dependence of Γr according to the πN scattering analysis in [40]. The experimental data
available on branching fractions usually refer to the branching fraction at the resonance energy. The energy dependence
is introduced by the function ρj , which takes into account the penetration of the angular momentum barrier for total
angular momentum j,

Γr(W ) = Γr(M
∗)
ρj(W )

ρj(M∗)
. (53)

The functions ρj are constructed from the Blatt-Weisskopf functions Bl [43],

ρj(M
∗) =

| ~k |
W

B2
l (| ~k | R). (54)

The momentum ~k is the momentum of the outgoing meson in the c.m. frame. The effective interaction radius R will
be fixed at 1.0 fm. For the resonances under consideration we need the Blatt-Weisskopf functions for l = 0, 1, 2,
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B0(x) = 1, (55)

B1(x) =
x√

1 + x2
, (56)

B2(x) =
x2√

x4 + 3x2 + 9
. (57)

If one of the particles in the final state is unstable and decays into two particles with m1 and m2, while the stable
particle in the final state has mass m3, we calculate ρj(W ) by integration over the possible energy range for the decay
products,

ρj (W ) =

∫ W−m3

m1+m2

σ (M)
| ~k |
W

B2
l (| ~k | R)dM, (58)

where σ(M) is a Breit-Wigner distribution,

σ(M) =
1

2π

Γ0

(M−M0)2 + (Γ0/2)2
. (59)

In this parametrization M0 is the mass of the unstable particle and Γ0 its partial width. In the construction of the
hadronic widths we essentially use resonance parameters obtained from the πN -scattering analysis [40]. We list the
parameter set for the resonances relevant for our model in Table III.

TABLE III. Resonance parameters in our model. The symbol ε represents an isoscalar two-pion-state with mass and width
of 800 MeV for the parametrization of uncorrelated two-pion production.

S11(1535) P11(1440) D13(1520) D15(1675)

M∗ [MeV] 1544.0 1462.0 1524.0 1676.0

Γ [MeV] 166.0 391.0 124.0 179.0

Ap
1/2

[10−3GeV−1/2] 107 −72 −22 19

An
1/2 [10−3GeV−1/2] −96 52 −62 −47

Ap
3/2 [10−3GeV−1/2] - - 163 19

An
3/2 [10−3GeV−1/2] - - −137 −69

Cp
1/2

[10−3GeV−1/2] 58 −52 −93 0

Cn
1/2 [10−3GeV−1/2] −72 0 99 0

meson production multipole E0+, L0+ M1−, L1− E2−, M2−, L2− E2+, M2+, L2+

electromagnetic multipole E1, C1 M1, C0 E1, M2, C1 E3, M2, C3

| f〉 Γf (M
∗)/Γ(M∗) Γf (M

∗)/Γ(M∗) Γf (M
∗)/Γ(M∗) Γf (M

∗)/Γ(M∗)

ηN 0.50 from [23] 0.001 0.01

πN 0.40 0.69 0.59 0.47

εN 0.10 0.09 - -

(π∆)S - - 0.05 -

(π∆)P - 0.22 - -

(π∆)D - - 0.15 0.52

(ρ3N)D - - 0.21 -
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Unfortunately, the branching fraction Γη/Γ of the Roper resonance cannot be treated within this parametrization,
because the resonance energy is located below threshold. In this case we use the parametrization of the dynamical
model by Bennhold and Tanabe [23] for the energy dependence of the partial width Γη.
For the evaluation of the Feynman diagrams contributing to the non-resonant background we use effective interaction

lagrangian densities. The Born diagrams are calculated with the lagrangians

LPS
ηNN = −igηNN ψ̄γ5ψΦη , (60)

LγNN = −eψ̄
[

1 + τ0
2

γµA
µ

−
(

κp + κn
2

+
κp − κn

2
τ0

)

σµν
2m

∂νAµ

]

ψ , (61)

where e =| e |> 0. The symbol κN denotes the anomalous magnetic moment of the nucleon (κp = 1.79, κn = −1.91)
and gηNN is the eta-nucleon coupling constant. We have chosen the pseudoscalar eta-nucleon coupling, because it fits
the data for angular distributions above threshold [9,12] much better than the alternative pseudovector coupling, which
has been demonstrated in [19]. In this reference the value of the coupling constant was found to be g2ηNN/4π = 0.4,

which is quite consistent with other approaches [44,45]. In the electroproduction case we introduce the usual Dirac
and Pauli form factors, F1(Q

2) and F2(Q
2), for the Dirac and Pauli currents, respectively. The connection with the

standard dipole fit F (Q2) = (1 +Q2/0.71 GeV2)−2 for the Sachs form factors is established by

F p
1 =

1 + τ (1 + κp)

1 + τ
F , (62)

F p
2 =

1

1 + τ
F , (63)

Fn
1 =

τκn
1 + τ

(

1− 1

1 + 4τ

)

F , (64)

Fn
2 =

1

1 + τ

(

1− τ

1 + 4τ

)

F , (65)

with τ = Q2/4m2.
The effective lagrangians for the vector meson exchange vertices are given by

LγηV =
gγηV
mη

εµνρσ∂
µAνΦη∂

ρV σ, (66)

LV NN = ψ̄
(

gV1
γµ +

gV2

2m
σµν∂

ν
)

V µψ. (67)

The parameters for the ρ and ω mesons are listed in Table IV.

TABLE IV. Parameters for the vector mesons.

V mV [MeV] g2V1
/4π gV2

/gV1
ΛV [MeV] λV

ω 782.6 23 0 1400 0.192

ρ 769.0 0.5 6.1 1800 0.89
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The electromagnetic couplings of the vector mesons gγηV = eλV FV (~k
2
V ) are determined from the radiative widths.

Following [46] the form factor FV is supposed to have the usual dipole behaviour. The hadronic couplings gV1
and

gV2
are taken from a nuclear potential model [47] with the hadronic dipole form factor

Fhad
V (~k2V ) =

(

Λ2
V −m2

V

)2

(

Λ2
V + ~k2V

)2 . (68)

At tree level these contributions are real, they have been added to the real part of the resonance contribution. In
general this procedure violates unitarity of the S-matrix. However, the unitarity corrections for most of the multipoles
are small or even negligible in the threshold region, because the background contributions of most multipoles in eta
production are small compared to the resonance contributions. Unfortunately, in eta production there is no simple
constraint to the phase of the multipoles as in pion production, because the Watson theorem [48] is only valid in the
elastic regime, whereas in eta production there are at least three hadronic reaction channels, |Nπ〉, |Nη〉, and |Nππ〉.
In particular a consistent treatment of the state |Nππ〉 is difficult, because it contains both uncorrelated two pion
production and resonance mechanisms.

IV. RESULTS FOR PHOTOPRODUCTION

The starting point of our model will be the latest TAPS [9] and Bonn [12] data on the total cross section for
photoproduction of eta mesons on the proton 1. A Breit-Wigner fit to these data,

σtot =
| ~k |
| ~q |

DM∗2Γ(W )2
(

M∗2 −W 2
)2

+M∗2Γ2(W )
, (69)

with a momentum dependent hadronic width,

Γ(W ) = Γ(M∗)

(

0.50
| ~k |
| ~k∗ |

+ 0.40
| ~kπ |
| ~k∗π |

+ 0.10

)

, (70)

results in the following values for the three fit parameters: M∗ = 1544.0 MeV, Γ(M∗) = 166.0 MeV, D = 39.0 µb .
Note that we use the branching fractions Γη(M

∗)/Γ(M∗) = 0.50, Γπ(M
∗)/Γ(M∗) = 0.40 and Γππ(M

∗)/Γ(M∗) =
0.10 as input. At this point we have assumed, that the total cross section in this energy region is completely
dominated by the S11(1535), which is justified by the small background, P11, and D13 contributions (see Fig. E).
These additional contributions modify the shape of the total cross section in the S11(1535) region only slightly. Hence
the electromagnetic helicity coupling Ap

1/2 of the S11(1535) at resonance energy W =M∗ is given by

| Ap
1/2 |=

√

| ~k |
kcmγ

M∗

m

2D

Γη(M∗)

Γ(M∗)

2
. (71)

The result of 107× 10−3 GeV−1/2 is significantly larger than the standard value of (68± 10)× 10−3 GeV−1/2 in [15],

but seems to be consistent with the value of (95± 11)× 10−3 GeV−1/2 from the analysis of eta production data [22].

The TAPS analysis [9] yields values between 110 and 140× 10−3 GeV−1/2 depending on the branching ratios of the
S11. Towards higher energies, the background contributions become more important, and our standard calculation
is still consistent with eta production data from previous experiments [3,4] within the large error bars. The latest
preliminary data from Bonn [10], however, are in good agreement with our standard calculation in the energy range
up to W = 1800 MeV.
The TAPS analysis of eta production data for total cross sections on the deuteron suggests that the elementary

cross section on the neutron is about 80% of the proton value at the resonance peak [49], which corresponds to an

electromagnetic helicity coupling of An
1/2 = −96×10−3 GeV−1/2 for the S11(1535) under the assumption of resonance

1The Bonn data [12] are electroproduction data at very low momentum transfer, Q2 = 0.056GeV2. Comparison with Fig. E
justifies our treatment of these data as photoproduction data.

13



dominance and is again significantly larger than the standard value [16] of An
1/2 = (−59± 22)× 10−3 GeV−1/2. The

S11 dominance assumption is also supported by the rather flat angular distribution of the unpolarized differential
cross section on the proton measured by the TAPS collaboration [9] (see Fig. E). Our standard calculation with
background and resonance contributions of S11(1535), D13(1520), D15(1675) as well as P11(1440) is consistent with
the data except for large angles. Omission of the Roper resonance results in an over-estimation of the differential
cross section at small angles, whereas omission of the D13(1520) overestimates the differential cross section at medium
and large angles. As the branching fraction of the D13(1520) resonance into the eta meson is not known precisely, we
have also investigated a three- and tenfold increase in Γη. While the threefold increase in Γη seems to improve the
description of the data slightly, the tenfold increase is definitely not consistent with experiment. However, it has to be
mentioned that the strength of a resonance contribution in a given multipole is determined by the factor AN

λ

√

Γη/Γ,

where λ is the helicity of the intermediate resonance state. Therefore the uncertainties in the photocouplings AN
λ do

also enter the strength of the respective multipole. Fig. E presents the unpolarized differential eta photoproduction
cross sections off the proton and the neutron as a function of excitation energy ν and scattering angle Θη. The
calculations were performed in our standard parameter set, the cross section on the neutron was normalized to 80%
of the proton value at resonance maximum. It is remarkable that the cross section for the neutron exposes a slight
minimum at 90o, whereas the proton cross section has a slight maximum in this range of Θη. This observation is
compatible with the analysis in [19]. Having fixed the parameters of our model by unpolarized cross section data,
we now proceed to study the polarization observables for single and double polarization experiments with beam and
target polarization. All of these observables are accessible at the laser-backscattering facility GRAAL, where an
extensive experimental program for eta photoproduction is already under way. Analysing the angular distributions
of the observables in our model, it turns out that the most interesting effects can be seen at a scattering angle of
90o. For this reason we choose this angle for the presentation of the excitation functions in Fig. E. The shape of
the differential cross section does not expose any significant dependence on the D13 or P11 resonance. However, the
non-resonant background destructively interferes with the S11 contribution towards higher photon energies, which
leads to a slight reduction of the total cross section. The photon asymmetry Σ shows a very characteristic dependence
on the contribution of the D13(1520) resonance due to interference of the E2− and M2− multipoles with the E0+

multipole in cR00
TT . Although the D13 resonance has only a very small branching ratio into the eta meson, its absence

would lead to an almost vanishing photon asymmetry within a wide range of excitation energies. Switching off the
non-resonant background in the target or recoil asymmetry results in a value for these observables which is consistent
with zero. In the threshold region the influence of the Roper resonance on the recoil asymmetry might also be visible
in a precision experiment. Inspecting the double polarization observables for beam and target polarization, it becomes
evident that the observable −H behaves similar to the recoil asymmetry P in the threshold region. Background and
D13 effects are also visible in the G observable above threshold. The E observable, however, is consistent with unity
above threshold in each of the scenarios investigated. Since there are no additional spectacular effects in the double
polarization observables for beam and recoil respectively target and recoil experiments, we will not present our results
for these observables.

V. RESULTS FOR ELECTROPRODUCTION

At the electron scattering facilities ELSA and CEBAF (as well as at MAMI at low Q2 in the threshold region) eta
electroproduction on the proton can be studied with very high precision. As the available data are very scarce and have
large error bars, the new experiments could tremendously extend our knowledge on this process. To our knowledge
there has been no theoretical investigation of the eta electroproduction process in the literature before. Therefore, we
will present some observables relevant for future experiments. Comparing Tables I and II, it becomes obvious that
the electroproduction process has a significantly richer phenomenology than the photoproduction process due to the
additional longitudinal component of the photon and the Q2-dependence of all observables. In our model we will fix
the contribution of longitudinal photons to the excitation of the S11 resonance by the data of an old Bonn experiment
[11], which, of course, has large error bars. The Q2-dependence of the resonant part of our electroproduction operator
as well as possible longitudinal contributions of other resonances will be treated within the framework of quark models.

The non-resonant part of our operator already incorporates the longitudinal components of the transition current ~J ,
and the Q2-behaviour is generated by standard dipole form factors.
Fig. E presents the longitudinal cross section σL for kinematics 1 in Table V in different models, which are more or

less consistent with the existing data point. In our standard calculations we will use the non-relativistic constituent
quark model with the amplitude of the resonant part of the L0+ multipole normalized to the data point from [11].
The reason for the large experimental error bar is due to the fact that the longitudinal excitation of the S11(1535)
is weaker than the transverse one. This can be clearly seen in Fig. E. The transverse/longitudinal separation of
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the inclusive cross section, σtot = σT + εLσL, leads to a longitudinal cross section εLσL, which is smaller than the
transverse σT by more than an order of magnitude. The data point for the transverse cross section, however, is in
good agreement with our model prediction. In this article we will only discuss angular distributions of cross sections
that do not require any electron or recoil polarization measurement. The complete formula for the differential cross
section describing this scenario is given by (12). For kinematics 1 and 2 in Figs. E, E and E we present the results
for the cross sections

dσ00
T

dΩη
= ρR00

T ,
dσ00

L

dΩη
= ρR00

L ,

dσ00
TL

dΩη
= ρcR00

TL ,
dσ00

TT

dΩη
= ρcR00

TT , (72)

dσ0x
TT

dΩη
= ρsR0x

TT ,
dσ0y

TT

dΩη
= ρcR0y

TT ,

where ρ =| ~k | /kcmγ .

The resulting transverse cross section dσ00
T /dΩ has a rather flat angular distribution as in the photoproduction

case. The longitudinal cross section dσ00
L /dΩ is smaller than the transverse by about one order of magnitude and

has a maximum around 100o due to the D13(1520) contribution. Of course, the magnitude of this cross section
depends strongly on the prediction of the different quark models for Cp

1/2. The cross sections dσ00
TT /dΩ and dσ00

TL/dΩ

are very sensitive to the presence of the resonance D13(1520). The transverse-transverse interference cross section
almost vanishes without this resonance, and the shape of the transverse-longitudinal interference cross section changes
completely when the resonance is decoupled. Finally we will have a look at the cross sections belonging to the response
functions cR0y

TT and sR0x
TT , which correspond to the photoproduction observables −P and H . In electroproduction

they could be determined in an experiment with a polarized target or a recoil polarimeter. From photoproduction
we already know the sensitivity of these observables to background and Roper resonance contributions. At larger
momentum transfer, Q2 = 0.120 GeV2, we observe different signs for the calculations with and without Roper
resonance. An experiment at this kinematics would be invaluable in order to detect a signature of the Roper resonance
in eta production. Unfortunately, there are large discrepancies between the different quark models concerning the
electromagnetic couplings Ap

1/2 and Cp
1/2 of the Roper resonance. In addition to this, the Roper resonance value for

Ap
1/2 in [16] is not fixed very precisely by experiment as well.

TABLE V. Kinematics investigated in electroproduction.

Kinematics 1 Kinematics 2

εi [MeV] 1337.5 989.4

εf [MeV] 344.5 142.2

Θe [
o] 55.0 55.0

W [MeV] 1533.0 1533.0

Q2
[

GeV2
]

0.393 0.120

ε 0.345 0.209
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VI. CONCLUSION

Photo- and electroproduction of eta mesons are fastly developing fields in intermediate energy physics. Due to the
isospin singlet nature, the eta meson can supply valuable information on the structure of the nucleon complementary
to that obtained from pion production. Such experiments are under investigation at various new facilities. The TAPS
collaboration has presented results on inclusive and differential photoproduction cross sections off the proton, which
were obtained at the MAMI facility, and at the ELSA facility the electroproduction and photoproduction experiments
at higher energies are being analysed. Further experiments at these sites are under way with the aim to measure cross
sections off the deuteron as well as polarization observables off the proton and the deuteron. In the future, CEBAF
will join this experimental field with η and η′ electroproduction, investigating various resonance contributions to the
process. Last but not the least, the laser-backscattering facility GRAAL is an excellent tool for the investigation of
polarization degrees of freedom in eta photoproduction.
In this article we have studied the complete set of response functions for photo- and electroproduction of the eta me-

son including beam, target and recoil polarization degrees of freedom. Since future experiments will have to be analysed
in terms of multipoles, we have also presented the multipole decomposition of the response functions. Near threshold
eta production is dominated by the decay of the nucleon resonance S11(1535), which contributes to the E0+ and L0+

multipoles. We derived the E0+ multipole from the latest Mainz [9] and Bonn [12] data for the total photoproduction
cross section. The L0+ multipole was reconstructed from an old Bonn experiment [11], the Q2-dependence of this mul-
tipole was investigated within the framework of different quark models [35,37–39]. The transition current contained
the non-resonant background from the model presented in [19] as well as phenomenological resonance contributions.
Having fixed the dominating S-wave multipoles, we were able to investigate additional resonance contributions of the
P11(1440) and D13(1520) resonances. These resonances generate only weak contributions in the unpolarized cross
sections. However, they produce tremendous effects in some of the polarization observables by interference with the
dominant S11(1535) multipole. We estimated the strength of the Roper and D13-resonance multipoles by means of a
standard Breit-Wigner approach, having determined the electromagnetic resonance couplings by the helicity elements
AN

1/2, A
N
3/2 and CN

1/2, which can be calculated within the framework of quark models. The resonance couplings to the

eta meson are determined by the branching fraction Γη(W )/Γ(W ) in our phenomenological model. Our estimate of
these additional resonance contributions is compatible with the angular distributions of differential cross sections for
photoproduction off the proton measured by the TAPS collaboration. However, it turns out that the measurement of
polarization observables can give more reliable information on the resonance contributions. In photoproduction the
photon asymmetry should yield precise constraints on the coupling of the D13(1520) to the eta meson. A possible
Roper contribution significantly changes the shape of the photoproduction observables P and H . These observables
are also sensitive to the non-resonant background and provide an additional test of the ηNN–coupling constant [19].
With regard to photoproduction off the neutron, it would be interesting to see whether the saddle structure in the
differential cross section leads to any effects possibly visible in an experiment on the deuteron.
Concerning the electroproduction of eta mesons, our calculations suffer from the large error bars of the existing lon-

gitudinal cross sections off the proton used as input. Nevertheless, eta electroproduction is a promising field, because
the determination of the L0+ multipole from a transverse/longitudinal separation of the total cross section provides
a good test of the quark models describing the coupling of a longitudinal photon to the S11(1535) resonance. Fur-
thermore, the separation of the differential cross section dσv/dΩη into transverse, longitudinal, transverse-transverse
and transverse-longitudinal parts can provide additional interesting information on the mechanisms present in eta
production. The transverse-transverse interference cross section dσ00

TT /dΩη is related to the observable Σ in pho-
toproduction. For this reason it also has a characteristic dependence on the D13-contribution. The presence of a
D13-contribution also changes the shape of dσ00

TL/dΩη drastically. The Roper and background contributions can

be seen best in the response functions sR0x
TT and cR0y

TT , whose determination, however, requires a target (or recoil)
polarization experiment.
In conclusion eta production exposes a rich phenomenology, which can significantly enlarge our knowledge on

the structure of the nucleon. We hope the material we have presented will be useful for the experimental projects
under way or even stimulate new experiments to determine some of the polarization observables discussed in this
contribution.

APPENDIX A: IDENTICAL RESPONSE FUNCTIONS

A response function denoted with a star in Table I is identical to another response function via one of the following
equations:
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R00
T = −cRy′y

TT , R
0y
T = −cRy′0

TT , R
y′0
T = −cR0y

TT ,

Rx′x
T = −cRz′z

TT , R
x′z
T = cRz′x

TT , R
z′x
T = cRx′z

TT ,

Rz′z
T = −cRx′x

TT , R
00
L = −Ry′y

L , R0y
L = −Ry′0

L ,

Rx′x
L = −Rz′z

L , Rx′z
L = Rz′x

L , cR00
TL = −cRy′y

TL,

cR0y
TL = −cRy′0

TL,
cRx′x

TL = −cRz′z
TL,

cRz′x
TL = cRx′z

TL,

sR0x
TL = −cRy′z

TL′ ,
sR0z

TL = −cRy′x
TL′ ,

sRx′0
TL = −cRz′y

TL′ ,

sRz′0
TL = cRx′y

TL′ ,
cR00

TT = −Ry′y
T , sR0x

TT = Ry′z
TT ′ ,

sRz′0
TT = Rx′y

TT ′ ,
sR0z

TT = −Ry′x
TT ′ ,

sRx′0
TT = −Rz′y

TT ′ ,

cR0x
TL′ = −sRy′z

TL,
cR0z

TL′ = sRy′x
TL ,

cRx′0
TL′ = sRz′y

TL,

cRz′0
TL′ = −sRx′y

TL,
sR00

TL′ = −sRy′y
TL′ ,

sR0y
TL′ = −sRy′0

TL′ ,

sRx′x
TL′ = −sRz′z

TL′ , sRz′x
TL′ = sRx′z

TL′ , R0x
TT ′ = −sRy′z

TT ,

R0z
TT ′ = sRy′x

TT , R
x′0
TT ′ = sRz′y

TT , R
z′0
TT ′ = −sRx′y

TT .

APPENDIX B: POLARIZATION OBSERVABLES AND RESPONSE FUNCTIONS

The polarization observables in photoproduction can be expressed in terms of response functions via the following
relations:

dσ/dΩ = ρR00
T , Σ = −cR00

TT /R
00
T ,

T = R0y
T /R

00
T , P = Ry′0

T /R00
T ,

E = −R0z
TT ′/R00

T , F = R0x
TT ′/R00

T ,

G = −sR0z
TT /R

00
T , H = sR0x

TT /R
00
T ,

Ox′ = sRx′0
TT /R

00
T , Oz′ = sRz′0

TT /R
00
T ,

Cx′ = −Rx′0
TT ′/R00

T , Cz′ = −Rz′0
TT ′/R00

T ,

Tx′ = Rx′x
T /R00

T , Tz′ = Rz′x
T /R00

T ,

Lx′ = −Rx′z
T /R00

T , Lz′ = Rz′z
T /R00

T .

APPENDIX C: RESPONSE FUNCTIONS AND CGLN AMPLITUDES

R00
T = | F1 |2 + | F2 |2 +

sin2 Θ

2

(

| F3 |2 + | F4 |2
)

+Re{sin2 Θ(F ∗
2 F3 + F ∗

1 F4 + cosΘF ∗
3 F4)

−2 cosΘF ∗
1 F2},

R0y
T = Im {sinΘ (F ∗

1 F3 − F ∗
2 F4 + cosΘ(F ∗

1 F4 − F ∗
2 F3)

− sin2 ΘF ∗
3 F4

)}

,

Ry′0
T = Im {sinΘ (−2F ∗

1F2 − F ∗
1 F3 + F ∗

2 F4

+cosΘ (F ∗
2 F3 − F ∗

1 F4) + sin2 ΘF ∗
3F4

)}

,

Rx′x
T = Re{sin2 Θ(−F ∗

1F3 − F ∗
2 F4 − F ∗

3 F4

−1

2
cosΘ

(

| F3 |2 + | F4 |2
)

)},

Rx′z
T = {sinΘ(| F1 |2 − | F2 |2 +

1

2
sin2 Θ(| F4 |2 − | F3 |2)
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−F ∗
2 F3 + F ∗

1 F4 + cosΘ (F ∗
1 F3 − F ∗

2 F4))},
Rz′x

T = Re{sinΘ(−F ∗
2 F3 + F ∗

1 F4 + cosΘ (F ∗
1 F3 − F ∗

2 F4)

+
1

2
sin2 Θ(| F4 |2 − | F3 |2))},

Rz′z
T = Re{2F ∗

1F2 − cosΘ
(

| F1 |2 + | F2 |2
)

+sin2 Θ(F ∗
1 F3 + F ∗

2 F4 + F ∗
3 F4)

+
1

2
cosΘ sin2 Θ(| F3 |2 + | F4 |2)},

R00
L = Re

{

| F5 |2 + | F6 |2 +2 cosΘF ∗
5 F6

}

,

R0y
L = −2 sinΘIm {F ∗

5 F6} ,
Rx′x

L = Re
{

−2F ∗
5F6 − cosΘ

(

| F5 |2 + | F6 |2
)}

,

Rz′x
L = sinΘ

(

| F6 |2 − | F5 |2
)

,
cR00

TL = sinΘRe {−F ∗
2F5 − F ∗

3 F5 − F ∗
1 F6 − F ∗

4 F6

− cosΘ (F ∗
4 F5 + F ∗

3 F6)} ,
sR0x

TL = Im {−F ∗
1F5 + F ∗

2 F6 + cosΘ (F ∗
2 F5 − F ∗

1 F6)} ,
cR0y

TL = Im {−F ∗
1F5 + F ∗

2 F6 + cosΘ (F ∗
2 F5 − F ∗

1 F6)

+ sin2 Θ(F ∗
3 F6 − F ∗

4 F5)
}

,
sR0z

TL = sinΘIm {F ∗
2 F5 + F ∗

1 F6} ,
sRx′0

TL = Im {−F ∗
2F5 + F ∗

1 F6 + cosΘ (F ∗
1 F5 − F ∗

2 F6)} ,
sRz′0

TL = sinΘIm {F ∗
1 F5 + F ∗

2 F6} ,
cRx′x

TL = sinΘRe {F ∗
1 F5 + F ∗

4 F5 + F ∗
2 F6 + F ∗

3 F6

+cosΘ (F ∗
3 F5 + F ∗

4 F6)} ,
cRz′x

TL = Re {F ∗
2 F5 − F ∗

1 F6 + cosΘ (F ∗
2 F6 − F ∗

1 F5)

+ sin2 Θ(F ∗
3 F5 − F ∗

4 F6)
}

,

cR00
TT =

1

2
sin2 Θ

{

| F3 |2 + | F4 |2
}

+sin2 ΘRe {F ∗
2 F3 + F ∗

1 F4 + cosΘF ∗
3F4} ,

sR0x
TT = sinΘIm {2F ∗

1F2 + F ∗
1 F3 − F ∗

2 F4

+cosΘ (F ∗
1 F4 − F ∗

2 F3)} ,
sR0z

TT = − sin2 ΘIm {F ∗
2 F3 + F ∗

1 F4} ,
sRx′0

TT = sinΘIm {F ∗
2 F3 − F ∗

1 F4 + cosΘ (F ∗
2 F4 − F ∗

1 F3)} ,
sRz′0

TT = − sin2 ΘIm {F ∗
1 F3 + F ∗

2 F4} ,
sR00

TL′ = − sinΘIm {F ∗
2 F5 + F ∗

3 F5 + F ∗
1 F6 + F ∗

4 F6

+cosΘ (F ∗
4 F5 + F ∗

3 F6)} ,
cR0x

TL′ = Re {−F ∗
1 F5 + F ∗

2 F6 + cosΘ (F ∗
2 F5 − F ∗

1 F6)} ,
sR0y

TL′ = Re {F ∗
1 F5 − F ∗

2 F6 + cosΘ (F ∗
1 F6 − F ∗

2 F5)

+ sin2 Θ(F ∗
4 F5 − F ∗

3 F6)
}

,
cR0z

TL′ = sinΘRe {F ∗
2 F5 + F ∗

1 F6} ,
cRx′0

TL′ = Re {−F ∗
2 F5 + F ∗

1 F6 + cosΘ (F ∗
1 F5 − F ∗

2 F6)} ,
cRz′0

TL′ = sinΘRe {F ∗
1 F5 + F ∗

2 F6} ,
sRx′x

TL′ = sinΘIm {F ∗
1 F5 + F ∗

4 F5 + F ∗
2 F6 + F ∗

3 F6

+cosΘ (F ∗
3 F5 + F ∗

4 F6)} ,
sRz′x

TL′ = Im {F ∗
2 F5 − F ∗

1 F6 + cosΘ (−F ∗
1F5 + F ∗

2 F6)

+ sin2 Θ(F ∗
3 F5 − F ∗

4 F6)
}

,
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R0x
TT ′ = sinΘRe {F ∗

1 F3 − F ∗
2 F4 + cosΘ (−F ∗

2F3 + F ∗
1 F4)} ,

R0z
TT ′ = − | F1 |2 − | F2 |2

+Re
{

2 cosΘF ∗
1 F2 − sin2 Θ(F ∗

2 F3 + F ∗
1 F4)

}

,

Rx′0
TT ′ = sinΘRe

{

− | F1 |2 + | F2 |2 +F ∗
2 F3

−F ∗
1 F4 + cosΘ(F ∗

2 F4 − F ∗
1 F3)} ,

Rz′0
TT ′ = Re

{

−2F ∗
1F2 + cosΘ

(

| F1 |2 + | F2 |2
)

− sin2 Θ(F ∗
1 F3 + F ∗

2 F4)
}

.

APPENDIX D: RESPONSE FUNCTIONS AND HELICITY AMPLITUDES

R00
T =

1

2

(

| H1 |2 + | H2 |2 + | H3 |2 + | H4 |2
)

,

R0y
T = −Im {H∗

1H2 +H∗
3H4} ,

Ry′0
T = Im {H∗

1H3 +H∗
2H4} ,

Rx′x
T = Re {H∗

1H4 +H∗
2H3} ,

Rx′z
T = Re {H∗

1H3 −H∗
2H4} ,

Rz′x
T = Re {H∗

1H2 −H∗
3H4} ,

Rz′z
T =

1

2

(

| H1 |2 − | H2 |2 − | H3 |2 + | H4 |2
)

,

R00
L = | H5 |2 + | H6 |2,

R0y
L = −2Im {H∗

5H6} ,
Rx′x

L = − | H5 |2 + | H6 |2,
Rz′x

L = 2Re {H∗
5H6} ,

cR00
TL =

1√
2
Re {H∗

5H1 −H∗
5H4 +H∗

6H2 +H∗
6H3} ,

sR0x
TL =

1√
2
Im {−H∗

5H2 +H∗
5H3 −H∗

6H1 −H∗
6H4} ,

cR0y
TL =

1√
2
Im {−H∗

5H2 −H∗
5H3 +H∗

6H1 −H∗
6H4} ,

sR0z
TL =

1√
2
Im {−H∗

5H1 −H∗
5H4 +H∗

6H2 −H∗
6H3} ,

sRx′0
TL =

1√
2
Im {H∗

5H2 −H∗
5H3 −H∗

6H1 −H∗
6H4} ,

sRz′0
TL =

1√
2
Im {−H∗

5H1 −H∗
5H4 −H∗

6H2 +H∗
6H3} ,

cRx′x
TL =

1√
2
Re {−H∗

5H1 +H∗
5H4 +H∗

6H2 +H∗
6H3} ,

cRz′x
TL =

1√
2
Re {H∗

5H2 +H∗
5H3 +H∗

6H1 −H∗
6H4} ,

cR00
TT = Re {−H∗

1H4 +H∗
2H3} ,

sR0x
TT = Im {H∗

1H3 −H∗
2H4} ,

sR0z
TT = −Im {H∗

1H4 +H∗
2H3} ,

sRx′0
TT = Im {H∗

1H2 −H∗
3H4} ,

sRz′0
TT = Im {−H∗

1H4 +H∗
2H3} ,

sR00
TL′ =

1√
2
Im {−H∗

5H1 +H∗
5H4 −H∗

6H2 −H∗
6H3} ,
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cR0x
TL′ =

1√
2
Re {H∗

5H2 −H∗
5H3 +H∗

6H1 +H∗
6H4} ,

sR0y
TL′ =

1√
2
Re {−H∗

5H2 −H∗
5H3 +H∗

6H1 −H∗
6H4} ,

cR0z
TL′ =

1√
2
Re {H∗

5H1 +H∗
5H4 −H∗

6H2 +H∗
6H3} ,

cRx′0
TL′ =

1√
2
Re {−H∗

5H2 +H∗
5H3 +H∗

6H1 +H∗
6H4} ,

cRz′0
TL′ =

1√
2
Re {H∗

5H1 +H∗
5H4 +H∗

6H2 −H∗
6H3} ,

sRx′x
TL′ =

1√
2
Im {H∗

5H1 −H∗
5H4 −H∗

6H2 −H∗
6H3} ,

sRz′x
TL′ =

1√
2
Im {−H∗

5H2 −H∗
5H3 −H∗

6H1 +H∗
6H4} ,

R0x
TT ′ = Re {H∗

1H2 +H∗
3H4} ,

R0z
TT ′ =

1

2

(

| H1 |2 − | H2 |2 + | H3 |2 − | H4 |2
)

,

Rx′0
TT ′ = Re {H∗

1H3 +H∗
2H4} ,

Rz′0
TT ′ =

1

2

(

| H1 |2 + | H2 |2 − | H3 |2 − | H4 |2
)

.

APPENDIX E: MULTIPOLE EXPANSION OF RESPONSE FUNCTIONS FOR ETA
ELECTROPRODUCTION

In the following we have kept all terms proportional to the dominant multipoles E0+ and L0+ and interference
terms with the smaller multipoles considered in the text, M1−, L1−, E2−, M2− and L2−.

R00
T = | E0+ |2 −Re

{

E∗
0+ [2 cosΘM1−

−
(

3 cos2 Θ− 1
)

(E2− − 3M2−)
]}

,

R0y
T = −3 sinΘ cosΘIm

{

E∗
0+ (E2− +M2−)

}

,

Ry′0
T = − sinΘIm

{

E∗
0+ [2M1− − 3 cosΘ (E2− − 3M2−)]

}

,

Rx′x
T = 0,

Rx′z
T = sinΘ

[

| E0+ |2 −Re {E0+ (E2− − 3M2−)}
]

,

Rz′x
T = −3 sinΘRe

{

E∗
0+ (E2− +M2−)

}

,

Rz′z
T = − cosΘ | E0+ |2 +2Re

{

E∗
0+ [M1−

− cosΘ (E2− − 3M2−)]} ,
R00

L = | L0+ |2 +2Re
{

L∗
0+ (cosΘL1−

−2
(

1− 3 cos2 Θ
)

L2−

)}

,

R0y
L = −2 sinΘIm

{

L∗
0+ (L1− + 6 cosΘL2−)

}

,

Rx′x
L = − cosΘ | L0+ |2 −2Re

{

L∗
0+ (L1− + 4 cosΘL2−)

}

,

Rz′x
L = − sinΘ(| L0+ |2 +4Re

{

L∗
0+L2−

}

),
cR00

TL = − sinΘRe
{

E∗
0+ (L1− + 6 cosΘL2−)

+L∗
0+ (M1− + 3 cosΘ (M2− − E2−))

}

,
sR0x

TL = Im
{

L∗
0+E0+ + E∗

0+ (− cosΘL1−

+2
(

1− 3 cos2 ΘL2−

))

+ L∗
0+ (− cosΘM1−

+E2− + 3
(

1− 2 cos2 Θ
)

M2−

)}

,

20



cR0y
TL = Im

{

L∗
0+E0+ + E∗

0+ (− cosΘL1−

+2
(

1− 3 cos2 Θ
)

L2−

)

+ L∗
0+ (− cosΘM1−

+
(

3 cos2 Θ− 2
)

E2− − 3 cos2 ΘM2−

)}

,
sR0z

TL = sinΘIm
{

E∗
0+ (L1− + 6 cosΘL2−)

−L∗
0+ (M1− + 6 cosΘM2−)

}

,

sRx′0
TL = Im

{

− cosΘL∗
0+E0+ + E∗

0+ (L1− + 4 cosΘL2−)

+L∗
0+ (M1− + cosΘ (3M2− − E2−))

}

,

sRz′0
TL = − sinΘIm

{

L∗
0+E0+ + 2E∗

0+L2−

+L∗
0+ (E2− + 3M2−)

}

,

cRx′x
TL = sinΘRe {L0+E0+ − 2E0+L2− − 2L0+E2−} ,

cRz′x
TL = Re

{

− cosΘL∗
0+E0+ − E∗

0+ (L1− + 4 cosΘL2−)

+L∗
0+ (M1− − cosΘ (E2− − 3M2−))

}

,
cR00

TT = −3 sin2 ΘRe
{

E∗
0+ (E2− +M2−)

}

,
sR0x

TT = sinΘIm
{

E∗
0+ [2M1− − 3 cosΘ (E2− − 3M2−)]

}

,
sR0z

TT = 3 sin2 ΘIm
{

E∗
0+ (E2− +M2−)

}

,

sRx′0
TT = 3 sinΘIm

{

E∗
0+ (E2− +M2−)

}

,

sRz′0
TT = 0,

sR00
TL′ = sinΘIm

{

E∗
0+ (−L1− − 6 cosΘL2−)

+L∗
0+ (M1− + 3 cosΘ (M2− − E2−))

}

,
cR0x

TL′ = Re
{

−L∗
0+E0+ + E∗

0+ (− cosΘL1−

+2
(

1− 3 cos2 Θ
)

L2−

)

+L∗
0+

(

cosΘM1− − 3
(

1− 2 cos2 Θ
)

M2− − E2−

)}

,

sR0y
TL′ = Re

{

L∗
0+E0+ + E∗

0+ (cosΘL1−

−2
(

1− 3 cos2 Θ
)

L2−

)

+L∗
0+

(

− cosΘM1− +
(

1− 3 sin2 Θ
)

E2−

−3 cos2 ΘM2−

)}

,
cR0z

TL′ = sinΘRe
{

E∗
0+ (L1− + 6 cosΘL2−)

+L∗
0+ (M1− + 6 cosΘM2−)

}

,

cRx′0
TL′ = Re

{

cosΘL∗
0+E0+ + E∗

0+ (L1− + 4 cosΘL2−)

+L∗
0+ (−M1− + cosΘ (E2− − 3M2−))

}

,

cRz′0
TL′ = sinΘRe

{

L∗
0+E0+ − 2E∗

0+L2−

+L0+ (E2− + 3M2−)} ,
sRx′x

TL′ = sinΘIm
{

−L∗
0+E0+ − 2E∗

0+L2− + 2L∗
0+E2−

}

,

sRz′x
TL′ = Im

{

cosΘL∗
0+E0+ + E∗

0+ (−L1− − 4 cosΘL2−)

+L∗
0+ (−M1− + cosΘ (E2− − 3M2−))

}

,

R0x
TT ′ = −3 sinΘ cosΘRe

{

E∗
0+ (E2− +M2−)

}

,

R0z
TT ′ = − | E0+ |2 +Re

{

E∗
0+ [2 cosΘM1−

−
(

3 cos2 Θ− 1
)

(E2− − 3M2−)
]}

,

Rx′0
TT ′ = − sinΘ

[

| E0+ |2 −Re
{

E∗
0+ (E2− − 3M2−)

}]

,

Rz′0
TT ′ = cosΘ | E0+ |2 −2Re

{

E∗
0+ [M1−

− cosΘ (E2− − 3M2−)]} .
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Figure 1: Kinematics of an electroproduction experiment.

Figure 2: Frames for polarization vectors.

Figure 3: Electromagnetic helicity couplings of the resonance S11(1535) as function of momentum transfer. The solid line
is the calculation with model M1 [37], the dotted line is the result of model M2 [38], the dashed line the calculation with model
M3 [39] and the dash-dotted line with model M4 [35].

Figure 4: Electromagnetic helicity couplings of the resonance D13(1520) as function of momentum transfer. For notation
see Fig. E.

Figure 5: Electromagnetic helicity couplings of the resonance P11(1440) as function of momentum transfer. For notation
see Fig. E.

Figure 6: Total cross section for photoproduction. The left figure shows the inclusive cross section for eta photoproduction
off the proton. The TAPS data [9] are denoted by ✷, the Bonn data (◦) are from an electroproduction experiment [12] at very
low momentum transfer, Q2 = 0.056 GeV2. In the energy regime beyond the resonance we have included some old data (✸
from [4], ∗ from [3]). The solid line is the full calculation with resonances and background, the dashed line is the calculation
without background, the dotted line is the calculation without D13(1520) and P11(1440) resonance and the dash-dotted line is
only the contribution of the non-resonant background. The right figure shows the same calculation for a neutron target.

Figure 7: Angular distribution for eta production off the proton at ν = 783 MeV, compared to the data of the TAPS
collaboration [9]. The solid line is the standard calculation, the long dashed line without Roper and the short dashed line
without D13 resonance. The dotted line was calculated with Γη/Γ = 0.003 and the dash-dotted line with Γη/Γ = 0.010 for the
D13.

Figure 8: Differential cross section for eta production off the proton (left) and the neutron (right) as a function of excitation
energy ν in the lab frame and scattering angle Θ in the c.m. system.

Figure 9: Excitation functions off the proton for the unpolarized cross section σ0, the single polarization observables and
the double polarization observables for polarized beam and target at a scattering angle Θ = 90o in the c.m. system. The solid
line is our standard calculation, the dotted line is without Roper resonance, the long dashed line without D13(1520), the short
dashed line without D15(1675) and the dash-dotted line without non-resonant background. The data for σ0 are from [9] (filled
circles), [10] (boxes, Θ = 95.7o), [6] (circles). The recoil polarization data are from [5].

Figure 10: Transverse/longitudinal separation of the inclusive cross section. The left figure shows the longitudinal part σL

of the inclusive electroproduction cross section on the proton. The data point is from [11]. The dotted curve is the result of
a calculation in the non-relativistic constituent quark model (M1) [37,14]. In the calculation for the short dashed curve, the
resonance part of the L0+ multipole was calculated in the relativized constituent quark model (M2) [38], the dash-dotted curve
is the calculation in the light cone model [39] and the long dashed line is the contribution of the non-resonant background. The
standard calculation (solid line) has been performed in model M1 with the L0+ multipole normalized to the data point. The
right figure shows the longitudinal cross section, εLσL (dotted curve), and the transverse cross section σT (dashed curve) in
the standard calculation. The data point at 1533 MeV is from [11] .

Figure 11: Unpolarized differential cross sections dσ00
T /dΩ and dσ00

L /dΩ at W = 1533 MeV. The left figures are calculated
at Q2 = 0.120 GeV2, the right figures at Q2 = 0.393 GeV2. The solid curve is our standard calculation (model M1), for the
short dashed line the resonant parts of the E0+ and L0+ multipoles were calculated in model M3, the dotted line is a calculation
without P11(1440), the long dashed line without D13(1520), and the dash-dotted line without non-resonant background.
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Figure 12: Unpolarized differential cross sections dσ00
TT /dΩ and dσ00

TL/dΩ atW = 1533 MeV. The left figures were calculated
at Q2 = 0.120 GeV2, the right figures at Q2 = 0.393 GeV2. For notation see Fig. E.

Figure 13: Differential cross sections dσ0x
TT /dΩ and dσ0y

TT /dΩ at W = 1533 MeV. The left figures were calculated at
Q2 = 0.120 GeV2, the right figures at Q2 = 0.393 GeV2. For notation see Fig. E.
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