
Hindawi Publishing Corporation
Advances in Physical Chemistry
Volume 2011, Article ID 786759, 20 pages
doi:10.1155/2011/786759

Review Article

(Photo)electrochemical Methods for the Determination of
the Band Edge Positions of TiO2-Based Nanomaterials

Radim Beranek1, 2, 3

1 Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätstr 150, NC4/073, D-44780 Bochum, Germany
2 Materials Research Department, Ruhr University Bochum, D-44801 Bochum, Germany
3 Research Department Interfacial Systems Chemistry, Ruhr University Bochum, D-44801 Bochum, Germany

Correspondence should be addressed to Radim Beranek, radim.beranek@rub.de

Received 30 September 2011; Accepted 15 December 2011

Academic Editor: Konstantin Neyman

Copyright © 2011 Radim Beranek. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

TiO2-based nanomaterials play currently a major role in the development of novel photochemical systems and devices. One
of the key parameters determining the photoactivity of TiO2-based materials is the position of the band edges. Although its
knowledge is an important prerequisite for understanding and optimizing the performance of photochemical systems, it has
been often rather neglected in recent research, particularly in the field of heterogeneous photocatalysis. This paper provides
a concise account of main methods for the determination of the position of the band edges, particularly those suitable for
measurements on nanostructured materials. In the first part, a survey of key photophysical and photochemical concepts necessary
for understanding the energetics at the semiconductor/solution interface is provided. This is followed by a detailed discussion of
several electrochemical, photoelectrochemical, and spectroelectrochemical methods that can be applied for the determination of
band edge positions in compact and nanocrystalline thin films, as well as in nanocrystalline powders.

1. Introduction

Although first scientific reports of photoinduced effects
of titanium dioxide on chemical reactions were available
already more than ninety years ago [1–8], it was first in
the 1970s that potential practical applications of TiO2 pho-
toelectrochemistry and photocatalysis have been fully rec-
ognized. This was particularly due to the pioneering work
of Fujishima and Honda on solar-driven water splitting
into hydrogen and oxygen using a TiO2 photoanode [9–
11], which promised utilization of TiO2-based materials for
solar energy conversion and storage [12–16]. In following
years further photochemical applications of TiO2 have been
realized, most of them motivated particularly by the advanta-
geous combination of its low cost, nontoxicity, and excellent
stability against photocorrosion. One important example is
the rapidly growing field of heterogeneous photocatalysis
[17–25], in which TiO2 has been successfully employed in
photooxidation reactions utilizing aerobic oxygen for the
complete removal of pollutants from water and air [17–22,
24–39], in preparation of superhydrophilic and antifogging

surfaces [40–43], in photocatalytic organic syntheses [44–
49], or in antitumor medicinal applications [50–54].

Importantly, although the bandgap energy of TiO2 is
rather large (for anatase 3.2 eV; ∼ 390 nm) and direct band-
to-band excitation can therefore only be achieved by high-
energy UV light, the utilization of TiO2 is not confined to
UV-light-driven applications. Drawing on the fundamental
studies on dye sensitization of other wide bandgap semicon-
ductors (ZnO, SnO2) in the 1960s [55–59], attaching visible-
light-absorbing organic dyes to the surface of TiO2 [60, 61]
has led to fabrication of regenerative dye-sensitized solar
cells with the overall solar conversion efficiencies exceeding
10% [62–64]. Other sensitization approaches utilize chro-
mophores like semiconductor quantum dots [65–70], plas-
monic metal nanocrystals [71–75], simple coordination
compounds like chloroplatinate (IV) complexes [29, 32,
76] or ferrocyanide ions [77–79], stable polymeric com-
pounds [38, 39, 80–83], or metal ions (Cu2+, Fe3+) grafted
onto the TiO2 surface [84, 85]. In contrast to these surface-
confined sensitization protocols, bulk-doping of TiO2 has
also attracted significant interest. In the latter approach,
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transition metals [86–88] or main-group elements like car-
bon [35, 89], nitrogen [31, 90–97], and sulfur [98, 99] are
introduced into the lattice of titania resulting in formation
of intrabandgap donor and acceptor levels, allowing thus for
visible light (λ > 400 nm) excitation. Apart from the fields
of solar cells and photocatalysis, the visible light-responsive
TiO2 materials opened up a route for further developments
including photoelectrochemistry-based sensors [100, 101]
and light-addressable photoelectrochemical optoelectronic
devices [102–106].

Obviously, many applications can benefit from TiO2

materials with fine-tuned structural and surface characteris-
tics. Particularly nanostructured and mesoporous materials
with a large surface-to-volume ration are highly prof-
itable for most applications. This motivated the develop-
ment of a great variety of synthetic protocols which allow
for fabrication of TiO2 with well-defined morphologies on
the micro- and nanoscale. These include, for example, na-
noporous spheres [107], nanotubes [108, 109], hierarchi-
cal nanodendrite-nanoparticle composites [110], organized
mesoporous TiO2 films with controlled crystallinity [111,
112], nanoparticles with distinct crystal facets [113, 114],
or TiO2 inverse opals materials exhibiting photonic bandgap
[115–117]. In addition, the modification of surface catalytic
properties has been achieved, for instance, by coupling TiO2

with gold nanostructures [118], graphene [119], or reduced
graphene oxide [120, 121].

Notwithstanding the huge variety of different TiO2-based
materials, it is important to realize that the fundamental
basis for all photochemical applications of TiO2 is its
semiconducting electronic structure [122, 125–129]. In other
words, it is the energy band structure that underlies the pho-
toactivity of TiO2-based materials, whereby the position of
the band edges on the electrochemical potential scale exerts
a crucial influence on the operation of the photochemical
system. This can be well exemplified in Figure 1. A typical
photocatalytic reaction at small TiO2 particles is initiated by
absorption of a UV light photon, whereby a pair of charges is
generated—an electron in the conduction band and a hole in
the valence band (Figure 1(a)). The photogenerated charges
can either recombine or undergo an interfacial electron
transfer process, whereby the electron reduces an electron
acceptor species A to a primary reduction product A−•, and
the hole oxidizes an electron donor species to D+•. Hence, for
example, during a typical photocatalytic oxidation of organic
pollutants on TiO2 in aqueous solutions, the reacting holes
are scavenged either directly by the pollutant or by adsorbed
hydroxyl ions to produced hydroxyl radicals which can then
oxidize the pollutant due to their high oxidizing power.
Simultaneously, the photogenerated electrons reduce molec-
ular oxygen to a superoxide radical (EO2/O2

−• = −0.16 V
versus NHE [130]) which can then undergo further reactions
to produce hydroxyl radicals [17, 131–134]. It is obvious
that the positions of the conduction and valence band edges
are of crucial importance here since these give information
on the reductive and oxidative power of photogenerated
electrons and holes, respectively. Interestingly, the product
of the one-hole oxidation of some electron donors—like, for
example, the methoxy radical as a primary oxidation product

of methanol (Figure 1(b))—is a very strong reducing agent
that can inject an electron into the conduction band of
TiO2 and is thereby further oxidized to formaldehyde.
Since this generation of two electrons in the conduc-
tion band upon absorption of one photon has been first
observed during photocurrent measurements, it has been
coined as the photocurrent-doubling effect (photocurrent-
multiplication effect) [125]. It goes without saying that the
position of the conduction band edge on the potential scale
will again play an essential role for the efficiency of the
electron injection in such a case. Obviously, similar consid-
eration will be also valid in cases when the photoprocess
is based on light absorption by a sensitizer, typically a dye
(Figure 1(c)). Here, the dye gets into an excited state from
which it injects an electron into the conduction band of a
semiconductor and is thereby oxidized. Alternatively to this
photoinduced electron transfer scenario, in case of a strong
coupling between the sensitizer and TiO2 the so-called direct
optical electron transfer from the chromophore’s HOMO into
the conduction band of TiO2 can occur, as known, for exam-
ple, for TiO2 covalently sensitized with catechol [135–137],
chlorophenols [138, 139], or polymeric compounds [140].
In case of TiO2-assisted photooxidation reactions based on
sensitization, one often speaks about “indirect photocataly-
sis” since the reaction is not initiated through direct photon
absorption by TiO2 (“direct photocatalysis”; Figure 1(a)),
but instead indirectly, through the light absorption by a dye
[24, 25, 34, 37]. At any rate, the position of the conduction
band edge must be positive enough in order to allow for the
injection from the dye, and at the same time negative enough,
in order to allow for further electron transfer to suitable
acceptors in the solution (e.g., oxygen).

From the above stated, it is clear that the positions of the
band edges exert a crucial influence on the photoactivity of
TiO2-based materials. In this context, it is rather surprising
that the determination of the band edge position is still only
very rarely directly addressed experimentally, particularly in
research directed to the development of new photocatalysts.
This causes a serious lacuna in our understanding of the
photoactivity of such novel materials since the position of
the band edges in many cases cannot be simply predicted or
taken from the literature data. This is due to the fact that the
band edge positions of TiO2-based materials will normally
depend on surface charging. This will be highly dependent
not only on the ionic conditions in a concrete electrolyte
(pH, specific adsorption of ions), but also on the surface
structure and composition of the material, which, in turn,
will depend on the particular synthetic strategy used for the
fabrication. The aim of this paper is to review various meth-
ods for the measurement of the band edge positions of TiO2-
based materials. The focus will be particularly on nanostruc-
tured materials used in photocatalysis and other applications
operating in aqueous electrolytes. The paper will start with
a short summary of some fundamental concepts of semi-
conductor photophysics and photochemistry (quasi-Fermi
levels, flatband potential, pH dependence of band edges)
that are directly relevant for understanding the problem of
band edge determination. Then, a theoretical approach to
the calculation of the band edges position, together with
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Figure 1: Schematic view of different TiO2-assisted photoprocesses. (a) Direct photocatalysis initiated by excitation of an electron from the
valence band (VB) to the conduction band (CB) of TiO2. (b) Mechanism of “photocurrent multiplication” at an irradiated TiO2 electrode
in the presence of methanol. (c) Sensitization of TiO2 by a dye: the dye is photoexcited with visible light from its ground state S0 to excited
state S∗, injects an electron to the conduction band of TiO2, and is thereby oxidized to S+. All recombination pathways are omitted for
the sake of clarity. Whereas the common convention in solid state physics relates the positions of band edges with respect to the vacuum
level, in photoelectrochemistry and photocatalysis, the potentials are usually given with respect to the normal hydrogen electrode (NHE;
ENHE = 0 V). On the energy scale, the NHE is reported to lie at −4.44 ± 0.02 eV (at 298.15 K) with respect to the vacuum level [122]; for
more details, see [123, 124].

the application of conventional spectroscopic and contact
potential difference measurements, will be shortly discussed.
This will be followed by a detailed discussion of various
electrochemical, photoelectrochemical, and spectroelectro-
chemical methods that can be applied to measurements on
TiO2-based materials in the form of thin compact films,
porous nanocrystalline layers, and nanocrystalline powders.

2. Theory and Fundamental Concepts

2.1. Quasi-Fermi Levels and Flatband Potential. TiO2 is typi-
cally found in one of its three main crystal structures: rutile
(tetragonal), anatase (tetragonal), or brookite (orthorhom-
bic). Out of these, anatase is the polymorph most widely
used for photocatalytic and photoelectrochemical purposes.
It is noteworthy that the conduction band edge states have
predominantly the Ti 3d character, while the valence-band
edge states have the O 2p character. Importantly, due to
its inherent nonstoichiometry (oxygen vacancies), TiO2 is
typically a rather heavily doped n-type semiconductor. This

means that its Fermi level (EF) is typically right below the
conduction band edge (EC). From the thermodynamic point
of view, the Fermi level is the electrochemical potential of the
electron in the solid. Equivalently, from the statistical point
of view, the Fermi level is the energy at which the probability
of an energy level being occupied by an electron (the Fermi
function) is 0.5 (Note, however, that this does not imply
that the level at the Fermi energy is populated by electrons
because the population depends upon the product of the
Fermi function and the electron density of states). Hence,
the Fermi level describes the occupation of energy levels in
a semiconductor at thermodynamic equilibrium. However,
the condition of thermodynamic equilibrium is not always
fulfilled—particularly when excess electrons and holes are
photogenerated under illumination or injected under electric
bias. Accordingly, the electron and hole densities in the
conduction and valence band are not described by the same
Fermi level but by a quasi-Fermi level of electrons ( ∗EFn) and
a quasi-Fermi level of holes ( ∗EFp), respectively (Figure 2)
[125, 126, 128]. In general, the density of majority carriers
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Figure 2: Fermi levels and quasi-Fermi levels of electrons and holes for an n-type semiconductor: (a) at thermodynamic equilibrium (in the
dark); (b) and (c) under illumination; (c) local excitation; x is the distance from the semiconductor surface (adapted from [128]).

(electrons in case of TiO2) does not significantly increase
upon illumination and the quasi-Fermi level for majority
carriers is normally almost the same as the Fermi level at
equilibrium. In contrast, the density of minority carriers
(holes) can be increased by many orders of magnitude, which
then leads to a shift of the quasi-Fermi level of holes ( ∗EFp)
downwards to the vicinity of the valence band edge.

It should be also noted that the generation of electron-
hole pairs often occurs locally near the semiconductor
surface due to the small penetration depth of light, which
leads to variations in the quasi-Fermi level of holes with the
distance from the surface (Figure 2(c)). Importantly, in case
of heavily doped n-type metal oxides like TiO2, the lower
conduction band edge, EC, practically merges with the quasi-
Fermi level for electrons, ∗EFn, (|EC−

∗EFn | < 0.1V) [125].
Therefore, as will be discussed below in more detail, the
determination of the conduction band edge often translates
into the measurement of the position of the quasi-Fermi level
of electrons. Once this is known, the position of the valence
band edge can be simply calculated by adding the value
of bandgap energy, that is, typically determined by optical
[128, 141–151] or photoelectrochemical methods [152–156].

Another important concept, particularly in case of com-
pact flat TiO2 films that behave similarly to single crystal
semiconductors, is the flatband potential. First, let us con-
sider the energetic situation at the n-type semiconductor/
electrolyte interface before and after the contact of the two
phases (Figure 3). After the contact of the semiconductor
surface with the electrolyte, the thermodynamic equilibrium
on both sides of the interface must be established [125–128,
157]. In other words, the Fermi level of the semiconductor
EF is adjusted to the Fermi level of the electrolyte EF,redox. The
latter can be considered nearly constant because the number
of available states per unit energy in the solution typically far
exceeds the number present in a semiconductor. This equi-
libration happens through electron transfer across the inter-
face, which results in formation of the space-charge layer—
also called the “depletion layer” since the surface region of
the semiconductor is depleted of its majority carriers. It is
important to realize that, in the case of an n-type semicon-
ductor, this interfacial charge-transfer process produces an

excess of positive charges in the semiconductor (immobile
charges of ionized donors) and an excess of negative charges
in the electrolyte. With more electrons exchanged, the elec-
tric field of the negative charges on the solution side hinders
further electron transfer so that the equilibrium is established
in which no net charge flow occurs. As a consequence, the
bands are bent upwards, which can be understood in terms
of a continuously growing barrier for interfacial electron
transfer when moving from the bulk of the semiconductor to
the interface due to the continuously less efficient screening
of the negative charges in the solution by the positive charges
in the depletion layer [127]. The height of the barrier is the
energy difference between the conduction band edge in the
bulk (EC) semiconductor and the conduction band edge at
the surface (EC,S) and corresponds to the potential drop in
the space-charge layer US.

The charge distribution scenario at semiconductor/elec-
trolyte interface is summarized in Figure 4. Importantly,
three distinct double layers can be distinguished at the
interface. First, it is the semiconductor space-charge layer
with positive charges in the form of ionized donors and the
counter negative charge located at the surface. The second
one is the Helmholtz double layer consisting of the inner
Helmholtz plane (IHP) and the outer Helmholtz plane
(OHP). The first is located at the semiconductor surface,
and the charge is in the surface states or at the location of
specifically adsorbed ions, whereas the latter denotes the
position of the closest approach of hydrated mobile ions.
Finally, there is the Gouy-Chapman layer which is extended
region with an excess of free ions of one sign. Essentially,
the double layers act as parallel-plate capacitors connected
in series with capacitances CSC, CH, and CG representing
the capacitance of the space-charge layer, the capacitance
of the Helmholtz double layer, and the capacitance of the
Gouy-Chapman layer, respectively, whereby CG can be
typically neglected for electrolytes containing relatively high
concentrations of redox species (Figure 4(d)).

The simplest quantitative description of the situation
at the semiconductor/electrolyte interface [125–129, 157] is
analogous to the Schottky diode model and is based on the
following assumptions: (i) ideal, crystalline semiconductor,
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homogeneous donor level near the conduction band (oxygen
vacancies in the form of Ti3+ sites in case of TiO2) with
all donors ionized (all the electrons from the Ti3+ donors
have been thermally excited to the conduction band); (ii) no
surface states; (iii) potential drop in the Helmholtz layer can
be neglected. The potential and charge distribution within
the space-charge layer can be then described by a one-
dimensional Poisson equation:

∂2ϕ

∂x2 = −
1

εε0
ρ, (1)

where ϕ is potential, x is distance, ε and ε0 are the relative
permittivity of the semiconductor and the permittivity of
vacuum, respectively, and ρ is the volume charge density.
After two integrations assuming ρ = qN (q is the elementary
charge; N is the doping concentration) and the boundary
conditions dϕ/dx = 0 for x = W and ϕ = 0 for x = W

(see [125, 126, 128] for details), one obtains the following
relation for the width of the space-charge layer W :

W =

∣

∣

∣

∣

∣

2εε0

qN

(

US −
kT

q

)
∣

∣

∣

∣

∣

1/2

, (2)

where US is the potential drop in the space-charge layer
which can be obtained as

US = Eappl − EFB (with external polarization) (3)

or

US = EF,redox − EFB (without external polarization),
(4)

where Eappl is externally applied potential and EFB is the
potential at which US = 0 and the bands in the semicon-
ductor are “flat” (flatband potential). It is now clear that the
value of EFB is of fundamental significance since it gives a
direct information on the position of the conduction band
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edge at the n-type semiconductor’s surface (EC,S), assuming
that the difference between EFB and EC,S is very small for
doped semiconductors. In other words, the determination of
the conduction band edge of thin compact TiO2 films often
translates into the measurement of the flatband potential (for
more details, see below). However, it should be emphasized
that, in the context of nanomaterials, the above described
formalism applies only to thin compact highly doped TiO2

films that behave in a manner similar to compact crystalline
semiconductors. In contrast, in small TiO2 particles and
in highly porous nanocrystalline electrodes, the formation
of the space-charge layer is improbable due to the very

small crystallite size [158–163]. In other words, the nearly
depleted small TiO2 crystals do not contain enough electrons
in order to create an effective space-charge layer. Several
methods suitable for the determination of band edges in such
nanocrystalline systems will be presented below.

2.2. pH Dependence of the Position of Band Edges. The posi-
tion of the band edges at the surface (EC,S) is determined by
the charge at the surface, that is, by the potential drop in the
Helmholtz layer UH:

EC,S = E0
C,S − qUH, (5)
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where E0
C,S is the position (on the energy scale) of the

conduction band edge at the surface at UH = 0. The
Helmholtz double layer at semiconductors is typically deter-
mined through adsorption and desorption processes, which
is particularly true for ionic oxide semiconductors like TiO2

in aqueous electrolytes. In this case, the protons and hydroxyl
groups play an essential role while the specific adsorption of
other ions can be in most cases neglected.

In essence, the lattice Ti atoms act as Lewis acid sites
and make the adsorption of hydroxyl ions possible, whereas
the bridging lattice oxygen attracts protons and acts thereby
as a Lewis base site. Hence, depending on the pH, the
semiconductor surface becomes charged either positively or
negatively (Figure 5). The pH value at which the net surface
charge is zero is called the isoelectric point (pHIEP) or the
point of zero zeta potential (pzzp). (Here, it should be noted
that pHIEP and pzzp are not necessarily identical with the
point of zero charge, pzc, that denotes the pH value at
which H+ and OH− are adsorbed in equal amounts; when
other ions than H+ and OH− are present and influence the
charging of the surface, the pzc and the pHIEP are not equal).
The pH dependence of the conduction band edge at the
surface can be then derived as follows [125]. Assuming pH <
pHIEP, we obtain the following equilibrium reaction:

H3O+
⇋ HS

+ + H2O, (6)

where H3O+ is a hydroxonium ion in the solution and HS
+ is

an adsorbed proton. The equilibrium is described by
[

HS
+]

[

H3O+] = exp

(

−
∆G

kT

)

= A exp

(

−qUH

kT

)

, (7)

where ∆G is the free Gibbs energy, UH is the potential drop
in the Helmholtz double layer, and A is a constant (assuming
that ∆G varies linearly with UH). Assuming [H3O+] ≫

[HS
+], the following relation can be obtained:

qUH = B + kT ln
[

H3O+] = B − 2.3kT pH, (8)

in which B = 2.3kT (pHIEP) assuming UH = 0 at pHIEP. By
combining (5) and (8), we obtain now

EC,S = E0
C,S + 2.3kT

(

pH− pHIEP

)

. (9)

Accordingly, with increasing pH, the band edges at the
surface shift to higher energies (on the energy scale), that is,
to more cathodic potentials (on the electrode potential scale),
whereby the shift at 298 K is typically ∼ 0.059 V/pH unit.

2.3. Non-Ideal Behavior due to Surface States. The theoretical
considerations described in Sections 2.1 and 2.2 assume that
the charging of the semiconductor surface (i.e., the position
of its band edges) is independent of the applied potential
(applied bias voltage is effectively “consumed” within the
space-charge layer) or irradiation (minority charge carriers
are efficiently scavenged by species in the electrolyte). How-
ever, many semiconductors can have localized surface energy
levels in the bandgap—the so-called “surface states”—which
are typically related to crystal defects or surface damage,
or they may result from surface reactions occurring in
the dark or under illumination [128, 168, 169]. Obviously,
relatively high density of surface states can be present at the
surface of doped or surface-modified TiO2-based materials.
It is important to realize that the presence of surface states
can have significant effects on the position of band edges.
During electrode polarization, the Fermi level can match the
energy level of the surface states, which will lead to their
charging. This might result in the change of the net charge
at the surface (i.e., change in the potential drop across the
Helmholtz layer), which will cause a shift of the band edge
positions. Similarly, during irradiation, the surface states
may act as traps for photogenerated charge carriers. Thus,
for example, the minority charge carriers (holes in case of n-
type TiO2) or charged surface intermediates can accumulate
at the surface, which will again lead to changes in the surface
charging and result in “unpinning” of band edges [170].
In photoelectrochemical experiments, these problems can
be to some extent avoided by adding efficient scavengers of
minority charge carriers into the electrolyte [171].

2.4. Theoretical Predictions of the Position of Band Edges.
Butler and Ginley introduced a theoretical approach for the
prediction of the position of band edges using the following
relation [125, 164]:

E0
C,S = Ee − X +

1

2
Eg, (10)

where Ee is the energy of free electrons on the hydrogen
scale (4.44 ± 0.02 eV), Eg is the bandgap energy, and X
is the Sanderson electronegativity of the semiconductor,
expressed as the geometric mean of the electronegativities
of the constituent atoms, which are defined after Mulliken
as the arithmetic mean of the atomic electron affinity and
the first ionization energy (both in eV). Calculation for TiO2

gives X = 5.8 eV, which (assuming (1/2)Eg = 1.6 eV
for anatase) yields the value of E0

C,S of +0.24 eV (relative to
standard hydrogen electrode on the energy scale, i.e.,−0.24 V
versus NHE on the electrode potential scale). Interestingly,
this result is only by∼0.1 V more negative than experimental
results obtained by measurements on anatase single crystals
[172]. Although several more sophfisticated theories based
on DFT calculations have been developed recently [173–
175], the theoretical predictions cannot be always expected
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to yield sufficiently reliable results, mainly in case of doped
and surface-modified TiO2-based materials.

2.5. Spectroscopic and Contact Potential Difference Techniques.
Obviously, some key quantities related to the positions of
energy bands (see Figure 3) can be obtained also from
spectroscopic and contact potential difference measurements
performed in a “dry” (or “semidry”) state. Thus, for example,
the ionization energy of the semiconductor (IES, defined as
the energy needed to excite an electron from the valence
band edge at the surface to the local vacuum level) can be
measured by photoemission spectroscopy (e.g., UPS) [176].
On the other hand, the Kelvin probe method can be used for
determination of the contact potential difference (CPD), that
is, of the difference between the work function of a semicon-
ductor and the work function of the metal tip of the probe
(with known position on the energy vacuum scale) [177].
Moreover, the latter technique can be combined with illu-
mination in the so-called surface photovoltage spectroscopy
in which the changes of the CPD (i.e., of surface voltage)
upon illumination are measured [178, 179]. Importantly, the
saturation surface photovoltage is then directly related to
the difference of the position of the Fermi level in the dark
and the position of the quasi-Fermi level under illumination
[180]. As an alternative to the Kelvin probe technique, the
surface photovoltage can be also measured directly utilizing a
metal-insulator-semiconductor structure and using chopped
illumination in conjunction with lock-in detection of the
surface photovoltage signal [178, 179]. Importantly in the
context of this paper, a standard surface photovoltage
measurement can typically be performed also in the presence
of adsorbents like water molecules at the surface of the
semiconductor (“semidry” state) [181]. Moreover, the Kelvin
probe measurements of photoelectrodes immersed into
electrolyte have been reported, whereby the electrode and the
electrolyte were separated from the Kelvin probe tip by a very
thin glass plate [182]. This method has been, for example,
used for the estimation of the quasi-Fermi level in the TiO2

nanocrystalline layers of dye-sensitized solar cells [183].
A more detailed discussion of these approaches is

beyond the scope of this paper. Herein, we deal mainly with
TiO2-based materials for use in photocatalysis and pho-
toelectrochemistry and the focus is on electrochemical
and photoelectrochemical methods addressing the band
energetics directly under operational conditions in (mostly
aqueous) solutions. As already mentioned, experimentally
the problem of determination of the band edge position
is typically addressed by the measurement of the flatband
potential or of the quasi-Fermi level. Several electrochemical,
photoelectrochemical, and spectroelectrochemical methods
will be now discussed in more detail.

3. (Photo)electrochemical Methods

3.1. Capacitance Measurements on Thin Compact Films. As
already noted above, since thin compact TiO2 films (e.g.,
dense anodic TiO2 films on Ti) behave similarly to conven-
tional macroscopic semiconductor electrodes, the Schottky

formalism can be applied and their conduction band edge
potential can be measured as the flatband potential. Using
the model of a parallel-plate capacitor, the Mott-Schottky
relation can be obtained from (2):

1

C2
SC

=
2

εε0qND

(

Eappl − EFB −
kT

q

)

. (11)

The interface double layer capacitances CSC and CH can be
treated as two capacitors connected in series (Figure 4(d)).
The overall capacitance C is then given by

1

C
=

1

CSC
+

1

CH
. (12)

Under some conditions (a single crystal-like behavior, mod-
erate doping, surface states neglected), it can be assumed that
the width of the space-charge layer is much larger than the
width of the Helmholtz layer, which yields CSC ≪ CH and,
accordingly, C ∼= CSC.

A widely used technique for the determination of the
capacitance is the measurement of impedance. In these
experiments, an ac-voltage signal of small amplitude is used
for the perturbation of the sample. From the current
response, the impedance value and the phase shift can be
determined. There are essentially two common impedance
techniques, which enable us to get information about the
capacitive behavior of a system. Either the impedance
spectrum for a certain range of frequencies is measured
(usually under potentiostatic conditions) or one particular
frequency is chosen and the impedance is measured at
constant frequency in dependence on the applied potential.
Using the latter technique, the capacitance of the space-
charge layer can be calculated from the imaginary part of
measured impedance:

Csc =
−i

2π f Zim
, (13)

where Zim denotes the imaginary part of impedance, i is
imaginary unit, and f is the frequency of ac-voltage signal.
For determination of Csc, a relatively high frequency is
usually chosen and a simple equivalent circuit (neglecting
the capacitive contribution of other elements) is employed
for the interpretation of measured data.

From the resulting Mott-Schottky plot (CSC
−2 versus E;

see Figure 6), the flatband potential EFB and the doping
density ND can be now obtained as the intercept with the
x-axis and from the slope of the linear part. The value of the
flatband potential from capacitance measurements on single-
crystal anatase is reported to be −0.16 V versus NHE (pH 0)
with a Nernstian behavior exhibiting a shift of −0.06 V/pH
unit [172]. However, it should be noted that the impedance
response of the probed system often contains all contri-
butions of the experimental setup, including back contact
capacitance, sample resistance, electrolyte resistance, capaci-
tance and resistance of Helmholtz layer and of surface states,
which sometimes causes non-ideal behavior and makes it
difficult to obtain reliable values of EFB (see Figure 6) when
using highly simplified equivalent circuits as in Figure 4(d).
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electrolyte at three different frequencies on compact anodic TiO2

layers. The frequency dispersion is a frequent phenomenon related
to the nonideality of the semiconductor.

3.2. Photocurrent Onset Measurements. Another common
method for the determination of the position of the conduc-
tion band edge is a measurement of the potential dependence
of photocurrent. The principle of photocurrent generation
is explained in Figure 7. If a compact n-type semiconductor
(like, e.g., a dense anodic TiO2 film on Ti) immersed in
the electrolyte under depletion conditions is irradiated with
light of higher energy than that of its bandgap, electron-
hole pairs are generated and separated in the potential
gradient of the space-charge layer (Figure 7(a)). In the case
of an n-type semiconductor, this potential gradient drives
photogenerated holes toward the semiconductor/electrolyte
interface and electrons toward the interior of the electrode
and from there to the electrical connection to the external
circuit. Accordingly, anodic (positive) photocurrents are
typically observed at TiO2 photoelectrodes. Obviously, if
we sweep the potential of the photoelectrode in cathodic
direction (upwards on the potential scale), the band bending
will be less and less pronounced. The diminished potential
gradient and thickness of the space-charge layer will lead to
enhanced recombination of photogenerated charges, which
will, in turn, lead to constant decrease of photocurrents
during the cathodic potential sweep. Finally, at the flatband
potential, the photocurrent should disappear totally [184].
Hence, this so-called “photocurrent onset” potential can be
considered to coincide with the flatband potential and to
merge practically with the conduction band edge.

Interestingly, similar principle applies also in case of
nanocrystalline porous electrodes, in which the photogen-
erated charge separation is not controlled by the potential
gradient over the space-charge region since the crystallite size
is too small to support an effective depletion layer [158, 159].

Here, the photocurrent is determined by the efficiency of
photogenerated electron/hole transfer at the semiconduc-
tor/electrolyte and semiconductor/substrate interface [160–
163]. This is schematically illustrated in Figure 7(b) which
shows the mechanism of photocurrent generation at TiO2

particles deposited on the conductive glass substrate (e.g.,
ITO). Assuming the presence of suitable redox species in
the electrolyte, photogenerated holes immediately react with
these at the surface of the particles. The photogenerated elec-
trons can be transferred to the underlying conductive glass
substrate, assuming that the Fermi level of the conductive
glass is positive enough. Hence again, by moving the Fermi
level of the ITO electrode cathodically, we should observe
the disappearance of photocurrents when the potential of
the underlying electrode (the Fermi level of ITO) reaches the
quasi-Fermi level of TiO2 particles, that is, their conduction
band edge. In order to avoid scavenging of photogenerated
electrons by oxygen dissolved in the solution, the electrolyte
should be deaerated by purging with an inert gas prior
to the measurement. Figure 7(c) shows a typical photo-
voltammogram recorded under interrupted illumination on
a dense compact TiO2 electrode during the cathodic sweep.
It should be noted that the absolute values of EC obtained
are sometimes anodically shifted since the recombination
becomes practically complete already at potentials relatively
far (0.1–0.3 V) from the conduction band edge. Nevertheless,
this method provides valuable information on shifts of
EC, particularly when a direct comparison can be drawn
from measurements on different samples under otherwise
identical conditions.

3.3. Open-Circuit Photovoltage Measurements. Apart from
the capacitance measurements and the photocurrent onset
determination, the value of EFB can be also determined from
the dependence of the electrode open-circuit potential (EOC)
on the illumination intensity (Figure 8). Under open-circuit
conditions, the photogenerated holes can accumulate at
the surface, which with increasing light intensity lowers the
barrier US (see Figure 3) for electrons until the electrons can
reach the surface at the same rate as holes. At the same time,
the quasi-Fermi level (measured as EOC) rises because of
the higher occupancy of the conduction band. Accordingly,
at sufficiently high-intensity, EOC becomes constant and
this value is very close to the potential of the conduction
band edge [80, 125, 185–187]. In order to avoid reaction
of photogenerated electrons with oxygen in the electrolyte,
which would decrease the photovoltage, it is necessary to
purge the solution with inert gas.

Figures 9(a), 9(b), and 9(c) show EOC versus relative light
intensity plots measured for a compact TiO2 film at different
pH values. It is seen that EOC becomes independent of inten-
sity when the latter exceeds relative values of 90%. The EFB

values plotted in Figure 9(d) show a nearly Nernstian linear
dependence on pH with EFB = (−0.17±0.02)−0.054(pH) V
versus NHE, in agreement with values reported for anatase
TiO2 [172]. Interestingly, the open-circuit photovoltage
method yields reliable results also in case of nanocrystalline
photoelectrodes [188, 189]. Under high-intensity illumina-
tion, the electrons accumulating in the conduction band and
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traps right bellow the conduction band edge cause the Fermi
level of the conductive glass substrate to shift to the vicinity of
EC of TiO2. It is again emphasized that intense purging with
inert gas is absolutely necessary in order to avoid scavenging
of photogenerated electrons by oxygen dissolved in solution.

3.4. Spectroelectrochemical Measurements on Transparent
Films. The fact that many nanocrystalline films are trans-
parent offers the possibility to determine the position of
the conduction band edges using the spectroelectrochemical
method of Fitzmaurice et al. [190–192]. The principle of

this method is schematically depicted in Figure 10. The
Fermi level of ITO, EF (ITO), can be controlled by applied
potential, whereas the position of the conduction band
edge of the transparent nanocrystalline TiO2, EC (TiO2),
depends only on the pH of the solution. At a constant pH,
applying potentials more negative than EC (TiO2) leads to
injection of electrons from ITO into the conduction band of
TiO2 (Figure 10(b)). During injection of electrons into the
conduction band, the TiO2 nanoparticles are not at thermo-
dynamic equilibrium anymore; the Fermi level of TiO2 is
therefore properly designated as a quasi-Fermi level, ∗EFn,
and practically merges with the conduction band edge, EC.
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The occupation of states near the conduction band edge
results in a shift to higher energies of the bandgap absorption
edge (i.e., hν2 > hν1 in Figures 10(a) and 10(b))—the so-
called Burstein-Moss shift [193, 194]. From the spectroscopic
point of view, this has two consequences. First, at potentials
more negative than EC (TiO2), the difference in absorbance
at wavelengths lower than the typical absorption band edge
(e.g., at 350 nm) becomes negative. Second, the absorbance
at 780 nm increases due to the intraband transitions of free
electrons in the conduction band (Figure 10(c)) [190, 191,
195].

In this context, it should be noted that the nanocrys-
talline TiO2 has often a high density of electron traps that
are distributed exponentially in the bandgap below the con-
duction band edge [196–200]. These traps can be obviously
filled at potentials slightly more positive than EC and can
also contribute to absorbance changes. This means that in
practice it might be difficult to discern where exactly the rise
in absorbance coincides with the potential of the conduction
band edge. Figure 11(a) shows the absorbance changes at
λ = 780 nm of a transparent nanocrystalline TiO2 film at two
different pH values. The potentials of ∗EFn were in this case,
somewhat arbitrarily, read off at points where the absorbance
change was approximately 0.005. The ∗EFn values (which

coincide with the EC values) plotted in Figure 11(b) show
a nearly Nernstian linear dependence on pH with ∗EFn =

(−0.21± 0.05)− 0.058(pH) V versus NHE.

3.5. Quasi-Fermi Level Measurements on TiO2 Powder Sus-
pensions. In the field of heterogeneous photocatalysis, TiO2-
based materials are often employed in the form of nanocrys-
talline powders. The quasi-Fermi level of electrons, ∗EFn, can
be in case of powder suspensions determined by the method
of Roy et al. [29, 201] that draws on a similar method intro-
duced previously by Bard et al. [202–204] In Roy’s method,
the pH dependence of the potential of a platinum electrode
immersed in an irradiated suspension of a semiconductor
powder (Figure 12) is recorded in the presence of an electron
acceptor with pH-independent reduction potential. As an
electron acceptor, MV2+ (methyl viologen; 1,1′-dimethyl-
4,4′-bipyridinium dichloride; EMV2+/+• = −0.45 V versus
NHE) [130] is typically used (Figure 12(b)).

The principle of the method is depicted in Figure 13. At
the beginning of the measurement, the pH of the solution
is very low and the electrons generated in the conduction
band do not have enough reducing power to reduce MV2+

(Figure 13(a)). Upon increasing the pH of the solution, the
band edges of TiO2 shift to more negative potentials (see
above Section 2.2), which makes at some point the electron
transfer to MV2+ in the electrolyte possible (Figure 13(b)).
The platinum electrode serves as a simple redox electrode
in this case, and its potential shifts more negative with
the increasing concentration of the reduced form of methyl
viologen (MV+•) in the solution. The inflection point (pH0)
of the potential-pH curve (Figure 12(c)) determines the
pH value at which ∗EFn coincides with EMV2+/+• . Assuming
Nernstian shift of band edges (0.059 V/pH unit) [125],

∗EFn = EMV2+/+• + 0.059
(

pH0 − pH
)

. (14)

Using this procedure, ∗EFn at pH = 7 of anatase TiO2 powder
(Hombikat UV 100) was determined as−0.60±0.02 V versus
NHE, which is in a very good agreement with reported
values for single-crystal anatase (−0.58 V versus NHE) [172].
It should be also noted that efficient scavenging of photo-
generated holes is essential during these measurements. In
some cases—on doped or surface-modified TiO2 samples,
for example—an additional hole scavenger must be added in
order to avoid severe recombination. Such a scavenger should
be very easily oxidizable (e.g., iodide), and at the same time
it should not produce strongly reducing radicals upon one-
hole oxidation (e.g., ethanol, isopropanol) since these are
also able to reduce MV2+, which would falsify the resulting
values of ∗EFn [205].

4. Conclusions

TiO2 nanomaterials play a key role in the development of
various kinds of photochemical systems and devices, par-
ticularly in the field of heterogeneous photocatalysis and
photoelectrochemistry. In the last years, we have witnessed a
real boom of diverse strategies for fabrication of new types of
TiO2-based materials showing an extreme variety in terms of
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composition, morphology, and surface properties. Although
the knowledge of the position of the band edges on the
potential scale is a crucial prerequisite for understanding the
photoactivity of the system and for further optimization of
its performance, it has been in recent years typically only

rarely directly experimentally addressed. In this paper it has
been shown that in case of TiO2 the general strategy for band
edges determination usually consists in the measurement
of the flatband potential and/or the quasi-Fermi level of
electrons. Apart from “classical” approaches (capacitance
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measurements) developed in the field of semiconductor
physics for well-defined samples in the form of single crys-
tals, several novel techniques have been developed recently.
These are particularly important since they are also suitable
for measurements on non-ideal nanostructured, porous,
and particulate materials, which represent the majority of
currently newly developed materials. The methods dis-
cussed above included elaborate photoelectrochemical and
spectroelectrochemical methods applicable on compact and
nanocrystalline thin films, as well as on powder suspensions.
Obviously, in case of many systems, a combination of several
methods will give a more solid and complete assessment of
the energetics at the solid/solution interface. It is hoped that
this paper will serve as a useful resource for many scientists
working in the field of photoactive nanomaterials and as
an impetus for the development of further methods that
will allow for better understanding and improvement of the
photoactivity of photochemical systems and devices.
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