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Abstract 

The large diversity of applications in our daily lives that rely on photodetection 

technology requires photodetectors with distinct properties. The choice of an adequate 

photodetecting system depends on its application, where aspects such as spectral 

selectivity, speed and sensitivity play a critical role. High sensitivity photodetection 

covering a large spectral range from the UV to IR is dominated by photodiodes. To 

overcome existing limitations in sensitivity and cost of state-of-the-art systems, new device 

architectures and material systems are needed with low-cost fabrication and high 

performance. Low dimensional nanomaterials (0D, 1D, 2D) are promising candidates 

with many unique electrical and optical properties and additional functionalities such as 

flexibility and transparency. In this perspective, the physical mechanism of photo-FETs 

(Field Effect Transistors) is described and recent advances in the field of low-dimensional 

photo-FETs and hybrids thereof are discussed. Several requirements for the channel 

material are addressed in view of the photon absorption and carrier transport process, 

and a fundamental trade-off between them is pointed out for single-material based 
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devices. We further clarify how hybrid devices, consisting of an ultrathin channel 

sensitized with strongly absorbing semiconductors can circumvent these limitations and 

lead to a new generation of highly sensitive photodetectors. Recent advances in the 

development of sensitized low-dimensional photo-FETs are discussed and several 

promising future directions for their application in high sensitivity photodetection are 

proposed. 

 

Photodetectors are one of the key components in many optoelectronic devices which transduce 

optical into electrical information. Today, photodetectors have reached a mature technology 

level and address a huge application spectrum including imaging, remote sensing, fibre-optic 

communication and spectroscopy among many others. However, to tackle challenges and to 

surpass existing limitations in sensitivity of state-of-the-art photodetector systems, new device 

architectures and material systems are needed which offer low-cost fabrication and high 

performance over a wide spectral range. The active research field on photodetection grows and 

many novel nanostructured material systems1 have been employed for light sensing including 

Quantum dots2,3, Perovskites4,5, organic molecules and polymers6,7, Carbon Nanotubes8,9, 

Graphene10,11 and the large field of semiconducting 2D materials such as the transition metal 

dichalcogenides (TMDCs) and black phosphorus12,13.    

 

Photodetector performance is governed by both the optical and electronic properties of the 

employed semiconductor. The former determines the spectral coverage and quantum efficiency 

of the detector whereas the latter determines, through the carrier transport and carrier density, 

the amount of dark current flowing through the device, as well as the efficiency of charge 

separation and collection upon illumination. The key parameters for a strong signal response 

are a high photon to electron conversion rate (quantum efficiency) and ideally an inherent gain 
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mechanism, which yields multiple carriers per absorbed photon. The response signal is then 

weighed against the noise portion of the ratio, which has to be minimized for maximum 

sensitivity. There are several device-external noise sources, such as the photon noise due to the 

statistical arrival of photons on the device or the read-out noise in photodetector arrays that 

originates in preamplifier electronics. Here, we will put emphasis on the device (photodetector 

pixel) inherent noise, which stems partially from thermally generated charge carriers and also 

from the intrinsic carrier density that contribute to the dark current of the device (shot noise 

limit) as well as flicker noise (1/f). It is however important to note that the sensitivity of a 

detector with inherent noise lower than the noise floor of commercially used CMOS read-out 

circuits, typically met in photodiodes, is limited by the latter, thus a photodetector technology 

with an inherent gain mechanism is desired to alleviate this effect. 

The relevant performance metrics and terminology used throughout this article are described 

in Box 1. 

 

Box 1 – Performance metrics for photodetection 
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The fundamental process behind photodetection is absorption of light. Responsivity R, a 
measure of output current per incoming optical power in units of A/W, describes how a detector 
system responds to illumination. Responsivity depends on the incident wavelength, light 
modulation frequency and applied bias voltage. The response of a detector to light is primarily 
determined by the conversion efficiency of photon flux into electron flux, known as the 
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quantum efficiency (QE). The quantum efficiency typically takes into account all kind of 
external losses such as reflection and scattering and is often called external quantum efficiency 
(EQE). It is defined as the ratio of extracted electrons to incident photons, with a value between 
0 and 100 %, unless carrier multiplication effects are present. In photodiodes the gain is equal 
to unity (G = 1) and charge extraction happens on extremely short time scales. The responsivity 
according to the equation above is then solely determined by the quantum efficiency. For 
instance, in the ideal case of 100 % conversion efficiency at a wavelength of 630 nm, the 
responsivity is 0.5 A/W. 
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In photoconducting systems a photoconductive gain mechanism can be present. In the most 
common case, one carrier type is trapped and the other is free to traverse the channel. If the 
trapping time, also referred to as lifetime, is longer than the transit time of free carriers, 
photoconductive gain is generated. This can lead to a large responsivity in orders of magnitude 
higher than for photodiodes. A similar effect is achieved in the case of imbalanced transport of 
electrons and holes (i.e. the mobility of one type of carriers differs than that of the other type). 
Photoconductors with large gain usually show rather slow response times as described by the 
so called gain-bandwidth trade-off. Since the response time constant and the photoconductive 
gain are dominated by the lifetime of trapped carriers, increasing gain decreases the operation 
bandwidth. This trade-off must be considered when designing detectors for specific 
applications. 
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The ultimate figure of merit to describe sensitivity of photodetectors includes both the response 

to light and the noise floor. The higher the signal-to-noise (SNR) ratio, the easier it is to detect 

the light signal. The lowest detectable power, when SNR = 1, defines the sensitivity limit of 

the detector and is called noise-equivalent power NEP. The noise equivalent power depends on 

many parameters that have to be taken into account and specified, such as detector area A, 

electrical bandwidth B and modulation frequency f. To facilitate the direct comparison between 

different detector architectures independent of area and bandwidth, a figure of merit named 

specific detectivity D* has been introduced. The detectivity still depends on certain 
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measurement conditions such as bias voltage, wavelength, temperature and modulation 

frequency, which have to be specified for comparison with other systems. State-of-the-art 

detectors such as silicon or InGaAs diodes demonstrate detectivities on the order of 1012 - 1013 

Jones at room temperature. 

Note: The noise current iN comprises all noise sources present in a detector. The magnitude of 

noise at its operation frequency can be extracted from the spectral density of noise. Low-

dimensional photo-FETs have been demonstrated to possess large flicker noise (1/f) 

components in the frequency range < 1kHz, at which they are usually operated. However, the 

detectivity is often stated in the shot-noise limit in which only the shot-noise current ISN = 

(2qIdark)1/2 is considered. The detectivity in the shot-noise limit can therefore overestimate the 

measured real detectivity by orders of magnitude in the discussed systems and careful attention 

is needed in the interpretation of the data. In addition to this, it should also be noted that once 

low dark current has been achieved and once the 1/f noise challenge has been addressed in 

these sytems, the Johnson noise will eventually take over determining the ultimate sensitivity 

of the device and thus should not be neglected in otherwise optimized detectors. 

 

Photodiodes and photoconductors. 

The two most common photodetector types are photodiodes and photoconductors. Photodiodes 

typically form a p-n-junction between oppositely doped semiconductors, a Schottky-junction 

between a doped semiconductor and one of the metal electrodes or one or more blocking 

contacts between intrinsic semiconductors or intrinsic semiconductors and metals (as in the 

case of polymer or perovskite based photodiodes) . The junction leads to charge carrier 

separation after the excitation process and electrons and holes drift in different directions 

towards the electrodes driven by the built-in electric field at the interface or by diffusion to 

selective contacts. The response time of diodes is determined by the transit time of carriers to 

their corresponding electrodes, leading to high-bandwidth operation in high carrier mobility 

semiconductors. The signal strength detected in diodes is dictated by the quantum efficiency. 

As charge carriers are separated by a built-in field at the junction, the device can at its best 

produce one electron-hole pair per absorbed photon, corresponding to a quantum efficiency of 

100%. The potential barrier at the junction prohibits charge carrier recirculation and limits the 

response signal of photodiodes to unity gain. However, the SNR of photodiodes also benefits 

from the junction barrier as only few thermally generated carriers can cross the junction and 



6 
 

extremely low dark currents are achieved. The final limitation of sensitivity in this device 

configuration is likely to be given by external readout noise from preamplifiers. A particular 

class of photodiodes, the avalanche photodiodes (APDs) which are essentially photodiodes 

operated near the break down regime offer the possibility of extracting multiple carriers per 

single photon, similar to the concept of gain. Yet it has to be emphasized that this carrier 

multiplication effect present in APDs is qualitatively distinct than that of the gain in 

photoconductors. The carrier multiplication effect is due to quantum efficiency exceeding unity 

as the multiplication process takes place within the primary photocarrier generation. As a 

results APDs have the potential to reach simultaneously high responsivities at very bandwidth. 

The value of gain in APDs is typically on the order of 10-100 electrons per photon and requires 

the application of very high bias, typically exceeding 50-100 V. As a result the use of APDs is 

limited to metrology equipment where very high sensitivity and short time response is needed 

and the use of high bias and bulky electronics can be tolerated.  

 

Photoconductors, on the other hand, can be operated at dark currents with noise levels beyond 

the read-out noise floor and have the potential to reach higher sensitivity than photodiodes. A 

photoconductor, in its most basic configuration, consists of a homogenous semiconductor slab 

with two ohmic metal contacts (drain D and source S). Photo-excited charge carriers are 

separated by an applied voltage VDS and induce a change of carrier density which increases the 

devices` conductivity. In photoconductors the photoconductive gain can be present and is 

generated as soon as one photo-excited electron (hole) traverses the electrode spacing more 

than one time before recombination with a hole (electron). The most common reason for gain 

is trap-states (sensitizing centers) within the bandgap of the semiconductors, which capture and 

localize one charge carrier type and effectively prolong its carrier lifetime τ Lifetime. The 

opposite carrier freely moves between source and drain driven by the applied electric field. The 
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photoconductive gain G is then defined as the ratio of lifetime and transit time (see Box 1). 

Photoconductors with large gain usually show orders of magnitude slower response times than 

diodes, because both the time constant and the gain are given by the lifetime of the trapped 

carriers. However, they have the potential for extremely high sensitivity due to the gain 

mechanism. Ideal conditions for gain are met in high mobility semiconductors with high quality 

ohmic contacts, since Schottky-barriers at the contacts can strongly impede efficient charge 

replenishment and reduce photoconductive gain. Ohmic contacts, however, also imply large 

dark currents and therefore large photoconductive gain does not necessarily lead to higher 

SNR, as it is often assumed. While the SNR of a detector pixel with gain is maintained rather 

constant due to simultaneous amplification of signal and noise, the real benefit of gain is to 

raise the signal above the noise floor of the readout system to avoid performance limitations 

by the signal processing electronics. An optimized point of gain-operation has to be found, 

since the high dark currents of devices with extremely large gain lead to other fundamental 

drawbacks such as high power consumption. Additionally it adds on the complexity of the 

signal read-out process as large dark currents saturate read-out electronics6, calling for design 

of complex read-out schemes.  

Another class of photodiodes has been introduced recently which can be considered as a hybrid 

photodiode-photoconductor systems [ Jinsong Huang]. In that case photogenerated carrier 

trapping at an interface (typically a Schottky junction) transforms, upon illumination, a 

rectifying contact into an ohmic contact, henceforth transforming the detector from a 

photodiode in dark into a photoconductor under illumination. 

 

Photo-FETs. 

A promising device architecture that can concomitantly achieve low dark current and high gain 

is the photo field-effect transistor (photo-FETs). As illustrated in Figure 1, the device 
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configuration is similar to lateral photoconductors with metal-semiconductor-metal 

architecture forming the source and drain electrodes. Yet a third contact, the gate electrode 

which is electrically isolated from the semiconductor channel by a thin dielectric film can be 

exploited to modulate the conductivity of the channel. An applied gate voltage VGS can be used 

to control electronically the carrier density by field-effect modulation and favourably switch 

off the dark current by operating the device in the depletion regime. The incident light activates 

the channel conductance of the device, through carrier photogeneration, which then ideally 

profits from a photoconductive gain mechanism as in photoconductors. For high performance 

photo-FETs, the channel material should ideally possess high carrier mobility for high gain-

bandwidth products, a moderately large and direct bandgap for efficient field-effect modulation 

and optical absorption, and a thin profile for full depletion and operation at ultralow dark 

currents. Moreover the channel material should exhibit very low trap state density to yield low 

sub-threshold swings. 

 

Especially the group of 2D layered materials fulfil most of these requirements. The discovery 

of graphene led initially to extensive studies on its own use for photodetection14–20, due to 

excellent charge carrier mobilities, broadband absorption, and mechanical flexibility. 

However, the lack of bandgap in graphene and its corresponding large dark currents remain 

one of the main challenges if operated in photo-FET configuration and demand special read-

out schemes in order to exploit the full potential of this material platform. 

Researchers soon expanded into other 2D materials21, which share similar properties like the 

atomic thickness and flexibility, but also complement graphene with further functionalities22. 

The group of semiconducting transition metal dichalcogenides (TMDCs) emerged as a 

promising candidate for both conventional semiconductor technology and flexible technology 

in view of its ultimate scalability down to the atomic level and the presence of bandgap. With 
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decreasing layer thicknesses, quantum confinement effects come into play, leading to a sizeable 

optical absorption edge between 1-2eV that is highly interesting for photodetection. Photo-

FETs based on plain MoS2
23–33, WSe2

34, MoSe2
35–37 and WS2

38–40 consisting of single- and 

multilayer nanosheets have been demonstrated. While sensitivity is limited to the visible for 

monolayers due to the direct bandgap, the bandgap turns indirect and shrinks with increasing 

layer number extending thereby detector sensitivity into the NIR region. Apart from the 

TMDCs many more layered material systems have been explored in photo-FET device 

configuration with similar performance, including other chalcogen-based materials such as 

GaS, GaSe, GaTe, SnS2, InSe, In2Se3
41–48 and the recently discovered black phosphorus41,49,50. 

Few-layer black phosphorus emerged as highly promising candidate with highest mobility 

reported of 1000 cm2/Vs and a thickness dependent bandgap from 0.3-2.0 eV51, an attractive 

spectral range that cannot be fully reached by TMDCs, yet its environmental stability remains 

a concern for robust devices. 

Molybdenum disulfide is one of the most studied semiconducting layered materials of all the 

aforementioned, due to the natural occurrence of MoS2 single crystals and its high performance 

on commonly used Si/SiO2 substrates contacted with standard contact metals. Monolayer MoS2 

photodetectors are especially promising for flexible and semitransparent device concepts due 

to its mechanical flexibility and strength52–55. One of the most intriguing properties of 

monolayer MoS2 is its large direct bandgap of 1.8eV, which leads to high absorption 

efficiency56,57 and large electrical on/off ratios. Experimentally on/off ratios of 108 have been 

reported58,59, with theoretical predictions60 even reaching 1010. The gate-tunable conductivity 

allows to fully deplete the MoS2 channel and due to the atomically thin profile of monolayer 

MoS2 extremely low off-current densities of 25fA/µm have been achieved to date59. This means 

that MoS2 photo-FETs with dimensions of 1um x 1um can already reach dark currents of only 
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1 order of magnitude higher than commercial, uncooled InGaAs photodiodes with the same 

dimensions. 

The optoelectronic response to light of monolayer and few-layer 2D semiconductors has shown 

an enormous variety in performance parameters, reporting responsivity from 10-3-103 A/W and 

temporal response times in the range of 10-5-10s.12,13 A prominent reason for that was found to 

be the large surface-to-volume ratio of 2D materials. Diverse substrate treatments prior to MoS2 

deposition have shown to strongly impact responsivity and response time by introducing trap 

states in the bandgap, which capture holes and increase their lifetimes leading to responsivity 

of 880A/W and decay times of 9s and longer23. Furchi et al. have shown that the photoresponse 

of MoS2 is based on two distinct mechanisms, the photogating and photoconducting effect30. 

The photogating mechanism originates from long-lived charge-trapping processes at surface-

bound water molecules or other surface adsorbates and is responsible for the extremely slow 

response dynamics and high responsivity values. The photoconducting mechanism has been 

demonstrated by applying two light sources, where a continuous light source fills adsorbate-

related traps and a rapidly modulated light source probes the material-related 

photoconductivity. Under these conditions much lower optical gain and fast response times are 

observed. An important step to successfully employ 2D materials as ultra-thin photodetectors 

is therefore to control the impact of substrate and surrounding atmospheric adsorbates, to 

achieve high sensitivity together with fast response times. A robust passivation scheme has 

recently been proposed by encapsulating MoS2 photo-FETs with atomic layer deposited (ALD) 

oxides58 such as HfO2 and Al2O3. The isolation from ambient air enhanced electronic properties 

and led to experimentally measured sensitivity of 1011 - 1012 Jones with decay times of 10 ms. 

The responsivity and temporal response could be tuned by field effect modulation by orders of 

magnitude with R = 10 – 104 A/W and corresponding time response of t = 10ms to 10s. The 

large responsivity of 104 A/W due to strong signal amplification was obtained in the 
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accumulation regime of the photo-FET, in which also highest dark currents are reached and the 

sensitivity of the detector dropped to its minimum. The large variety of reported performance 

parameters can be attributed to different environmental measurement conditions, different 

substrate treatments and optoelectronic characterisation under different backgate field strength. 

 

Trade-offs in low-dimensional photo-FETs. 

In photo-FETs based on single semiconductor channels such as plain TMDCs a trade-off is 

found, because both the absorption and the amplification process appear within the same 

channel. This dilemma is described in Figure 2. The two left columns depict the example of 

an extremely thin channel with thickness tch in the few-nanometer range compared to a rather 

bulky channel with tch in the range of a few hundred nanometer. Both show modulation curves 

as typically found for n-type semiconductors. While the thin channel reaches large on/off ratio 

and can be electrically operated in full depletion, the bulky channel suffers from largely 

reduced on/off ratio as the channel cannot be switched off entirely. The field-effect capacitive 

coupling mostly affects the lower part of the thick semiconductor and a significant amount of 

leakage current can still traverse trough the upper part of the channel increasing the dark 

current. The absolute optical absorption on the other hand is more efficient for thicker channel 

due to the longer optical absorption path of photons through the material slab.  

Another trade-off, which is inherent to many 2D layered semiconductors, is the thickness 

dependent spectral coverage. The thinnest channel possess the largest bandgap for these 

material family and are in favour for high electrical on/off ratios and operation at low dark 

currents. However, the large bandgap limits its absorption properties in the UV-visible part of 

spectrum. 

Apart from the low absolute absorption in ultra-thin channels, there are other mechanisms 

inherent to 2D materials like MoS2 that lead to recombination losses. Due to spatial 
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confinement in the z-direction and low electrostatic screening62, electron-hole pairs are 

strongly bound to each other, with reported exciton binding energies of 300-900 meV 63–66, far 

beyond the room temperature thermal energy of 25meV. Impractically high electric fields are 

needed to efficiently separate photogenerated excitons which easily recombine. Strong 

coulomb interactions in 2D materials have been shown to favour Auger scattering processes, 

which lead to capture of electrons and holes at defect sites and eventually high recombination 

rates resulting in poor quantum efficiencies of MoS2 optoelectronic devices67.  

The quantum efficiency of reported monolayer MoS2 photo-FETs can roughly be calculated 

from the measured responsivity and from an estimation of the photoconductive gain (Box 1). 

While the measured exponential decay time corresponds to the lifetime of photo-excited 

carriers, the transit time can be determined knowing the channel length, applied bias, and 

mobility. This simple estimation leads to rather poor quantum efficiencies of 0.0002 - 

0.02%23,26,58,67 and indicates a significant amount of recombination losses before the charge 

carriers can be extracted into the electronic circuit. It is noteworthy that a high density of 

shallow trap states within the bandgap can cause longer observed decay times than the actual 

lifetime of free carriers68. In that case, the above estimated quantum efficiency is 

underestimated and states a lower limit. 

 

This trade-off is a common issue for low-dimensional photodetectors and needs a new 

perspective for enhanced light-matter interaction. Next to plasmonics62 and optical cavities69 

for enhanced absorption, another very encouraging method is to sensitize a thin channel 

material with strongly absorbing semiconductors (sensitizers) of opposite doping polarity to 

create a vertical heterojunction (Figure 2, right column). The decoupling of the absorption 

process (in the sensitizer) from the charge transport (in the channel), allows operation of the 

thin channel in full depletion while the sensitizer provides high absorption, ideally without 
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interfering the electrical modulation. The thickness of the decorating sensitizer can be in 

dimensions similar to the discussed bulk case of a thick plain channel and thereby transport 

and absorption properties are similarly optimized. The built-in field at the junction plays a 

critical role in this novel device concept for efficient exciton separation and charge injection 

into the channel, as will be explained in more detail later. Its formation can be recognized by a 

vertical shift of the modulation curve IDS – VG under dark conditions due to the charge flow 

until the alignment of Fermi levels to equilibrium (see Figure 2 – right column).  

 

The device schematic in Figure 3 displays the working principle of a sensitized photo-FET, 

using the example of a 2D material channel decorated with colloidal QDs. After the absorption 

process, a fast recombination of photogenerated carriers is prevented due to spatial separation 

of carriers in the heterojunction. The p-n-junction between the oppositely doped 

semiconductors leads to a vertical photodoping effect and the injected electrons (holes) are 

transported laterally through the channel. As long as the holes (electrons) maintain trapped 

within the sensitizer, the electrons (holes) can recirculate the channel and generate gain. 

 

Despite the missing bandgap, graphene is an interesting candidate to form hybrid sensitized 

phototransistors, mainly due to its unprecedented high mobility and sensitivity to electrostatic 

perturbation by photo-excited charge carriers in its vicinity10. The high carrier mobility is 

promising for device concepts with large carrier multiplication and extremely high gain-

bandwidth products. Several sensitizers have been implemented including QDs70,71, 

Perovskites72, CNTs73 and even other 2D materials such as MoS2
74–76. The most sensitive 

graphene-based hybrid detector has been reported for a graphene/PbS QD combination. The 

ultrahigh gain of 107 electrons per photon has led to a detectivity beyond 1013 Jones, despite 

the large dark currents present in graphene70. 
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The growing amount of discovered semiconducting layered materials with large bandgaps and 

high in-plane mobility may even lead to higher performance in terms of sensitivity. Sensitive 

photo-FETs have been demonstrated by applying a similar approach employing a MoS2 

channel decorated with PbS QDs61. The spectral response of plain MoS2, covering solely the 

visible spectral range, was thereby increased to NIR/SWIR due to the tunable absorption 

spectra of colloidal quantum dots. The responsivity improved by several orders of magnitude 

over its single counterparts and reached values of 105-106A/W due to large carrier 

multiplication. However, the tremendous improvement in responsivity came with the loss of 

its initially high gate-tunable on/off ratios, the major strength of TMDCs to reach low off-

currents. A high density of interface traps was found to be the reason for the loss of gate-

control, which could be prevented by selective interface engineering of the MoS2/PbS 

interface77. A passivating TiO2 buffer layer has been implemented to preserve control of field-

effect modulated dark current and to strongly reduce noise. The device sensitivity and response 

time were thereby enhanced by more than an order of magnitude to an experimentally 

determined D* of 5*1012 Jones and 12 ms, respectively. In the shot-noise limit these devices 

can reach detectivities beyond 1014 Jones showcasing the immense potential of this device 

concept with further reduction of noise (mainly 1/f noise). An estimation of quantum efficiency 

based on the ratio of decay and transit time leads to considerable improvement over plain MoS2 

photo-FETs with values up to 28%. Compared to the aforementioned graphene 

phototransistors, the MoS2/TiO2/PbS hybrid could be operated at dark currents of more than 5 

orders of magnitude lower than typically reached in graphene devices. 

The concept of sensitized high mobility materials does not only apply to 2D layered materials. 

A hybrid photo-FET based on PbS QD/indium gallium zinc oxide (IGZO) has been 

developed78. The amorphous metal oxide semiconductor IGZO is a novel material with promise 

for low-cost and large-area thin film transistor technology79. Its application as a photo-FET 
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channel material enabled a highly sensitive hybrid photodetector with excellent 

photoresponsivity of 106A/W and detectivity of 1013 Jones in the NIR. Next to graphene also 

other carbon-based nanomaterials such as carbon nanotubes (CNTs) have been extensively 

studied for photodetection8,9. CNTs possess similarly large mobility from 102-104 cm2/Vs 

depending on fabrication method and the additional benefit of a bandgap for gate modulation 

with on/off ratios ranging from 103-106.80–82 Although its electrical properties are excellent for 

charge transport, the inefficient absorption within the one-dimensional body calls for a 

sensitizing approach. Light induced charge transfer, increased photosensitivity, and reported 

responsivities up to 102 – 104A/W have been achieved by combining CNTs with quantum 

dots83–85, perovskites86, polymers and molecules87–90, and fullerene (C60)91. In some of these 

device concepts the sensitizer is used for enhanced absorption and carrier injection of 

photoexcited charge carriers into the CNTs which serves as the transport medium. In others, 

the sensitizer is simply applied as a carrier acceptor to enhance the exciton dissociation in CNTs 

and to overcome the obstacle of fast recombination events due to the large exciton binding 

energies. 
 
 

Backgate dependent performance metrics. 

A major advantage of the sensitizing technique over single material photo-FETs is that the size 

of the channel bandgap can be arbitrary and it can be either direct or indirect as the absorption 

process is now outsourced to the sensitizer. It is consequently profitable to employ large 

bandgap materials for the transport channel to achieve large on/off ratios and low dark current 

in the depletion regime. Moreover, the channel material should provide high carrier mobility 

to obtain short transit times and to produce moderate photoconductive gain together with fast 

response times.  
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In Figure 3, two transfer curves of sensitized photo-FETs with a n-type semiconductor channel 

and a p-type sensitizer are compared in the real and the theoretically ideal case. Both devices 

are considered to be fabricated on the same substrate with equally thick dielectric oxide. Upon 

light illumination, the curves shift to the left indicating a n-type doping effect by electron 

injection from the sensitizer into the channel. If operated in its depletion regime (VG < VTh), 

the hybrid device shows lowest dark currents but also smallest photocurrents IPh. If operated in 

the accumulation regime (VG > VTh), the device exhibits extremely large dark currents but also 

higher photocurrents due to higher current amplification (gain). The ideal point of operation, 

named as most sensitive point VMSP, is located somewhere in between, close to the current onset 

of the characteristic transfer curve where the photo-FET operates at highest SNR. Comparing 

the real with the ideal case, it is obvious that significant improvement of device performance 

in terms of gain can be achieved for FET devices with faster switching from off- to on-states, 

leading to higher current amplification. Apart from high carrier mobility, which increases the 

slope of the transfer curve and thereby the photoconductive gain, ideal off-state conditions, i.e. 

a low inverse sub-threshold slope S = d(VGS)/ d(log(IDS)), can largely improve photo-FET 

performance. Several studies on transport mechanisms of FETs based on CNTs92–94, ultrathin 

Si MOSFETs 95, MoS2
96 and black phosphorus97 have demonstrated that the appearance of 

significant Schottky barriers (SB) at the metal semiconductor interface in these systems lead to 

decreased switching speed with subthreshold slopes far beyond the ideal 60meV/dec at room 

temperature. Unlike conventional Si MOSFETs, the gate voltage also modulates the SB at the 

contact and apart from thermionic emission a considerable tunnelling component is responsible 

for the current flow through the channel. To improve characteristic FET properties it is 

desirable to minimize the SB height and width to maximize the tunnelling probability. The 

detrimental impact of large Schottky barriers is one of the major remaining obstacles for FETs 

based on low-dimensional materials such as TMDCs. For better photo-FET performance it will 
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therefore be a critical step to achieve high contact quality, as it will not only improve gain but 

also impacts on noise operation 98. 

For few-layer TMDC FETs an improvement of contact resistance, subthreshold swing, and 

efficient charge injection has been demonstrated in different ways; (i) the choice of an 

appropriate metal contact which forms the lowest SB despite the occurring fermi level pinning 

effects. Encouraging results were reported for low work function metals96,99  and gate tunable 

graphene edge contacts100. (ii) A high degree of doping in the contact region of the channel to 

promote strong band bending at the metal-semiconductor interface and to make the SB thinner 

and therefore more transparent 101–103. (iii) The decrease of defect and trap density, caused by 

sulphur vacancies or the semiconductor/dielectric interface, improves the subthreshold swing 

due to a faster transition from the insulating regime, where EF lies within the bandgap, to the 

conducting transport regime, where EF lies inside the conduction band. The large amount of 

localized states next to the conduction band edge leads to a gradual transition from the one to 

the other. The conduction process in the region of localized states is based on variable range 

hopping (VRH)104–106 and thermally activated transport, whereas band-like transport dominates 

at higher carrier densities107. It was shown for MoS2 that a decrease in defect density can lead 

to shorter subthreshold swings63,108 and therefore a faster transition from off- to on-state. (iv) 

By operating the device at lower temperatures far superior mobility compared to room 

temperature operation have been demonstrated due to decrease of phonon-scattering and 

effective screening of charged impurities100,104,109. 

All the aforementioned options are promising to further enhance effective transport of 

photogenerated carriers through the channel in sensitized hybrid photo-FETs. It is noteworthy 

that the use of thinner high k-dielectrics between gate electrode and channel can strongly 

decrease the subthreshold swing of SB-FETs92, but will not improve the optical photoresponse 

of the device. It instead results in stronger capacitive coupling between gate and source-SB and 
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allows electrically similar IDS switching by tuning through a smaller interval of backgate 

voltage. An improvement of photo-FET performance can however be expected for faster 

switching devices if the same dielectric film thickness is considered. 

 

Apart from dark current and gain, also the quantum efficiency of hybrid photo-FETs is 

dependent on the field-effect modulation via backgate. The coloured boxes on the right of 

Figure 3 depict the band alignment of three different regimes of operation. Exciton separation 

and charge injection into the channel is determined by the band alignment of the two 

semiconductors in contact, which in turn is strongly dependent on the gate-tunable Fermi level 

EF. Ideally the sensitizer is electrically isolated from source-drain contacts to be unaffected by 

the gating (constant position of EF in the p-type sensitizer) and to not attribute to leakage current 

when the channel is in off-state operation. The best condition is then given in the accumulation 

regime, where EF approaches the conduction band. In this case, the high electron density of the 

channel induces the largest depletion region within the hole-doped sensitizer. The least 

favorable condition is given in the depletion regime, where the channel turns rather intrinsic 

and the band bending at the interface reaches its minimum. The optimized point of the overall 

photo-FET operation will again be somewhere in between, here named as “operational” 

regime, where the best performance between dark current, gain and quantum efficiency has to 

be identified. 

 

Ideal sensitizer characteristics. 

In principle any absorbing material can serve as a sensitizer for the device concept of hybrid 

photo-FETs: semiconductors can serve as strong absorber in which the bandgap curtails 

spectral selectivity, semimetals such as graphene can be used as constant broadband absorber 

over a large spectral range, and even metallic nanostructures can be employed as resonant 
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plasmonic absorber. The latter, however, have to rely on a different mechanism of sensitization 

so as not to compete with the very fast recombination present in metal and semimetals. This 

can be achieved by employing bolometric detection by altering the local temperature and 

therefore the conductance of the channel or by photothermionic injection of hot carriers 

generated in plasmonic metallic or graphene nanostructures atop a semiconducting layered 

channel. However, for an optimized performance, the sensitizer should fulfil certain 

requirements: (1) The doping polarity of a doped absorbing material is opposite to the channel 

material to achieve large built-in fields for efficient charge carrier separation and vertical 

injection into the channel. Alternatively the sensitizing material can also be intrinsic (i.e. have 

very low intrinsic carrier density) provided it forms a type-II hterojunction with the 2D channel 

and possess long carrier diffusion lengths to facilitate charge collection in the 2D channel in 

the absence of a built-in electric field. (2) The sensitizer has a low exciton binding energy and 

long lifetimes, which is reflected in long carrier diffusion length of several hundred 

nanometers. This allows to increase the thickness of the absorber to achieve strong absorption 

in absolute terms, but also to maintain high injection rates into the underlying channel. Here, 

one has to differentiate between two extreme cases, the fully depleted thickness tdepleted and the 

saturated thickness tsaturated, between which the optimized thickness of the sensitizing film has 

to be found. The thickness tdepleted refers to a fully depleted, thin absorbing layer for which 

charge carrier injection is dominated by drift induced through the built-in field. In the case of 

tsaturated the film reached a thickness beyond the diffusion length of the photogenerated excitons 

and recombination losses start to decrease the photoresponse of the hybrid. In the case of 

materials with high exciton binding energies such as in the case of polymers, the employment 

of a bulk heterojunction is required, similar to photovoltaic architecures, in order to dissociate 

excitons within the bulk of the absorber into free charges that will subsequently diffuse to the 

2D channel provided a thermodynamically favoured band alignment (type II)  (3) The 
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absorbing film has to be readily integrated with the FET channel and is ideally compatible with 

standard CMOS technology or even mechanically flexible device concepts. Solution-processed 

materials hold therefore a general advantage for they can easily be spin- or spray-coated on top 

of any substrate and FET-device without requirements such as lattice mismatch. (4) A high 

absorption coefficient with large spectral coverage and tunability over a wide wavelength range 

adds a major advantage to sensitized photo-FETs over simple single channel devices. The 

absorption is now taking place in the decorating film and adds therefore another degree of 

freedom to device design and application. 

 

Colloidal quantum dots have well matched properties to fulfil most of the requirements. In the 

case of widely used PbS, the most intriguing characteristic for photodetection is the tunable 

bandgap due to the quantum confinement effect110. By simply changing the size of QDs during 

synthesis, the exciton peak can be shifted through a large spectral range from 500 – 2100nm111–

113. The low exciton binding energy114 and the diffusion length of 150-250nm115 suggest an 

electrically ideal sensitizer to reach high optical absorption and high quantum efficiency. A 

wide range of doping strategies have shown both doping polarities in PbS QDs116, making it a 

versatile sensitizing system to combine with any channel material. Solution-processed CQD 

optoelectronic devices have already demonstrated compatibility with CMOS technology117,118 

and flexible device concepts119,120. 

Another emerging solution-processed material with promise for optoelectronic applications 

such as solar cells is the family of inorganic-organic perovskites121.  Rapid advances in this 

young research field has led to spectral tunability from 400-800nm122 and extremely large 

exciton diffusion length of around 1µm for polycrystalline thin films123. Organolead trihalide 

perovskite single crystals have been reported by implementing a novel antisolvent vapour-

assisted growth technique. The single crystalline structure exhibits trap state densities as low 
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as 109 per cubic centimetre and reached remarkable diffusion length of more than 10 µm 124. 

Several types of photodetectors based on photoconductors, photodiodes and phototransistors 

with broadband absorption125–129 and tunable narrowband absorption5, 130 in the visible have 

been demonstrated, both being interesting features for sensitized photo-FETs. 

 

Future outlook on sensitized photo-FETs 

To date, many prototype devices have shown promising outcome, however there is still plenty 

of space for further improvement on all performance parameters. Several aspects such as the 

huge variety of materials for channel and sensitizer or the additional implementation of other 

compounds at the bottom (substrate treatment), the interface or on top of the device, open new 

opportunities to develop novel photo-FET architectures with sensitivity superior to existing 

photodetection technology. In the following, we summarize a few ideas and device concepts 

which give the direction to a new generation of photo-FETs. 

The major strength of 2D material phototransistors is the high in-plane charge carrier mobility 

and potentially low dark current given by its thin channel body and efficient capacitive control 

over carrier density by means of the electric field effect. The choice of channel material will 

therefore play a critical role for further development. Reported mobilities for commonly 

investigated 2D materials are widespread and, so far, a trade-off is met between reported 

mobility and bandgap131,132, which in turn determines the on/off ratio. Two popular examples 

are graphene, with average mobilities of 104 cm2/Vs and on/off ratios of 10, and MoS2, with 

mobilities of 1-80 cm2/Vs and on/off ratios of 108.133 An interesting candidate between these 

two extreme cases is black phosphorus. The combination of on/off ratios of 104-105 and 

mobility up to 1000cm2/Vs51,134is intriguing for its application in hybrid phototransistors to 

achieve high gain-bandwidth products and sufficiently low off currents for high sensitivity 

detection. 
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Most of the prototype devices have been demonstrated with channel area far beyond 1um2. For 

high pixel integration in photodetector arrays, the successful development of well performing 

hybrid photo-FETs with a footprint below 1um2 is highly interesting. A benefit of decrease in 

channel length would be the shortening of carrier transit times. Consequently, careful trap state 

engineering in the sensitizer could be employed to introduce rather shallow trap states and 

likewise decrease the lifetime of photogenerated carriers. While the photoconductive gain 

would thereby largely be unaffected, the rather slow response times reported to date in the 

range of 10ms to 1s could be further improved. Despite the favourable prediction of device 

shrinking for gain, the impact of electrode contacts on noise remains an interesting open 

question. The smaller the channel length the more dominating the impact of contact noise will 

be. At the same time though real-world applications would require the fabrication of millions 

of small pixels into large arrays ideally employing wafer scale processing. Thus apart from 

addressing the miniaturization challenge of the single pixels an even greater challenge emerges 

in growing large area high quality and high uniformity 2D materials using high throughput 

manufacturing processes and with electronic properties at least on par with those attained on 

exfoliated 2D flakes. 

An important device parameter to optimize is the quantum efficiency of hybrid photo-FETs. A 

key role can there be attributed to the interface of channel and sensitizer, as the photocarrier 

separation and charge injection into the channel take place in this region. The integration of a 

buffer layer at the interface of a MoS2/PbS photodetector has shown to strongly impact on 

electrical tunability due to controlled doping and defect passivation77. Apart from ALD-

deposited thin films employed in this study, the exploitation of molecular self-assembled 

monolayers at the interface may also lead to efficient crosslinking between QDs and TMDCs 

and simultaneously passivate electronic defect states at the TMDC surface as demonstrated for 

other materials in solar cell devices135–137. 
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Towards the goal of even higher quantum efficiency of QD-sensitized channels, knowledge 

from advances made in intensively studied solar cell junctions can be helpful. For instance, the 

usage of different capping ligands for several QD layers can engineer the band alignment in a 

way to extend the depletion width within the QD film138. A cascade-like alignment of the 

conduction band would thereby improve the electron transfer towards the channel-QD junction 

and increase the charge collection efficiency, allowing thicker QD films with higher 

absorption.  

A different approach with better control of charge carrier injection from the sensitizer into the 

channel is the incorporation of a transparent electrode on top of the sensitizing film, as shown 

for graphene/PbS hybrid detectors139. With the top electrode acting as a cathode and the 

graphene channel as acceptor contact, charge carriers can be efficiently directed towards the 

channel relying on bias controllable carrier drift rather than diffusion processes. An 

improvement of quantum efficiency to a value of approximately 80% along with significant 

improvement in device speed and dynamic range has been demonstrated. This was achieved 

by essentially transforming the sensitizing quantum dot layer into an active photodiode. This 

not only led to record quantum efficiency but acts as a paradigm shift in photo-FETs. The gain 

in this architecture is determined by the ratio of the transit time of minority carriers in the QD 

film over the transit time of majority carriers in the channel. This thus opens the way towards 

high gain and high bandwidth detectors tailored by the carrier mobilities of the channel and the 

sensitizing layer. 

The versatile incorporation of any solution-processed material is one of the strongest features 

of this hybrid detector design. Hybrid systems using QDs have already shown sensitivity on 

par with detector technology based on silicon and InGaAs for the vis-SWIR range and have 

the potential to clearly outperform their sensitivity. In the MIR wavelength regime, for 

instance, conventional technology is made of epitaxial InSb and HgCdTe, which are extremely 
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expensive and require cooling for high performance140. The synergy of 2D materials with MIR-

sensitive QDs, such as HgTe, therefore constitutes a compelling alternative to epitaxially 

grown state-of-the-art detectors and deserves investigation also towards the discovery of MIR-

sensitizers comprising environmentally friendly elements and offering significant robustness 

to oxygen and moisture.  

In general, the sensitizing material does not necessarily have to be solution-processed. The use 

of thicker slabs of layered 2D materials as sensitizer on top of ultrathin 2D material channels 

for transport may form interesting photo-FET hybrids. A large bandgap material like 

monolayer MoS2 for charge transport decorated with an electrically isolated, narrow bandgap 

material like multilayer black phosphorus could strongly profit from a clean interface structure 

with efficient charge injection and low noise operation. The progress in CVD based large-scale 

film growth and the direct growth of heterostructures can play a key role for the development 

of novel photo-FETs based on all-layered materials. 

The development of photo-FETs with strongly reduced dark currents and moderate gain does 

not exclusively rely on the decoupling of absorption and transport in two different 

semiconducting media. Adinolfi et al. have demonstrated a junction field effect transistor 

(JFET), in which photon absorption and charge transport occur within a PbS QD film141. By 

adding electrically isolated molybdenum trioxide (MoO3) on top of the film, the formed 

rectifying junction between deep work function MoO3 and PbS provided full depletion and 

strongly reduced currents under dark conditions. The photo JFET operated with moderate gain 

of 10 at considerably high modulation frequencies of up to 100 kHz. Ma et al. reported similarly 

on WS2/CH3NH3PbI3 heterostructures where the TMDC layer led to suppression of dark 

currents compared to plain perovskite control devices142. Here, both components are 

electrically active and transport carriers between drain and source contacts. A favourable band 
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alignment enhanced the photocarrier separation at the TMDC/perovskite interface and 

improved the overall signal-to-noise ratio with reported specific detectivity of 1012 Jones. 

 

Conclusions. 

In optoelectronic technology, photodetectors are of paramount importance, and the growing 

diversity of applications demands new material systems and device designs. In this review, we 

have shown that photo-FETs based on low-dimensional materials are a highly promising novel 

device concept for high sensitivity photodetection. The gate controllable low dark current and 

photoconductive gain provide with excellent signal-to-noise ratios, specifically important for 

low light detection. We have discussed an inherent trade-off in plain low-dimensional photo 

FETs between transport and absorption processes, and proposed a solution by decoupling the 

absorption from transport with a sensitizing approach. For many different types of low 

dimensional materials (0D, 1D and 2D), the sensitizing to hybrid photo-FETs has proven to 

outperform their single counterparts in terms of sensitivity and indicates the abundance of 

nanomaterial combinations within this device concept. At this point, we have only seen some 

reports on proof-of-principle devices, but there is no doubt that the concept of hybrid photo-

FETs has a lot to offer to the photodetection community and future technology.  
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Figure 1. Device design and functionality. The device configuration of a photo-FET is similar 

to lateral photoconductors with metal-semiconductor-metal architecture. The two metal 

electrodes in contact with the channel material form the source and drain electrodes, where the 

bias VDS is applied. The gate electrode, here a highly doped silicon slab, is electrically isolated 

from the semiconductor channel by a thin dielectric film (e.g. SiO2). An applied gate voltage 

VGS can be used to control electronically the dark conductivity by field-effect modulation and 

favourably switch off the dark current by operating the device in the depletion regime (bottom 

right box). The incident light enables the channel conductance of the device and can profit from 

a photoconductive gain mechanism as in photoconductors (top right box). For high 

performance photo-FETs, the channel material possesses ideally high carrier mobility for high 

gain-bandwidth products, a moderately large and direct bandgap for efficient field-effect 

modulation and optical absorption, and a thin profile for full depletion and operation at ultralow 

dark currents (left box). 
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Figure 2. Transport vs. absorption dilemma. The two left columns present the typical trade-

off met for 2D-based photo-FETs consisting of a thin and a thick channel. In the case of a thin 

channel, the thickness is typically in the range of a few nanometers. 2D-materials benefit from 

their atomically thin profile which allows efficient field-effect modulation leading to high 

on/off ratios. The channel can be fully depleted and operated at extremely low off-state currents 

under dark (upper box). While the conditions for electronic transport are ideal, the absorption 

of photons in nanometer-scale channel thickness is rather inefficient and limits the detector 

response (lower box). In case of a thicker channel, with thickness of around 100-200nm, the 

transport and absorption behaves viceversa. The field-effect depletes only the region at the 

oxide-interface and significant leakage through the upper part of the channel remains. This 

yields in reduced on/off ratio and considerably higher off-state currents. However, here the 

absorption profits from longer optical path throught the semiconductor bulk. The right column 

depicts a solution to this dilemma by decoupling the the electronic transport from the optical 

absorption. Therefore a thin 2D channel is used for full depletion and ideal transport conditions 

with low off-state current and a sensitizing absorber is deposited on top of the channel for 

efficient light absorption. The thickness of the decorating sensitizer can be in dimensions 

similar to the bulk case and thereby transport and absorption properties are similarly optimized.  
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Figure 3. Operation principle, ideal transport and photodoping conditions. The device 

schematic shows the light sensing process of a sensitized photo-FET using the example of a n-

type semiconductor channel and a p-type QD sensitizer. After the absorption process, a fast 

recombination of photogenerated carriers is prevented due to spatial separation of carriers in 

the heterojunction. The p-n-junction between the oppositely doped semiconductors leads to a 

vertical photodoping effect. As long as the holes maintain trapped within the sensitizer, the 

injected electrons recirculate the channel and generate gain. The photoconductive gain, the dark 

current, and the quantum efficiency of the hybrid photo-FET depend strongly on the gate 

voltage operation, as illustrated by the comparison of a real and an ideal transfer curve (bottom 

black boxes) and the band alignment in the different operational regimes (right coloured 

boxes). The most sensitive point (VMSP) for gain and dark current is ideally located as close as 

possible to the current onset of the transfer characteristic. A fast switching behaviour between 

the off- and on-state, as shown in the ideal case, leads to optimized operation of the photo-FET 

with low dark currents and high photoconductive gain. The ideal photodoping conditions are 

given in the accumulation regime, where the strongest band bending occurs and the largest 

depletion region will be formed at the heterojunction. The best performance of the sensitized 
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photo-FET lies in the operational regime, where dark current, gain, and quantum efficiency are 

optimized. 

 

 




