
Photo-Plasmonic Effect as the Hot Electron
Generation Mechanism
M. Akbari-Moghanjoughi  (  massoud2002@yahoo.com )

Azarbaijan Shahid Madani University

Article

Keywords:

Posted Date: September 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2094148/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-2094148/v1
mailto:massoud2002@yahoo.com
https://doi.org/10.21203/rs.3.rs-2094148/v1
https://creativecommons.org/licenses/by/4.0/


Photo-Plasmonic Effect as the Hot Electron Generation Mechanism

M. Akbari-Moghanjoughi

Faculty of Sciences, Department of Physics,

Azarbaijan Shahid Madani University,

51745-406 Tabriz, Iran

massoud2002@yahoo.com

(Dated: September 23, 2022)

Abstract

Based on the effective Schrödinger-Poisson model a new physical mechanism for resonant hot-

electron generation in half-space metal-vacuum configuration of electron gas with arbitrary degree

of degeneracy is proposed. The energy dispersion of undamped plasmons in the coupled Hermitian

Schrödinger-Poisson system reveals an exceptional point coinciding the minimum energy of plasmon

conduction band. Existence of such exceptional behavior is the well-know character of damped os-

cillation which in this case refers to resonant wave-particle interactions analogous to the collisionless

Landau damping effect. The damped Schrödinger-Poisson system is used to model the collective elec-

tron tunneling into the vacuum. The damped plasmons is shown to have full-featured exceptional

point energy dispersion phase diagram which can have many interesting technological applications.

Depending on the tunneling parameter value, in the damped collective excitation band gap there are

resonant energy orbital for which the wave-like growing of collective excitations cancels the damping

due the quantum electron tunneling. This important feature is solely due to dual-tone wave-particle

oscillation characteristics of the collective excitations in the quantum electron gas which leads to the

resonant photo-plasmonic effect, as the plasmonic analog of the well-known photo-electric effect. The

few nanometer wavelength high energy collective photo-electrons emanating from the typical metal

surfaces lead to a much higher efficiency of plasmonic solar cell devices, as compared to their semicon-

ductor counterparts base on electron-hole excitations at the Fermi energy level. The photo-plasmonic

effect may be used to study the quantum electron tunneling and electron spill-out at metallic surfaces.
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I. INTRODUCTION

Free electrons in metals and semiconductors control almost all fundamental physical prop-

erties of the solid [1]. Some basic properties of metals such as optical, electronic and thermo-

dynamic ones are quite satisfactorily described by noninteracting electron (Drude) model [2].

The band structure model, on the other hand, has been a huge success and advancement in

understanding of important quantum mechanical features of semiconductor material which was

urgent for consequent development of the cutting edge nanoelectronic technology [3, 4]. There

are of course some collective aspects of the electron gas with fundamental applications in plas-

monics [5–7], optoelectronics [8, 9], nanotechnology [10] etc. which require advanced quantum

many-body theories to cope with [11, 12]. Quantum electrodynamic [13], density function [14]

and quantum hydrodynamic [15–21] theories have been some tools of the past solid state theory

in order to descrobe collective physical behavior of quantum electron gas. Quantum fluid kinetic

and hydrodynamic theories are however more common tools in the study of collective electronic

(plasmon) excitations in complex plasmas where many other charged species and fields are in-

volved. They are the results of many pioneering previous works in the field of collective quantum

theory [22–38]. There has been some advancements in the hydrodynamic theories and their

successful employment in various investigations of linear and nonlinear collective phenomena

in dense degenerate plasmas involving both the laboratory scale phenomena [39–51] as well as

the astrophysical plasmas [54–59]. One of derivatives of the quantum hydrodynamic theory is

the effective Schrödinger-Poisson model [52] based on the pioneering Madelung quantum fluid

theory [53]. The later model has shown some success in the study of key collective properties

of the quantum electron gas, such as, generalized energy band structure [60], collective quanti-

zation of electron gas [61], collective effects on the electronic heat capacity in metals [62], the

edge plasmon excitations and electron spill out effect [63], plasmon scattering [64], collective

quantum interference [65], and more [66–68].

Plasmonics is one of the technologically appealing interdisciplinary active fields of physical

sciences with a vigorous development over the past two decades [69, 70]. With turn of millen-

nium the field has not fully achieved the desired pace in the rapidly growing semiconductor

electronic industry of solar cell [71], sensors [72], modulators [73] and communications devices

[74] for some definite reasons. Harvesting the collective electronic energy and their fast response

in plasmonic devices requires inhibition of damping effects which is inherent in ordinary metals

due to electron-phonon scattering and low mean free path collective response. However, while
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the electron-electron scattering is greatly inhibited at quantum level due to the Pauli block-

ing mechanism, the only chance to reduce electron phonon scattering effect is a costly way of

nanofabrication. Even in the absence of electron-ion collisions kinetic effects like collisionless

Landau damping can greatly limit the plasmonic device operation. On the other hand quantum

charge screening in metals blocks the collective response at low energy excitations. However, if

the known technological obstacles is overcome, plasmonic devices can rapidly replace the semi-

conductor fabrication in communication technology due to high speed terahertz scale response

and high energy electronic transport. Plasmon excitations are highly efficient in photovoltaic

and catalytic designs for more effective solar energy harvesting by collective electron transport

[75, 76]. Recent investigations confirm that nanoscale metallic compounds can be used to effec-

tively convert collected electromagnetic energy at metal surfaces into high power electricity in

local surface plasmon resonance (LSPR) mechanism via the so-called hot electron generation

[77]. Plasmonic devices may operate at small wavelength (10− 380)nm range in high precision

engineering design with relatively higher cost. The generate energetic electrons can be collected

in a tandem design with an appropriate electron accepting nanolayer such as, T iO2 [78]. Due to

vast applications, there has been an ongoing intense research towards exploration of plasmonic

field in recent years [79–84].

One of the great advantages of plasmonic technology is the effective parametric control over

the collective excitations instabilities by means of exceptional points technology. Due to both

wave- and particle-like coupled oscillations of plasmons, a collisionless energy exchange among

wave and the electrons is possible and may be used to manipulate the physical properties of

the quantum plasmonic devices. The singular exceptional points are critical points around

which the physical behavior of the system changes radically. Such points has been used in

parametric control of the behavior of various coupled physical systems such as mechanical,

optical, quantum, etc. [85]. In current research we show that the plasmonic system processes a

full featured exceptional point phase structure which can have possible applications in plasmonic

device fabrication. In this work we also introduce a new feasible photo-plasmonic mechanism

for energetic electron tunneling trough the metal surface based on the exceptional points of the

damped Schrödinger-Poisson system. The arrangement of the paper is as follows. We present

the theoretical model in Sec. II. In Sec. III we describe the exceptional point structure of

the lossless Hermitian system. The non-Hermitian system as a model for half-space plasmon

excitation is described in Sec. IV. The photo-plasmonic process in collective electron tunneling

is introduced in Sec. V and conclusion is presented in Sec. VI.
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II. THE THEORETICAL MODEL

We consider electron gas of arbitrary degeneracy with neutralizing positive ionic background.

The dynamics of the Madelung quantum electron fluid may be described using the following

coupled effective Schrödinger-Poisson system [61] the well-known the

ih̄
∂N (r, t)

∂t
= − h̄2

2m
∆N (r, t)− eϕ(r)N (r, t) + µN (r, t), (1a)

∆ϕ(r) = 4πe(|N (r, t)|2 − n0), (1b)

where N (r, t) = ψ(r, t) exp[iS(r, t)/h̄] is the statefunction characterizing the probability which

is related to the fluid local electron number density n(r) = ψ(r, t)ψ∗(r, t) with n0 being the uni-

form neutralizing background and the electron fluid momentum is given by p(r, t) = ∇S(r, t).
The chemical potential µ is related to the local electron number density and the equilibrium

temperature by appropriate isothermal equation of state (EoS) [64]. In the static limit p = 0,

one may Fourier analyse the appropriately linearized system around the equilibrium state

{ψ0 = 1, ϕ0 = 0, µ0 = µ0} in scaled form [63] by assuming the plane-wave perturbations

N (r, t) ∝ exp[i(k · r − ϵt)] and ϕ(r) ∝ exp[i(k · r)] in which the energy ϵ and wavenumber k

are normalized, respectively to the plasmon energy Ep =
√

4πe2n0/m and kp =
√

2mEp/h̄ to

arrive at the energy dispersion of E = k2w+k
2
e . Note that E = (ϵ−µ0)/Ep is the normalized en-

ergy and kw and ke characterizing the wave-like and particle-like oscillations, respectively. The

dual wavenumber character of oscillations is an intrinsic feature of quantum fluid oscillations

[64]. Moreover, the coupled wave-particle oscillations admit a complementarity-like relation

kwke = 1 in dimensionless form. The energy dispersion can be written in a more useful form of

Ek = k2 + 1/k2 in which k is the characteristic wavenumber of collective electron excitations.

Using the standard quantum statistical definition, one may obtain thermodynamic quantities

for collective excitations. Because there is a one-to-one correspondence between the single-

electron and collective excitations energy levels [61], analogous to quantum liquid quasiparticle

states, the Pauli exclusion principle also applies to collective modes. Starting with the number

of quasiparticle modes we have Nk = 4πk3/3 which leads to the density of states (DoS) Dk =

(dNk/dk)/|dEk/dk| with the quasiparticle occupation function of Fk = 1/[1 + exp(Ek/θ)] in

which θ = T/Tp being the normalized electron temperature to the plasmon temperature Tp =

Ep/kB. Some important quantities such as the normalized number-density n(θ), internal energy
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U(θ) and heat capacity c(θ) are given as

n(θ) =

∞
∫

0

Dkdk

1 + exp(Ek/θ)
, Dk =

2πk5

|k4 − 1| , (2a)

U(θ) =

∞
∫

0

DkEkdk

1 + exp(Ek/θ)
, Ek = k2 +

1

k2
, (2b)

c(θ) =
∂

∂θ

∞
∫

0

DkEkdk

1 + exp(Ek/θ)
, (2c)

Figure 1 shows some thermodynamic properties of collective excitations (plasmon quasipar-

ticles) in electron gas of arbitrary degeneracy. Figure 1(a) depicts the DoS as a function of

quasiparticle wavenumber. A Van-Hove-like singularity is present for the plasmon wavenumber

k = kp which is analogous to a similar singularity at the Fermi surface of crystalline solid [1]. it

is remarked that DoS increases with increase of plasmon wavenumber almost linearly for large

k values, similar to that of a free-electron gas [1]. The plasmon occupation function is shown

in Fig. 1(b) for different values of normalized electron temperature. The plasmon occupation

shows a distinct difference with that of free electron gas. It is remarked that occupation at the

long wavelength limit is strongly prohibited for the collective modes as opposed to free electron

case [1]. It is also shown that increase of the normalized electron temperature lead to overall

increase in occupation probability of quasiparticles which is enhances at wavenumbers close to

the plasmon wavenumber. In Fig. 1(c) we show the number of modes per wavenumber range,

DkFk(θ). Largest modes in wavenumber range are localized around the plasmon wavenumber

increase with increase in normalized temperature of electrons. However, this increase is seen

to be more significant for k > kp rather than k < kp. The normalized number-density, internal

energy and heat capacity contribution from collective electron excitations as a function of the

normalized electron temperature are shown in Fig. 1(d). It is remarked that number-density

and internal energy of quasiparticles increase with increase of the normalized electron tempera-

ture, θ. Moreover, variation of quasiparticle heat capacity is reminiscent to that of free electron

gas [1] excitations at low temperatures as compared to the Debye one. The only deference

is that the low temperature contribution of collective excitations is missing due to the sharp

decrease of collective modes at low temperature. It is concluded that while single electron

excitation are more common at low temperature limit and cause saturation of heat capacity

at high temperature limit, the quasiparticle excitation contribute mostly to high temperature

heat capacity.
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FIG. 1. (a) The normalized plasmon density of states (DoS) as a function plasmon wavenumber. (b)

The normalized plasmon occupation function variation with the wavenumber for different normalized

electron temperature. The increase in the curve thickness indicate the increase in the electron tem-

perature. (c) The normalized plasmon mode in unit wavenumber for different electron temperature

values. (d) The plasmon electron number-density, internal energy and heat capacity as a function of

the normalized electron temperature.

III. PLASMON DISPERSION AND EXCEPTIONAL POINT STRUCTURE

The 3D linearized system obtained from (1) can be solved exactly in stationary radial form

[65]. However, the one dimensional case has lot of applications which admits simple station-
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ary analytic solution which is considered here. The normalized linear coupled system after

separation of variables reads [64]

d2Ψ(x)

dx2
+ Φ(x) + EΨ(x) = 0, (3a)

d2Φ(x)

dx2
−Ψ(x) = 0, (3b)

where Ψ(x)Ψ∗(x) = n(x) and Φ(x) denotes the local electrostatic potential energy. With the

tentative boundary values Ψ(0) = 1 ans Φ(0) = Ψ′(0) = Φ′(0) = 0 we have the solution of the

form

Φ(x) =
cos(kwx)− cos(kex)√

E2 − 4
, (4a)

Ψ(x) =

(

E +
√
E2 − 4

)

cos(kex)−
(

E−
√
E2 − 4

)

cos(kwx)

2
√
E2 − 4

, (4b)

where kw and ke are the coupled oscillations wave and particle wavenumbers

kw =

√

E−
√
E2 − 4

2
, ke =

√

E +
√
E2 − 4

2
. (5)

Note that kwke = 1 holds as previously put forward.

Figures 2(a) and 2(b) depict the real and imaginary parts of the wavenumbers, respectively.

The evident branching point at E = 2 is reminiscent of the exceptional point found in damped

harmonic oscillator problem with applications in many physical instances a good review of wich

may be found in Ref. [85]. However, occurrence of such feature in Hermitian systems like ours

is quite interesting. Recently, it has been shown that such aspect is found in coupled oscillators

with damping replaced by the elastic coupling [86]. Such a collisionless damping [87, 88] is a

well-known feature of wave-particle interactions in electron plasmas. The existence of exception

point in the coupled system (3) may be the mathematical manifestation of the kinetic Landau

damping effect. note that the solution (4) does not apply to the exceptional (singular) point

for which kw = ke = kp or equivalently E = 2. The solution at exceptional point is

Φ(x) =
x

2
sin(x), Ψ(x) = cos(x)− x

2
sin(x), (6)

It is remarked that above the exceptional point both wavenumbers are real, wahereas, below this

point theare complex with their real part the same but imaginary parts with opposite signs.

This physically means wave-like(particle-like) spacial grow(decay) behavior of the collective

excitations for E < 2.
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FIG. 2. Figs. (a) and (b), respectively, depict the real and imaginary parts of the energy dispersion

of collective electron modes in the absence of damping effect. Figs. (c) and (d), respectively, depict

the real and imaginary parts of the energy dispersion of collective electron modes in the presence of

damping effect (κ = 0.5).

IV. THE PSEUDO-DAMPED PLASMON EXCITATIONS

Let us now consider the non-Hermitian system with damping effect

d2Ψ(x)

dx2
+ 2κ

dΨ(x)

dx
+ Φ(x) + EΨ(x) = 0, (7a)

d2Φ(x)

dx2
+ 2κ

dΦ(x)

dx
−Ψ(x) = 0, (7b)
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in which κ is a new parameter characterizing the non-Hermiticity and can be used to model

variety of physical situations [63, 64]. The system (7) has the following exact solution with the

same boundary values Ψ(0) = 1 ans Φ(0) = Ψ′(0) = Φ′(0) = 0

Φ(x) =
e−κx

√
E2 − 4

[

cos(kwx)− cos(kex) +
κ

kw
sin(kwx)−

κ

ke
sin(kpx)

]

, (8a)

Ψ(x) =
e−κx

2
√
E2 − 4

[(

E +
√
E2 − 4

)

cos(kpx)−
(

E−
√
E2 − 4

)

cos(kwx)+ (8b)

κ
(

E +
√
E2 − 4

)

ke
sin(kex)−

κ
(

E−
√
E2 − 4

)

kw
sin(kwx)

]

, (8c)

where the plasmon oscillation wavenumbers are given as

kw =

√

E− 2κ2 −
√
E2 − 4

2
, ke =

√

E− 2κ2 +
√
E2 − 4

2
. (9)

which satisfy the energy dispersion E = (k2 + κ2) + 1/(k2 + κ2). Note that in the limit κ = 0

this reduces to the undamped plasmon dispersion. The existence of exponentially decaying

term in the solution (7) causes the spacial damping of wavefunction and electrostatic potential

energy for all orbital energy range. The real and imaginary parts of plasmon wavenumbers

with damping parameter (κ) effect are shown in Figs. 2(c) and 2(d) for parameter value of

κ = 0.5. It is clearly evident that a new exceptional point appears at k ≃ 4.25 in normalized

unit beside the previous one at k = 1. Note that for energy values above the second exceptional

point the wavenumber is purely particle-like. It is found that the new exceptional point is at

E = κ2 + 1/κ2. It is noted that the energy dispersion relation of damped plasmon excitations

only describes oscillation types and does not include the effect of exponentially decaying term

on exceptional point structure. The later aspect of the solution (7) will be discussed in detail

in the following section. The solution to the system (7) at the exceptional point E = 2 has the

following form

Φ(x) =
e−κx

2(1− κ2)3/2

{

[

κ− x
(

κ2 − 1
)]

sin
(√

1− κ2x
)

− κ
√
1− κ2x cos

(√
1− κ2x

)}

, (10a)

Ψ(x) =
e−κx

2(1− κ2)3/2

[

(

κ2x+ κ− 2κ3 − x
)

sin
(√

1− κ2x
)

− (10b)

√
1− κ2

(

2κ2 − κx− 2
)

cos
(√

1− κ2x
)]

. (10c)
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FIG. 3. The exceptional point phase diagram showing (a) the real part and (b) the imaginary part of

the collective oscillation wavenumber in E-κ plane.

Furthermore, the solution at the exceptional point E = κ2 + 1/κ2 reads

Φ(x) =
κ2e−κx

(1− κ4)3/2

[

(1 + κx)
√
1− κ4 −

√
1− κ4 cos

(
√
1− κ4

κ
x

)

− κ2 sin

(
√
1− κ4

κ
x

)]

,

(11a)

Ψ(x) =
e−κx

(1− κ4)3/2

[√
1− κ4 cos

(
√
1− κ4

κ
x

)

+ κ2 sin

(
√
1− κ4

κ
x

)

− κ4 (1 + κx)
√
1− κ4

]

.

(11b)

Figure 3 shows a full-featured 3D exceptional point phase-diagram in E-k plane. The

real/imaginary part of wave-like and particle-like wavenumbers is shown in Fig. 3(a)/3(b).

The exceptional points phase-diagrams in our case can have a wide variety of physical appli-

cation such as in quantum charge screening, light scattering from metallic surfaces, etc. In

the next section we will show an important application of the pseudodamping model in photo-

plasmonic effect. We also discuss different solutions and their physical interpretations in various

regions of the phase diagram.
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FIG. 4. The collective hot-electron generation at the metal-vacuum interface by incident energetic

photo-plasmonic effect. The wavefunction Ψ(x) and potential energy Φ(x) characterize the quantum

state of each region.

V. THE HALF-SPACE EXCITATIONS AND PHOTO-PLASMONIC EFFECT

The model (7) has been recently used to describe the electron spill-out effect in half-space

configuration where the parameter κ characterizes the collective electron tunneling parameter

[63]. Figure 4 shows the schematic profile of the half-space plasmon excitations and photo-

plasmonic effect in which the dashed region denotes the plasmonic material interfacing the

vacuum. In reality the electron spill-out somehow blurs the interface causing an electron-ion

separation and dipole formation. The incident high frequency photons have been shown to

lead to collective extraction of hot electrons from the surface due to plasmon resonance. Here

we provide an alternative clear physical description of hot electron mechanism in terms of the

quantum electron tunneling effect. In the metallic region the collective excitations are stable

above the exceptional point at E = 2. At thermal equilibrium, there are finite number of

electrons excited to plasmon band as shown in Fig. 5(a). On the other hand, in the vacuum

region the spill-out electrons form a narrow unstable plasmon band limited from above at

E = κ2 + 1/κ2, as shown in Fig. 5(b). The variations of maximum energy of the plasmon

band in vacuum in terms of electron tunneling parameter κ is depicted in Fig. 5(c) showing a

minimum at κ = 1 where the two exceptional points coincide. Also, the plasmon ban minimum

wavenumber varies with the parameter κ as see n in Fig. 5(d). Note that for κ ≥ 1 there is
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FIG. 5. (a) The energy dispersion of collective mode in metallic region without plasmon damping

effect. (b) The energy dispersion f damped plasmon in the collective tunneling region (vacuum) for

given value of the damping parameter (κ = 0.5). (c) The maximum energy in damped plasmon energy

band of Fig. 5(b) as a function of the damping parameter. (d) The energy minimum wavenumber

of damped plasmon conduction band as a function of the damping parameter. The dashed curves in

plots (a) and (b) show the free electron dispersion.

onle a single exceptional point in the system.

Figure 6 depicts the excitation profiles in the metallic region below and above the exceptional

energy value. Figure 6(a) shows the normalized wavefunction and electrostatic energy profiles

at energy orbital E = 2.3 above the exceptional point. It is remarked that oscillations are
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(b) The collective oscillation profiles of the local wavefunction and electrostatic potential energy of

undamped plasmons at nearcritical energy orbital (the quantum beating state). (c) The collective

oscillation profiles of the local wavefunction and electrostatic potential energy of undamped plasmons

at exceptional-point energy orbital (orbital at the exceptional point). (d) The collective oscillation

profiles of the local wavefunction and electrostatic potential energy of undamped plasmons at under-

critical energy orbital (orbitals below the exceptional point in plasmon energy gap region).
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dual-tone due to wave-particle coupling and spatially stable. Moreover, Fig. 6(b) shows the

profiles at orbital close to the exceptional point where kw ≃ ke, the so-called quantum beating

region. At this point the electrons and the electrostatic potential energy tend to localize and

the wave-particle interactions enhance. Figure 6(c) depict the solution at the exceptional point

indicating that wavefunction and energy grows linearly, hence, the number density and energy

oscillations are unstable. In face the region 0 < E < 2 is a plasmon band gap in which no

stable collective excitation can exist as also remarked in Fig. 6(d) for the gap energy orbital

E = 1.9 with exponetial wave-like growth.

The excitations of tunneling (spill out) electrons in vacuum follow the solution (8). Figure

7 shows such excitations in different regions of parameters. Figure 7(a) shows the excitation

profiles for energy orbital between the two exceptional points. It is seen that the oscillations

strongly damp at distances far from the interface region due to the character of quantum

electron tunneling. However, this damping is also double tone because of wave and particle

excitations in this region. Figure 7(b) depicts the excitation profiles for orbital above the two

exceptional point indicating that excitation are also damping in this region. Figures 7(c) and

7(d) show the excitation profiles at the exceptional point E = 2 and E = κ2+1/κ2, respectively.

While the excitations at E = 2 are of nearly the same amplitude, at the other exceptional point

amplitude of energy oscillations is much lower compared to that of the probability. It is also

remarked that at exceptional points the oscillations are single tone due to coincidence of real

and imaginary wavenumbers at such points.

Figures 8(a) and 8(b) show the excitation types in the plasmon band gap below the lowest

exceptional point. It is shown that the excitations are of both decaying and growing type

depending on orbital energy. However, both oscillation types in 8(a) and 8(b) are still unstable.

It is found that there is exist a critical orbital in this region at which the excitations become

stable. This is by no chance but due to the resonant matching of the tunneling (damping)

parameter with the imaginary (growing) wave-like oscillation wavenumber. It is remarked that

for each value of the tunneling parameter there is a distinct orbital, as it is termed the photo-

plasmon orbital, Epp, for which the excitation are not damped in vacuum. This is an important

feature of plasmon excitations in damping environment which takes place solely due to dual

character of collective electron excitations. The photo-plasmonic effect is the plasmon-assisted

hot electron tunneling may be considered as the collective tunneling analogous of the well-know

photo-electric effect. From Figs 8(c) and 8(d) it is remarked that while the wavenumber at the

photo-plasmon orbital strongly varies with the change in value of the tunneling parameter, κ,
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FIG. 7. (a) The collective oscillation profiles of the local wavefunction and electrostatic potential

energy of damped plasmons at energy orbital between the two exceptionl points. (b) The collective

oscillation profiles of the local wavefunction and electrostatic potential energy of damped plasmons

at energy orbital above the two exceptional points. (c) The collective oscillation profiles of the lo-

cal wavefunction and electrostatic potential energy of damped plasmons at exceptional-point energy

orbital (orbital at the first exceptional point E = 2). (d) The collective oscillation profiles of the

local wavefunction and electrostatic potential energy of damped plasmons at second exceptional-point

energy orbital (orbital at the second exceptional point E = κ2 + 1/κ2).
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FIG. 8. (a) The decaying unstable collective oscillation profiles of the local wavefunction and electro-

static potential energy of dampes plasmons at energy orbital below the exceptionl point E = 2. (b)

The growing unstable collective oscillation profiles of the local wavefunction and electrostatic potential

energy of dampes plasmons at energy orbital below the exceptional point E = 2. (c) The stable col-

lective oscillation profiles of the electrostatic potential energy of damped plasmons at resonant orbital

below the exceptionl point E = 2. (d) The stable collective oscillation profiles of the wavefunction of

damped plasmons at resonant orbital below the exceptionl point E = 2.

the amplitude of wavefunction and electrostatic energy of vacuum side is almost independent

of this parameter. In reality energetic (hot) electrons can be excited to this photo-plasmonic

orbital by radiation at the metallic surface and collectively tunnel through the vacuum potential
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FIG. 9. (a) The real part of generalized damped plasmon wavenubers. (b) The imaginary part of

generalized damped plasmon wavenubers.

barrier. This effect can have many applications in photo-plasmonic solar-cell designs for effective

photo-electron energy extraction. Current solar cell designs rely on inefficient single electron-

hole pair excitations at the Fermi level semiconductor junctions. The exact photo-plasmon

energy eigenvalue Epp is obtained from the following condition

ℑ
(
√

Epp − 2κ2 −
√

Epp
2 − 4

)

+
√
2κ = 0, (12)

where ℑ denotes the imaginary part of the complex variable. The generalized wavenumber of

damped plasmon excitations (including the exponential damping term) may be written as

K±
w = −κ± i

√

E− 2κ2 −
√
E2 − 4

2
, K±

e = −κ± i

√

E− 2κ2 +
√
E2 − 4

2
. (13)

Therefore, the photo-plasmon tunneling condition is written as ℜ(K+
w ) = ℜ(K−

e ) = 0, where

ℜ denotes the real part of a variable. It is also noted that the relation ℑ(K±
w ) = ℑ(K∓

e ) always

holds. The exceptional point phase diagram of the generalized wavenumber K is shown in Fig.

9. It is remarked that the structure of exceptional space in the plasmon tunneling region is

nuch more complex as compared to that of Fig. 3. This makes possible to explore a variety

of novel physical phenomenon with possible important technological applications of collective

quantum electron tunneling and photo-plasmonic effect by fine tuning the photon energy and

the tunneling parameter.
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FIG. 10. (a) Variation of photo-plasmon energy with the pseudodamping parameter which is related

to the collective tunneling coefficient in the plasmon parameter units. (b) The variation in plasmon

energy unit with electron number-density. (c) The variation of photo-plasmon wavelength with resoect

to the damping parameter. (d) variation of plasmon length in nanometer unit with the electron

concentration.

In Fig. 9(a) we have shown the photo-plasmon energy variation with the pseudodamping

parameter in plasmon parameter units. It is remarked that the photo-plasmon energy reduces

by increase in the damping parameter which directly related to the metal-vacuum interface

quantum electron tunneling phenomenon. The maximum energy is seen to correspond to the

undamped case. Technically the hot-electron extraction may include some efficient tandem
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FIG. 11. Schematic of the photo-plamonic phenomenon in arbitrary degenerate electron gas. The

dashed curve represents the free electron dispersion and the solid one denotes the damped plasmon

dispersion.

multilayer material arrangements for best performance. To compare the energy scale in plas-

monic devices we have shown the variation of the plasmon energy unit with the free electron

concentration in Fig. 9(b). The values of this energy for typical metallic densities are few

electronvolts. For the aluminium as one of goon plasmonic material candidate this energy can

be high around EAl
p ≃ 15eV. Figure 9(c) depicts the variation in the photo-plasmon wavelength

in plasmon length (lp = 1/kp) units. It is clearly evident that by increase in the damping pa-

rameter the photo-plasmon wavelength increases sharply. The variation of plasmon length with

electron number-density is shown in Fig. 9(d) in nanometers. For typical metals the photo-

plasmon wavelength seems to be around few nanometers for reasonable value of the damping

parameter.

Figure 11 shows the schematic of photo-plasmonic effect at the surface of plasmonic metal

with κ = 0.5. The dashed curve depict the free electron dispersion and the solid curve denotes

the damped plasmon energy dispersion. The point E = 0 denotes the Fermi energy level

below which electrons are packed at zero temperature. It is remarked that electrons at the

Fermi surface of the metal are excited to the plasmon band by energetic visible or ultraviolet
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radiation. They collectively damp and fall into the photo-plasmon energy level from which

they collectively tunnel through vacuum or semiconductor. Note that the collective excitation

feature of damped plasmon is the main reason for the formation of the photo-plasmon level

and consequent collective hot-electron tunneling. Also note that electrons excited beyond the

depicted plasmon band lack the wave-like oscillations and do not contribute to the photo-

plasmonic effect via plasmon damping. The plasmon band play the role of a collective stirring

room for energetic electrons quite similar in nature to the starling murmuration phenomenon.

VI. CONCLUSION

In this research based on the effective damped Schrödinger-Poisson model we proposed a

novel collective hot electron generation mechanism at metal-vacuum interfaces. We studied

the exceptional behavior of collective excitations from the energy dispersion relation for both

undamped and damped differential system revealing a full featured exceptional point phase

diagram for plasmon excitations. Such exceptional behavior are of fundamental importance

and technological applications in many branches of physical sciences. We showed that a similar

mechanism as the photo-electric effect (so-called photo-plasmonic effect) exists for the collective

excitations at the metal surfaces illuminated by appropriate radiations. The high energy photo-

plasmonic electrons may be used in highly efficient plasmonic solar-cell devices for energy

harvesting purposes. The photo-plasmonic effect is also physically important phenomenon

in understanding collective electron tunneling and electron spill-out in metallic surfaces and

metal-semiconductor interfaces.

VII. DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author

upon reasonable request.
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