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Figure 1. From left to right: input face image; proxy 3D face, texture and displacement map produced by our framework; detailed face

geometry with estimated displacement map applied on the proxy 3D face; and re-rendered facial image.

Abstract

We present a single-image 3D face synthesis technique

that can handle challenging facial expressions while recov-

ering fine geometric details. Our technique employs expres-

sion analysis for proxy face geometry generation and com-

bines supervised and unsupervised learning for facial detail

synthesis. On proxy generation, we conduct emotion predic-

tion to determine a new expression-informed proxy. On de-

tail synthesis, we present a Deep Facial Detail Net (DFDN)

based on Conditional Generative Adversarial Net (CGAN)

that employs both geometry and appearance loss functions.

For geometry, we capture 366 high-quality 3D scans from

122 different subjects under 3 facial expressions. For ap-

pearance, we use additional 163K in-the-wild face images

and apply image-based rendering to accommodate lighting

variations. Comprehensive experiments demonstrate that

our framework can produce high-quality 3D faces with re-

alistic details under challenging facial expressions.

1. Introduction

Producing high quality human faces with fine geometric

details has been a core research area in computer vision and

graphics. Geometric structure details such as wrinkles are

important indicators of age and facial expression, and are

essential for producing realistic virtual human [2]. Success-

ful solutions by far rely on complex and often expensive

capture systems such as stereo-based camera domes [20]

or photometric-based LightStage [32, 13]. Although such

solutions have become increasingly popular and affordable

with the availability of low-cost cameras and lights, they are

still bulky and hence do not support portable scanning. In

addition, they are vulnerable to low texture regions such as

bare skins.

We aim to produce high-quality 3D faces with fine geo-

metric details from a single image, with quality comparable

to those produced from the dome systems and LightStage.

Existing single-image solutions first construct a 3D proxy

face from templates and then refine the proxy by deforming

geometry and adding details. Such proxies can be derived

from 3D Morphable Model (3DMM) [11, 10, 42, 51, 17]

by blending base face geometry. More complex techniques

employ sparse coding on 3D face dictionaries to further im-

prove robustness and quality [41, 11, 10, 42, 51, 17, 23, 43,

8]. However, artifacts arise from these approaches such as

over-smoothing and incorrect expression, where a relatively

small number of parameters are used to approximate the
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high dimensional space for real face. Shape-from-shading

[28], photometric stereo [13], and deep learning [52, 39, 15]

have been used to generate the missing details. However,

existing methods have limits in attaining correct shape un-

der unseen emotional expressions and lighting, thus deliv-

ering insufficient or inaccurate geometric details, as shown

in Fig. 7

In this paper, we present a novel learning-based tech-

nique to produce accurate geometric details from a single

face image. Our approach takes into account emotion, ex-

pression and appearance. For proxy generation, we em-

ploy the Basel Face Model (BFM) [18] composed of shape,

expression and surface reflectance (albedo). 3D expres-

sions, however, exhibit strong ambiguity after being pro-

jected onto 2D images: a pair of 3D meshes that represent

very different emotional expressions can have similar 2D

landmarks on images. Therefore, we first devise a learning-

based approach to conduct emotion prediction and then use

the result to determine an expression-informed proxy.

For geometric detail synthesis, we devise a Deep Fa-

cial Detail Net (DFDN ) based on Conditional Generative

Adversarial Net (CGAN) to map an image patch to a de-

tailed displacement map. Our DFDN has two components:

a medium scale geometry module that learns the PCA co-

efficients (in our case 64) of each patch and a fine scale ge-

ometry module that refines the PCA-based result with ad-

ditional details. For training, we captured a total of 366

high quality 3D scans from 122 different subjects under

three facial expressions (one neutral and two extreme ex-

pressions). We augment the training data with 340 high res-

olution meshes from ICT-3DRFE [47]. The loss function

is defined in terms of geometric differences between the es-

timation and the ground truth. However, we observe that

these training data are still insufficient to cover a wide range

of lighting conditions. Hence, we introduce an additional

unsupervised learning procedure (with an additional 163K

images captured in the wild) where for each image we ob-

tain its proxy geometry using our emotion-driven shape esti-

mator and then approximate the corresponding environment

lighting using spherical harmonics (SH). We use DFDN to

obtain an estimate of the geometry, but since we do not have

the ground truth geometry, we re-render these results using

the estimated albedo and environment lighting, and com-

pute the loss function in terms of the image differences.

Finally, we alternate the supervised and the unsupervised

learning processes, on geometry and image, respectively.

We have released our code, pre-trained models and results1.

2. Related Work

Existing approaches for producing high quality 3D face

geometry either rely on reconstruction or synthesis.

1https://github.com/apchenstu/Facial_Details_

Synthesis.git

Reconstruction-based Techniques. Multi-View Stereo

(MVS) 3D face reconstruction systems employ stereo [33]

or structure-from-motion [56]. A sparse set of cameras pro-

duce large scale geometry [20] whereas denser and hence

more expensive settings [2] provide more accurate measure-

ments. In either case, the reconstruction quality depends

heavily on the feature matching results as they act as an-

chor points dominating the final shape. For regions with

few textures such as bare skin, the reconstruction tends to be

overly smooth due to lack of features. For example, wrin-

kles caused by facial expressions are particularly difficult

to reconstruct: even though they cause shading variations,

their geometry is too slight to capture using stereo, espe-

cially when the camera baseline is small. Recently, Graham

et al. [20] use 24 entry-level DSLR photogrammetry cam-

eras and 6 ring flashes to capture facial specular response

independently and then combine shape-from-chroma and

shape-from-specularity for high quality reconstruction.

Another class of multi-shot techniques employed in face

reconstruction is Photometric Stereo (PS). PS is based on

analyzing image intensity variations under different illumi-

nations from a fixed viewpoint. Instead of directly recon-

structing 3D geometry, PS intends to first recover the nor-

mal map and then the 3D mesh, e.g., via normal integra-

tion. A common artifact in PS is low-frequency distortions

in the final reconstruction [35, 48] caused by perspective

projection violating the orthographic assumption. Accurate

calibrations on both the light sources and camera, though

able to mitigate the problem, are cumbersome. Most recent

techniques [36, 57, 16] combine PS with MVS by using the

MVS results as a proxy for calibration and then refine the

results. Aliaga et al. [3] simulates a MVS setup by em-

ploying multiple digital projectors as both light sources and

virtual cameras. We refer the readers to [1] for a compre-

hensive review of PS variants.

Synthesis-based approaches. The availability of high

quality mobile cameras and the demand on portable 3D

scanning have promoted significant advances on producing

high quality 3D faces from a single image. The seminal

work of Blanz and Vetter [6] pre-captures a database of face

models and extracts a 3D morphable model (3DMM) com-

posed of base shapes and albedos. Given an input image,

it finds the optimal combination of the base models to fit

the input. Their technique can also handle geometric de-

formations under expressions [37, 18] if the database in-

cludes expressions, e.g., captured by RGBD cameras [12].

More extensive facial databases have been recently made

publicly available [58, 24, 55, 30, 7], with an emphasis

on handling complex expressions [30, 7]. Most recently,

Li et al. [30] capture pose and articulations of jaw, neck,

and eyeballs with over 33,000 3D scans that have helped

boost the performance of single-image/video face recon-

struction/tracking [41, 11, 10, 46, 60, 42, 51, 17, 23, 43, 8].
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Figure 2. Our processing pipeline. Top: training stage for (a) emotion-driven proxy generation and (b) facial detail synthesis. Bottom:

testing stage for an input image.

The current databases, however, still lack mid- and high-

frequency geometric details such as wrinkles and pores that

are epitomes to realistic 3D faces. Shading based compen-

sations can improve the visual appearance [17, 27] but re-

main far behind quality reconstruction of photos.

Our approach is part of the latest endeavor that uses

learning to recover 3D proxy and synthesize fine geomet-

ric details from a single image. For proxy generation,

real [53] or synthetically rendered [39, 15] face images are

used as training datasets, and convolutional neural networks

(CNNs) are then used to estimate 3D model parameters.

Zhu et al. [59] use synthesized images in profile views

to enable accurate proxy alignment for large poses. Chang

et al. [14] bypass landmark detection to better regress for

expression parameters. Tewari et al. [50] adopt a self-

supervised approach based on an autoencoder where a novel

decoder depicts the image formation process. Kim et al.

[29] combine the advantages of both synthetic and real data

to [49] jointly learn a parametric face model and a regres-

sor for its corresponding parameters. However, these meth-

ods do not exploit emotion information and cannot fully

recover expression traits. For detail synthesis, Sela et al.

[44] use synthetic images for training but directly recover

depth and correspondence maps instead of model param-

eters. Richardson et al. [40] apply supervised learning

to first recover model parameters and then employ shape-

from-shading (SfS) to recover fine details. Li et al. [31]

incorporate SfS with albedo prior masks and a depth-image

gradients constraint to better preserve facial details. Guo

et al. [21] adopt a two-stage network to reconstruct fa-

cial geometry at different scales. Tran et al. [54] represent

details as bump map and further handle occlusion by hole

filling. Learning based techniques can also produce volu-

metric representations [26] or normal fields [45]. Yet, few

approaches can generate very fine geometric details. Cao

et.al [9] capture 18 high quality scans and employ a princi-

pal component analysis (PCA) model to emulate wrinkles

as displacement maps. Huynh et al. [25] use high preci-

sion 3D scans from the LightStage [19]. Although effective,

their technique assumes similar environment lighting as the

LightStage.

3. Expression-Aware Proxy Generation

Our first step is to obtain a proxy 3D face with accu-

rate facial expressions. We employ the Basel Face Model

(BFM) [18], which consists of three components: shape

Msha, expression Mexp and albedo Malb. Shape Msha and

expression Mexp determine vertex positions while albedo

Malb encodes per-vertex albedo:

Msha(α) = asha +Esha ·α (1)

Mexp(β) = aexp +Eexp · β (2)

Malb(γ) = aalb +Ealb · γ (3)

where asha,aexp,aalb ∈ R
3n represent the mean of cor-

responding PCA space. Esha ∈ R
3n×199, Eexp ∈ R

3n×100

contain basis vectors for shape and expression while Ealb ∈
R

3n×199 contain basis vectors for albedo. α,β,γ corre-

spond to the parameters of the PCA model.
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3.1. Proxy Estimation

Given a 2D image, we first extract 2D facial landmarks

L ∈ R
2m and use the results to compute PCA parameters

α, β for estimation of proxy shape. Specifically, we set out

to find the parameters that minimize the reprojection error

on landmarks:

E =
∑
k

wk‖Lk − P (lk(α,β))‖2 + λs‖α‖2 (4)

where lk(α,β) corresponds to the kth facial vertex land-

mark and P (·) is the camera projection operator that maps

3D vertices to 2D image coordinates. wk controls the

weight for each facial landmark whereas λs imposes reg-

ularization on the shape parameters.

To solve for Eq. 4, we use the iterative linear method in

[24]. Specifically, the camera projection operator P (·) is

parameterized as an affine camera matrix. For expression

parameters β, different from [24], we fix it as prior param-

eters βprior computed in Section 3.2. During each round of

iterations, we first fix α and solve for P (·) using the Gold

Standard Algorithm [22]. We then fix P (·) and solve for α.

To bootstrap this iterative scheme, we initialize α as 0.

3.2. Imposing Expression as Priors

The most challenging component in proxy estimation is

expression. 3D expressions exhibit a significant ambiguity

after being projected onto 2D images, e.g., different expres-

sions may have similar 2D facial landmarks after projection.

Fig. 3 shows an example of this ambiguity: the landmarks

of the two faces are extremely close to each other while

their expression parameters and shapes are vastly different,

especially around nasolabial folds. So it is hard to define

or train a mapping directly from image to 3D expression.

In our experiments, we also observe that the reprojection-

based loss function can easily fall into local minimum that

reflects such ambiguity.

We propose to use facial semantic information to narrow

the proxy parameter solving space via converting the prob-

lem into a conditional distribution. Our high level semantic

features comprise of emotion features and physically-based

appearance features (e.g. FACS).

To obtain emotion features, we reuse AffectNet

dataset [34] to train an emotion feature predictor Emotion-

Net. The dataset contains 11 discrete emotion categories

and about 450K annotated images. We utilize the ”sequen-

tial fully-CNN” [4] architecture to train our emotion fea-

ture predictor and use the output of the second last layer

f ∈ R
128 as the feature vector to represent human emotions.

More details could be found in our released code. Next, we

randomly generate expression parameters β from normal

distribution in interval [−3, 3] and render 90K images with

different facial expressions. We feed the images into the
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Figure 3. Expression projection ambiguity. Top: Visualization of

the two models’ first eight dimensions of 3D expression parame-

ters. Bottom: Rendered 2D facial images, their landmarks layered

onto each other, and their corresponding meshes. ‘left, right’ refer

to both rendered images and meshes.

trained Emotion-Net and obtain a total of 90K emotion fea-

ture vectors. We also use [5] to estimate 90K appearance

feature vectors on the images. Concatenating these emotion

feature vectors along with their corresponding appearance

feature vectors, we obtain the semantic feature vector for

each of the 90K images. We then formulate a dictionary

Ψ: Ψsem → Ψexp that record the mapping from semantic

features Ψsem to expression parameters Ψexp. Once we ob-

tain the trained model and the expression dictionary, we can

predict expression parameters βprior as a prior for proxy

estimation.

Given a new image I , we first feed it to Emotion-Net

and appearance feature predictor to obtain its semantic fea-

ture vector. We then find its closest semantic feature vector

in the dictionary and use the corresponding expression pa-

rameters for βprior:

βprior = Ψ(argmin
ψsem

‖Emotion-Net(I)− ψsem‖2) (5)

4. Deep Facial Detail Synthesis

With the 3D proxy face, we synthesize geometric details

by estimating displacement map and applying to the proxy

mesh. The key observation here is that for facial details such

as wrinkles, there is strong correlation between geometry

and appearance.

4.1. Network Architecture

Fig. 4 shows our Deep Facial Detail Net (DFDN ) with

two main cascaded modules. The Partial Detail Inference

Module (PDIM ) takes 2D image patches as inputs and gen-

erates 3D facial geometric details using a PCA-based tech-

nique (Section 4.2). Such a scheme dramatically reduces
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PDIM PDRM

Figure 4. Network architecture for facial detail synthesis. PDIM for medium-frequency detail (wrinkles) synthesis and PDRM for high-

frequency detail (pores) synthesis.

the parameter space and is stable for both training and in-

ference process. However, PCA-based approximations lose

high-frequency features that are critical to fine detail syn-

thesis. We therefore introduce the Partial Detail Refinement

Module (PDRM ) to further refine high-frequency details.

The reason we explicitly break down facial inference proce-

dure into linear approximation and non-linear refinement is

that facial details consist of both regular patterns like wrin-

kles and characteristic features such as pores and spots. By

using a two-step scheme, we encode such priors into our

network.

In PDIM module, we use UNet-8 structure concatenated

with 4 fully connected layers to learn the mapping from tex-

ture map to PCA representation of displacement map. The

sizes of the 4 fully connected layers are 2048, 1024, 512, 64.

Except for the last fully connected layer, each linear layer

is followed by an ReLU activation layer. In the subsequent

PDRM module, we use UNet-6, i.e. 6 layers of convolu-

tion and deconvolution, each of which uses 4×4 kernel, 2

for stride size, and 1 for padding size. Apart from this, we

adopt LeakReLU activation layer except for the last convo-

lution layer and then employ tanh activation.

To train PDIM and PDRM modules, we combine super-

vised and unsupervised training techniques based on Condi-

tional Generative Adversarial Nets (CGAN), aiming to han-

dle variations in facial texture, illumination, pose and ex-

pression. Specifically, we collect 706 high precision 3D hu-

man faces and over 163K unlabeled facial images captured

in-the-wild to learn a mapping from the observed image x

and the random noise vector z to the target displacement

map y by minimizing the generator objective G and maxi-

mizing log-probability of ’fooling’ discriminator D as:

min
G

max
D

(LcGAN(G,D) + λLL1(G)), (6)

where we set λ = 100 in all our experiments and

LcGAN(G,D) =Ex,y[log D(x, y)]+

Ex,z[log(1−D(x,G(x, z)))]. (7)

A major drawback of the supervised learning scheme

mentioned above is that the training data, captured under

fixed setting (controlled lighting, expression, etc.), are in-

sufficient to emulate real face images that exhibit strong

variations caused by environment lighting and expressions.

We hence devise a semi-supervised generator G, exploiting

labeled 3D face scans for supervised loss Lscans as well as

image-based modeling and rendering for unsupervised re-

construction loss Lrecon as:

LL1(G) = Lscans(x, z, y) + ηLrecon(x), (8)

where x is input image, z is random noise vector and y is

groundtruth displacement map. η controls the contribution

of reconstruction loss and we fix it as 0.5 in our case. In

the following subsections, we discuss how to construct the

supervised loss Lscans for geometry and unsupervised loss

Lrecon for appearance.

4.2. Geometry Loss

The geometry loss compares the estimated displacement

map with ground truth. To do so, we need to capture ground

truth facial geometry with fine details.

Face Scan Capture. To acquire training datasets, we

implement a small-scale facial capture system similar to

[13] and further enhance photometric stereo with multi-

view stereo: the former can produce high quality local de-

tails but is subject to global deformation whereas the latter

shows good performance on low frequency geometry and

can effectively correct deformation.

Our capture system contains 5 Cannon 760D DSLRs and

9 polarized flash lights. We capture a total of 23 images for

each scan, with uniform illumination from 5 different view-

points and 9 pairs of vertically polarized lighting images

(only from the central viewpoint). The complete acquisition

process only lasts about two seconds. For mesh reconstruc-

tion, we first apply multi-view reconstruction on the 5 im-

ages with uniform illumination. We then extract the specu-

lar/diffuse components from the remaining image pairs and
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calculate diffuse/specular normal maps respectively using

photometric stereo. The multi-view stereo results serve as

a depth prior z0 for normal integration [38] in photometric

stereo as:

min

∫∫
(u,v)∈I

[(∇z(u, v)− [p(u, v), q(u, v)]⊤)2

+µ(z(u, v)− z0(u, v))
2]dudv,

(9)

where u, v represents image coordinates, p, q represents ap-

proximations to ∂uz and ∂vz respectively, z0 is the depth

prior. µ controls the contribution of prior depth z0. In or-

der to generate geometry pairs with and without details, we

set the weight parameter µ to 1e−5 and 1e−3 respectively.

Then we obtain a ground truth displacement map for each

geometry pair.

PCA-Based Displacement Map. In our training

scheme, we choose not to directly feed complete face im-

ages as inputs to the network: such training can easily cause

overfitting since we do not have sufficient 3D face models

with fine details to start with. Instead, we observe that de-

spite large scale variations on different faces, local texture

details present strong similarities even if the faces appear

vastly different. Hence we adopt the idea from [9, 13] to

enhance our network generalization by training the network

with texture/displacement patches of 256× 256 resolution.

We model the displacement using PCA, where each patch

is a linear combination of 64 basis patches.

Our geometric loss is then defined as:

Lscans(x, z, y) =
∑

||PCA(PDIM(x, z))− y||1+

||PDRM(PCA(PDIM(x, z)))− y||1,
(10)

where PCA(·) uses input PCA coefficients to linearly com-

bine basis patches. By using the geometry loss, we combine

the loss in PCA space with the per-pixel loss to recover finer

details.

For patch sampling, we unfold each facial image into a

2048 × 2048 resolution texture map and regionally sample

training patches based on semantic facial segmentation. For

the sampling scheme, we iteratively reduce the displace-

ment map gradient with a weighted Gaussian kernel for

training set while we uniformly sample patches with 50%

overlap during inference.

4.3. Appearance Loss

Recall that the small amount of labeled facial geometry

is insufficient to cover a broad range of illumination con-

ditions and surface reflectance. Thus, we further adopt a

rendering-based, unsupervised learning approach: we ob-

tain 163K in-the-wild images, estimate its proxy (using

the approach in Section 3.2) and geometric details (using

Figure 5. From left to right: from input image, we estimate proxy

mesh, normal, lighting/shading, and albedo to re-render an image.

DFDN ), and then use this information to calculate lighting

and albedo. Finally, we re-render an image with all these es-

timations and compute reconstruction loss against the input

image during training.

To obtain per-pixel normals with geometric details

added, we propose an texture space manipulation using

the proxy mesh’s position map Pproxy (shown in Fig. 2,

the middle of first row) and the output displacement map

G(u, v) from DFDN :

Pfine(u, v) = Pproxy(u, v)+G(u, v) ·Nproxy(u, v) (11)

Nfine = F(Pfine) (12)

where Nproxy , Nfine represent normal map of proxy

and fine scale geometry, and Pfine is the position map of

detailed mesh. Nproxy , Pproxy are pre-rendered by a tradi-

tional rasterization rendering pipeline.

F(·) is normalized cross product operator on position

difference:

F(Pfine) =
convh(Pfine)× convv(Pfine)

||convh(Pfine)|| · ||convv(Pfine||
(13)

We compute position difference via nearby horizontal and

vertical 3 pixels in texture space, giving rise to convolu-

tion kernels of [−0.5, 0, 0.5] and [−0.5, 0, 0.5]⊤ for convh,

convv respectively.

To reconstruct the appearance loss, we assume a Lam-

bertian skin reflectance model and represent the global illu-

mination using spherical harmonics (SH) to estimate envi-

ronment lighting S and albedo Ialbedo. Under this model,

we can compute the appearance loss Lrecon as:

Irecon = Ialbedo ⊙ S(Nfine)

Lrecon = ||Iinput − Irecon||1
(14)
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Figure 6. Comparisons of our emotion-driven proxy estimation vs. the state-of-the-art (3DDFA [59] and ExpNet [14])

.

In order to back propagate Lrecon to update displace-

ment G(u, v), we estimate albedo map Ialbedo and environ-

ment lighting S from sparse proxy vertices. Please refer to

Section 1 of our supplementary material for detailed algo-

rithm.

For training, we use high resolution facial images from

the emotion dataset AffectNet [34], which contains more

than 1M facial images collected from the Internet.

In our experiments, We also use HSV color space instead

of RGB to accommodate environment lighting variations

and employ a two-step training approach, i.e., only back

propagate the loss of PDIM for the first 10 epochs. We find

the loss decreases much faster than starting with all losses.

Moreover, we train 250 epochs for each facial area. To sum

up, our expression estimation and detail synthesis networks

borrow the idea of residual learning, breaking down the fi-

nal target into a few small tasks, which facilitates training

and improves performance in our tasks.

5. Experimental Results

In order to verify the robustness of our algorithm, we

have tested our emotion-driven proxy generation and facial

detail synthesis approach on over 20,000 images (see sup-

plementary material for many of these results).

Expression Generation. We downsample all images from

AffectNet dataset into 48 × 48 (the downsampling is only

for proxy generation, not for detail synthesis) and use the

Adam optimization framework with a momentum of 0.9.

We train a total of 20 epochs and set learning rate to be

0.001. Our trained Emotion-Net achieves a test accuracy

of 52.2%. Recall that facial emotion classification is a chal-

lenging task and even human annotators achieve only 60.7%

accuracy. Since our goal focuses on producing more realis-

tic 3D facial models, we find this accuracy is sufficient for

producing reasonable expression prior.

Fig. 6 shows some samples of our proxy generation re-

sults (without detail synthesis). Compared with the state-

of-the-art solutions of 3D expression prediction [59, 14],

we find that all methods are able to produce reasonable re-

sults in terms of eyes and mouth shape. However, the re-

sults from 3DDFA [59] and ExpNet [14] exhibit less sim-

ilarity with input images on regions such as cheeks, na-

solabial folds and under eye bags while ours show signifi-

cantly better similarity and depict person-specific character-

istics. This is because such regions are not covered by facial

landmarks. Using landmarks alone falls into the ambiguity

mentioned in Section 3.2 and cannot faithfully reconstruct

expressions on these regions. Our emotion-based expres-

sion predictor exploits global information from images and

is able to more accurately capture expressions, especially

for jowls and eye bags.

Facial Detail Synthesis. We sample a total of 10K patches

for supervised training and 12K for unsupervised training.

We train 250 epochs in total, and uniformly reduce learn-

ing rate from 0.0001 to 0 starting at 100th epoch. Note, we

use supervised geometry loss for the first 15 epochs, and

then alternate between supervised geometry loss and unsu-

pervised appearance loss for the rest epochs.

Our facial detail synthesis aims to reproduce details from

images as realistically as possible. Most existing detail syn-

thesis approaches only rely on illumination and reflectance

model [31, 54]. A major drawback of these methods lies

in that their synthesized details resemble general object sur-

face without considering skin’s spatial correlation, as shown

in close-up views in Fig.7 (full mesh in supplementary ma-

terial). Our wrinkles are more similar to real skin surface

while the other three approaches are more like cutting with a

knife on the surface. We attribute this improvement to com-

bining illumination model with human face statistics from

real facial dataset and wrinkle PCA templates.

Our approach also has better performance on handling

the surface noise from eyebrows and beards while preserv-

ing skin details (2 and 6th row of Fig. 7).
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Figure 7. Close-up views of the synthesized meshes using

Pix2vertex [44], FPD [31], Extreme3D [54] and ours.

Quantitative evaluation. We also carry out quantitative

comparisons on both proxy mesh and displacement map.

Overall, we observe our approach produces much lower er-

rors on strong expressions, especially near the nose and eye-

brows where shape deformations are strong. Fig. 8 shows

some sample results of proxy + displacement and displace-

ment only errors.

Finally, our output displacement map is easy to integrate

with existing rendering pipelines and can produce high-

fidelity results, as shown in Fig. 1.

6. Conclusion and Future Work

We have presented a single-image 3D face synthesis

technique that can handle challenging facial expressions

while preserving fine geometric structures. Our technique

combines cues provided by emotion, expression, appear-

Reference Pix2vertex FPD Extreme3D Ours
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Figure 8. Quantitative comparisons. Top row: the quantitative er-

ror maps (proxy + displacement) of Fig. 7 using different meth-

ods. Our approach achieves comparable performance on medium

to large scale geometry (proxy) but produces much lower error on

fine details such as the forehead and nasolabial folds. Two bottom

rows: the error map of only the displacement on samples of our

capture system and USC LightStage [32].

ance, and lighting for producing high fidelity proxy geom-

etry and fine geometric details. Specifically, we have con-

ducted emotion prediction to obtain an expression-informed

proxy and we have demonstrated that our approach can han-

dle a wide range of expressions. For detail synthesis, our

Deep Facial Detail Net (DFDN ) employs both geometry

and appearance loss functions and is trained on real data

both captured by our system and from in-the-wild images.

Comprehensive experiments have shown that our technique

can produce, from a single image, ultra high quality 3D

faces with fine geometric details under various expressions

and lighting conditions.

Although our solution is capable of handling a variety

of lighting conditions, it has not yet considered the effects

caused by occlusions (e.g., hair or glasses), hard shadows

that may cause incorrect displacement estimations. For

shadows, it may be possible to directly use the proxy to

first obtain an ambient occlusion map and then correct the

image. Shadow detection itself can be directly integrated

into our learning-based framework with new sets of training

data. Another limitation of our technique is that it cannot

tackle low resolution images: our geometric detail predic-

tion scheme relies heavily on reliable pixel appearance dis-

tribution. Two specific types of solutions we plan to inves-

tigate are to conduct (learning-based) facial image super-

resolution that already accounts for lighting and geometric

details as our input and to design a new type of proxy face

model that includes deformable geometric details.
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Bernard, Hyeongwoo Kim, Patrick Pérez, and Christian
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Garrido, Florian Bernard, Patrick Pérez, and Christian

Theobalt. Mofa: Model-based deep convolutional face au-

toencoder for unsupervised monocular reconstruction. In

The IEEE International Conference on Computer Vision

(ICCV), volume 2, page 5, 2017.

[51] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-

tian Theobalt, and Matthias Nießner. Face2face: Real-time

face capture and reenactment of rgb videos. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2387–2395, 2016.

9438



[52] Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gérard

Medioni. Regressing robust and discriminative 3d mor-

phable models with a very deep neural network. In Computer

Vision and Pattern Recognition (CVPR), 2017 IEEE Confer-

ence on, pages 1493–1502. IEEE, 2017.

[53] Anh Tuan Tran, Tal Hassner, Iacopo Masi, Eran Paz, Yuval

Nirkin, and Gérard Medioni. Extreme 3D face reconstruc-

tion: Seeing through occlusions. In IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2018.

[54] Anh Tuân Tran, Tal Hassner, Iacopo Masi, Eran Paz, Yuval

Nirkin, and Gérard Medioni. Extreme 3d face reconstruc-

tion: Seeing through occlusions. In Proc. CVPR, 2018.

[55] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan
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