
Photo2Trip: Generating Travel Routes from Geo-Tagged
Photos for Trip Planning

∗

Xin Lu1, Changhu Wang2, Jiang-Ming Yang3, Yanwei Pang1, Lei Zhang2

1Tianjin University, Tianjin, P.R.China, 300072
2Microsoft Research Asia, Beijing, P.R.China, 100190
3Microsoft Corporation, Shanghai, P.R.China, 200241

{luxin, pyw}@tju.edu.cn, {chw, jmyang, leizhang}@microsoft.com

ABSTRACT

Travel route planning is an important step for a tourist
to prepare his/her trip. As a common scenario, a tourist
usually asks the following questions when he/she is plan-
ning his/her trip in an unfamiliar place: 1) Are there any
travel route suggestions for a one-day or three-day trip in
Beijing? 2) What is the most popular travel path within
the Forbidden City? To facilitate a tourist’s trip planning,
in this paper, we target at solving the problem of auto-
matic travel route planning. We propose to leverage exist-
ing travel clues recovered from 20 million geo-tagged photos
collected from www.panoramio.com to suggest customized
travel route plans according to users’ preferences. As the
footprints of tourists at memorable destinations, the geo-
tagged photos could be naturally used to discover the travel
paths within a destination (attractions/landmarks) and travel
routes between destinations. Based on the information dis-
covered from geo-tagged photos, we can provide a customized
trip plan for a tourist, i.e., the popular destinations to visit,
the visiting order of destinations, the time arrangement in
each destination, and the typical travel path within each
destination. Users are also enabled to specify personal pref-
erence such as visiting location, visiting time/season, travel
duration, and destination style in an interactive manner to
guide the system. Owning to 20 million geo-tagged photos
and 200, 000 travelogues, an online system has been devel-
oped to help users plan travel routes for over 30, 000 attrac-
tions/landmarks in more than 100 countries and territories.
Experimental results show the intelligence and effectiveness
of the proposed framework.
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H.3.5 [Online Information Services]: Web-based services
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Algorithms, Experimentation
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1. INTRODUCTION
The prosperity of tourism has made travel increasingly

popular in people’s everyday lives. Before traveling to an
unfamiliar location, most people have questions about how
to plan their trips. For example:

-“I will arrive at Seattle on Jun. 3rd and plan to have a
tour there. But I am not familiar with that city. Is there
any travel route suggestion to visit the most famous places
of interest in one day?”

-“I want to have a two-day trip in Seattle, US to visit and
taste Seattle’s Best Coffee. I desperately need help for trip
planning.”

-“I am going to visit the Forbidden City in Beijing, China
at the end of May. Who can offer me a route within the
large palace?”

Although users can search for related travel guide or ask
questions in web-based communities, the process is generally
not efficient and the results may not be customized. The
most common way for current users to find answers for trip
planning is probably to read travelogues one by one. How-
ever, as each travelogue only records individual footprints
during a trip, it is very time-consuming for users to manu-
ally summarize tens of travelogues and find a proper travel
route for his preference. Moreover, since the information
provided by travelogues is usually unstructured and varies
from person to person, from language to language, it is ex-
tremely hard for users to follow. In this case, an automatic
and interactive travel route planning service is highly desired
to plan a customized trip according to users’ preferences.

In practice, automatic trip planning is a very complex
task, which depends on many factors, such as travel dura-
tion, travel cost, visiting time, tourist’s age and physical
condition, and individual interests, out of which some are
difficult to model and predict. As the first trial on this
task, we target at dealing with the following preferences of
users in this work, i.e., travel location (e.g., Beijing, Paris,
or New York), travel duration (e.g., two-day trip or five-
day trip), visiting time (e.g, summer, winter, March, and
October), and destination preference (e.g., prefer historic
or prefer scenery sites). Users are enabled to interactively
adjust any part of the suggested plans if they have any re-
quirements that the suggested plans do not meet.

In general, for discovering and recommending travel routes,
an ideal system needs to answer the following three ques-



tions: 1) How to discover popular travel paths and estimate
typical stay time within a destination (attraction/landmark)?
2) How to select and organize the destinations in a location
to a travel route under certain travel duration constraint?
3) How to meet tourists’ diverse preference requirements?
It is not a trivial task to answer the above three ques-

tions. However, we have observed that, as the footprints of
tourists at memorable destinations, the user-generated geo-
tagged photos encode rich travel-related information. More-
over, these photos on the web are publically available and
sufficient to cover most of countries and landmarks in the
world. This motivates us to address the problem of travel
route planning by leveraging geo-tagged photos. However,
there are still difficulties we need to face. Although the geo-
tagged photos of a tourist could reveal his/her travel clues to
some extent, they can only be considered as a discrete and
incomplete path. This is because tourists usually take pho-
tos at discrete positions along their travel paths and upload
only a small portion to their web albums. To address this
problem, we propose to aggregate all the photos taken by
multiple tourists at the same location, and deliberately de-
sign an algorithm to recover as many as possible travel routes
by merging incomplete travel paths from multiple tourists.
To the best of our knowledge, little existing work in lit-

eratures has systemically investigated the automatic travel
route planning problem. Most existing research efforts on
user generated content [9, 7, 2, 13] mainly focus on land-
marks recognition, scene visualization and recommendation.
They ignore the relationships among various destinations
and treat each destination independently.
In this paper, we target at solving the automatic trip plan-

ning problem. A real-time trip planning system is built, in
which the three aforementioned questions are effectively an-
swered. This system contains the following three modules:

• Destination Discovering Discovering worldwide des-
tinations and mapping users’ diverse preferences to dis-
covered destinations is the fundamental step of interac-
tive travel route planning. To achieve this, more than
20 million geo-tagged photos and 200, 000 travelogues
are leveraged to map geo-tagged photos, destination
style, and visiting time preferences to worldwide des-
tinations, which are used in the customized and inter-
active trip planning module.

• Internal Path Discovering Discovering popular paths
within a destination (called internal paths), e.g., paths
in Forbidden City, has two important effects. On the
one hand, it could guide a tourist to walk and take
photos along the most attractive paths. On the other
hand, it makes it possible to discover the representative
stay time in a destination, which plays an important
role in the trip planning module. To discover internal
paths, we develop a novel Internal Path Discov-
ering (IPD) Algorithm, which can merge incom-
plete paths encoded in geo-tagged photos from dif-
ferent individuals to reconstruct some representative
paths. The discovered paths provide more complete
footprints within each destination, based on which we
can suggest tourists with typical travel paths and stay
times in a destination.

• Trip Planning We propose a novel Travel Route
Suggestion (TRS) Algorithm to suggest customized

trip plans among destinations by considering travel lo-
cation, travel duration, visiting time, and other pref-
erences of users as inputs. First, a customized desti-
nation graph is dynamically constructed according to
user’s preferences, in which the nodes of the graph rep-
resent destinations. Second, the route planning prob-
lem is formulated as a graph analysis problem, and
then solved by a dynamic programming algorithm. As
a result, the proposed system can provide a customized
travel plan to a tourist, which not only suggests mul-
tiple destination sequences, but also provides detailed
travel information for each destination including rep-
resentative travel paths and stay times within the des-
tination. Moreover, the system can also automatically
update travel plans in real time to respond to tourists’
interactions.

Based on 20 million geo-tagged photos and 200, 000 textual
travelogues crawled from the Web, we have developed an
online service to help users plan travel routes for over 30, 000
sights/landmarks in over 100 countries.

To the best of our knowledge, it is the first research work
to systematically investigate the automatic trip planning
problem. It is also the first system that could interactively
help users plan travel routes. Experimental results show the
intelligence and effectiveness of the proposed framework.

2. RELATED WORK
Little existing work targets at solving the problem of auto-

matic trip planning. Although [4] and [12] proposed to gen-
erate a tour guide from blogs, they did not consider users’
preferences to automatically make a trip plan.

Some related work focuses on landmark mining using user-
generated texts or photos. [10] mined city landmarks from
blogs by exploiting graphic models, while [8], [13], [11] and
[5] attempted to visualize, recognize, describe and summa-
rize a scene or a landmark by leveraging geo-tagged photos.

The tremendous number of publically available geo-tagged
photos greatly motivated us to address the automatic travel
route planning problem. The geo-information associated
with photos makes it possible to discover a tourist’s travel
route and thus recommend to other users.

The data source we used distinguishes our work from pre-
vious research on trajectory mining [3, 14, 6], in which the
GPS trajectory data was used. [3] mined the trajectories of
moving object, and demonstrated its usefulness in the analy-
sis of traffic flows. [6] focused on sub-trajectories discovering
by clustering techniques. [14] proposed to extract interesting
locations and classical travel sequences using GPS trajectory
data. However, GPS trajectory data is comparatively diffi-
cult to obtain and therefore is still not readily available. In
this case, geo-tagged photos are a good data source to solve
the automatic travel route planning problem.

3. CONCEPT DEFINITION
Destination In this work, destinations refer to popular

places, such as attractions, sights or landmarks, within a
city or a region. If an attraction or landmark is only an
individual building such as the Space Needle, the destination
also includes certain regions outside it from which tourists
could also enjoy the trip to this building.

Fragment & Path The travel path of a tourist within
a destination refers to the footprints encoded in geo-tagged



Figure 1: The illustration of the proposed trip plan-
ning framework.

photos he/she has taken and uploaded. Usually an indi-
vidual path recovered from a tourist’s uploaded geo-tagged
photos is far from the real path he/she walked along within
this destination. Thus, in order to distinguish the individual
path and the mined path from multiple users using the pro-
posed algorithm in this work, when there is ambiguous, we
use fragment to denote the aforementioned individual path,
and use path to represent the mined path. When there is
no ambiguous, path could refer to all kinds of the aforemen-
tioned paths.
Route Different from the path which is regarded as the

footprints within a destination, a route represents a sequence
of destinations. The travel route together with the typical
stay time and travel path within each destination along this
route results in a brief trip plan for tourists.

4. TRAVEL ROUTE MINING

4.1 Framework Overview
The proposed framework for travel route mining is illus-

trated in Fig. 1. The basic inputs of our framework are
visiting location and user preferences, including travel dura-
tion, visiting time, and destination style.
Three modules are designed to generate representative

travel routes to meet a user’s requirements. First, in the
destination discovering module, thousands of worldwide des-
tinations are discovered from 20 million geo-tagged photos
based on a clustering algorithm. The textual travelogues
and geo-tagged photos are leveraged to map users’ prefer-
ences to these destinations. Then, in the internal path dis-
covering module, we discover typical travel paths and stay
times within a destination by introducing the Internal Path
Discovering algorithm. Finally, trip planning module aims
to provide both suggested travel routes among destinations
and representative internal travel paths within each destina-
tion. A novel Travel Route Suggestion algorithm is proposed
to generate trip plans according to users’ requirements.
The suggested trip plans can be automatically updated

in response to users’ new requirements in an interactive
manner, i.e., updating preferences, adding/removing inter-
ested/uninterested destinations, or adjusting stay time at
each destination. As a result, according to each user’s spec-
ified requirements, a trip plan with typical internal paths
could be obtained.
In the following subsections, we will introduce the above

three modules of our framework in detail.

4.2 Destination Discovering

4.2.1 Destination Clustering

Figure 2: Motivation illustration for the Internal
Path Discovering algorithm. Although both Person
A and B walked from the front gate to the back gate
of Forbidden City, both of them only uploaded and
shared five photos onto the Web.

In order to generate travel routes for most popular loca-
tions in the world, our system first discovers popular desti-
nations all over the world from 20 million geo-tagged photos
crawled from web albums. Using the longitude and latitude
as the feature of a photo, MeanShift Clustering Algorithm
[1] is used to cluster the 20 million geo-tagged photos into
over 300, 000 clusters, from which the top 10% biggest clus-
ters are preserved and considered as destinations. The des-
tination distribution all over the world we have discovered
is shown in Fig. 7 in Section 5.2.1.

4.2.2 Destination Naming

After destination clustering, each destination is now rep-
resented by a set of geo-tagged photos without a destination
name. To facilitate the interaction with users, it is necessary
to associate each destination with a textual name.

We achieve this task by leveraging the gazetteer together
with the location popularity information mined from the
aforementioned travelogues. In the gazetteer, each destina-
tion name is associated with the center coordinate (repre-
sented by longitude and latitude) of this destination. There-
fore, we name each photo cluster based on the distance be-
tween cluster center and the coordinate of the destination
name. When there are multiple destination names matching
one photo cluster, we select the most popular name in the
200, 000 travelogues.

4.2.3 Preference Discovery

In order to generate customized trip plans, we need to
associate each destination with users’ potential preferences
such as destination style and popular visiting time.

1) Destination Style Discovery

Based on the 200, 000 textual travelogues crawled from We-
blogs and professional travel websites, we could mine the
top style terms such as beach, historic site and bar for each
destination as introduced in [9], whose details will be omit-
ted in this work due to space limitation. The examples of
style terms for different destinations are shown in Table 1 in
Section 5.2.2.

2) Popular Visiting Time Discovery

Each destination would have its best or popular visiting time
in a year. We could estimate this information for each des-
tination from the number of tourist who visited this des-
tination in each time period. Example monthly statistical
analysis is shown in Fig. 8 in Section 5.2.2.



Figure 3: Path density and path span. A is a path
with relatively large path span and high photo den-
sity. B has relatively large path span but sparse
photos. Photos on C is densely distributed but of
short path span. The quality of A is better than B
and C.

4.3 Internal Path Discovering
In this section, we introduce a novel Internal Path Dis-

covering (IPD) algorithm to discover typical paths and stay
times within a destination.

4.3.1 Motivation

In real cases, a user usually takes photos at discrete po-
sitions along his/her travel path, out of which only a small
part might be uploaded to web albums. Thus, geo-tagged
photos uploaded by one user usually indicate incomplete
footprints along his/her real travel path. See Fig. 2 for
an illustration. Although both Person A and B walked
from the front gate to the back gate of the Forbidden City,
both of them only uploaded and shared five photos onto the
Web. Only using the geo-tagged photos of either Person
A or Person B, we cannot recover their complete walking
paths. Moreover, estimated popular stay time using these
incomplete paths in the Forbidden City will be much smaller
than the real popular stay time, which will be verified in Sec-
tion 5.3.2. However, if we can identify that the two tourists
walked along the same path, after merging the two individ-
ual fragments together, we can obtain a more complete path
from the front gate to the back gate of the Forbidden City,
as shown in Fig. 2.

4.3.2 Internal Path Discovering Algorithm

1) Path Quality and Popularity

Before introducing how to merge incomplete individual frag-
ments into more complete paths, we first introduce the prop-
erties of a path for path merging and ranking, i.e., path qual-
ity and path popularity.
Path quality represents the degree of a path or a fragment

approaching to the“ideal”path. An“ideal”path is defined as
a path along which a virtual user takes and uploads photos
at any time and position after he/she enters a destination.
That means an ideal path should have an unlimited photo
density and a relatively large span. Thus, we define photo
density ρ(r) and path span l(r) to describe the quality of a
path r. Photo density refers to the number of photos per
unit length on the path, and path span is the maximum
Euclidean distance between the geo-coordinates of any two
photos of path r, which are given by the following equations:

ρ(r) =
#photo in r

∑

i=1,...,N−1 EuclideanDist(Ii, Ii+1)
, (1)

l(r) = max
Ii∈r,Ij∈r

EuclideanDist(Ii, Ij), (2)

(a) (b) (c)

(d) (e) (f)
Figure 4: Six general cases for merging two individ-
ual fragments, where fragments in (a), (b), (c) and
(d) are expected to be merged as corresponding dot-
ted lines, while those in (e) and (f) should not be
merged.

where {I1, I2, ..., IN} are the geo-tagged photos on path r
with taken time I1 < I2 < ... < IN .

In practice, original fragments always have limited photo
density and a shrinked path span, as shown in Fig. 3. There-
fore, the quality q(r) of a path r is defined as an increasing
function of photo density ρ(r) and path span l(r).

Path popularity pop(r) represents the popular degree of a
path that previous tourists walked along, which is defined
by the number of tourists who have walked along the path.
For a path merged by multiple fragments, pop(r) is just the
number of fragments that generate the path.

The final path score of path r is defined as a linear function
of path quality and path popularity subject to the following
constrains:

lim
ρ(r)→∞

s(r) = pop(r), (3)

which means that if a path is an ideal path, we will only
consider its popularity for ranking. Thus, we use the follow-
ing two equations to calculate path quality q(r) and path
score s(r):

q(r) = 1− exp {−l(r)ρ(r)}. (4)

s(r) = pop(r) + q(r)− 1. (5)

We first describe how to merge two fragments by lever-
aging path quality information, then describe the internal
path discovering algorithm.

2) Fragment Merging

We should answer the following two questions: 1) how to
decide whether two fragments could be merged together,
and 2) how to merge two fragments.

Six general cases are listed in Fig. 4, where the fragments
in (a)-(d) are expected to be merged. The dotted lines in-
dicate the possible merging results. (e) is not expected to
be merged as the directions of the two fragments are dis-
agreed with each other. In (f), the distance between the two
fragments is too large to be considered as on the same path.
The distance of two fragments is defined as the distance of
the closest photo pairs, denoted as AnchorPhotos, shown
in Fig. 5. We use the twofold GPS locating error (20 me-
ters used in this work) as the threshold to prevent pairs of
fragments with large distance from merging.



Figure 5: Merging two fragments f1 and f2. Photos
on the fragments are organized in the chronologi-
cal order. There will be six ways to merge the two
fragments, i.e., f1, f2, I

f1
1 -> If1k ->If2

k′ ->If21 , If11 ->If1k -

>If2
k′ ->If2N2

, If1N1
->If1k ->If2

k′ ->If2N2
, and If1N1

->If1k ->If2
k′ -

>If21 , from which we will select the one with the
highest path quality as the candidate path.

Algorithm 1 : Internal Path Discovering

Input: N fragments {f1, . . . , fN}, in which each fragment

contains Ni geo-tagged images: Ifi1 , . . . , IfiNi

1: Initialize the path collection: R = ∅
2: for i = 1 to N do
3: Initialize merged path: f ′ = fi
4: for j ∈ {1, 2, . . . , N} \ {i}
5: f ′ = Merge(f ′, fj) (see Fragment Merge part)
6: end for
7: if the number of photos in f ′ > 5
8: R = R∪ {f ′}
9: end if

10: end for
11: return candidate path set R

Moreover, from Fig. 5 we can see that, there are always
multiple ways to merge two fragments. We calculate the
qualities of these paths according to Eqn. 4 and select the
one with the highest score as the merging result.

3) Path Discovering

In this section, we first introduce how to obtain the can-
didate paths from a collection of fragments based on the
aforementioned two-fragment merging algorithm, and then
discuss how to rank these candidate paths to get the most
representative ones.
Given N fragments f1, f2, ..., fN in a destination, the can-

didate paths could be obtained by merging these fragments
together using Algorithm 1. The strategy is to pick each
fragment as the target candidate path, and then merge other
fragments with this path one by one using the aforemen-
tioned Fragment Merging method. In each two-fragment
merging step, the output merged path is used to update the
target candidate path. By considering each of the N frag-
ments as a target candidate path, we could finally generate
no more than N candidate paths, out of which duplicate
ones will be removed.
To obtain the most representative paths within a desti-

nation, we rank all candidate paths according to their path
score s(r), and select the top ones as the typical paths in
the corresponding destination.

4.3.3 Stay Time Discovering

In this section, we first introduce how to calculate the
time span of a discovered typical path, based on which the

(a) Incomplete fragments with different timelines

(b) Discovered path with a common timeline

Figure 6: Timeline of discovered path. Balls with
the same color and number represent the photos up-
loaded by the same user. Notice that all the frag-
ments are incomplete and follows different timelines.
(a) Incomplete fragments with different timelines.
Links between Anchor Photos are shown. (b) Dis-
covered path, in which all photos are aligned to the
same timeline. ETa is estimated using the time span
of the photos, which is much closer to the real case
compared with the stay times reflected only by in-
dividual fragments, i.e., Ta1

, Ta2
, Ta3

and Ta4
.

typical stay time in the corresponding destination could be
discovered.

Notice that a path is merged from different fragments,
which could have different timelines. For example, photos
taken in the same position in different fragments (or say
AnchorPhotos) might be taken in different times. Thus,
in order to get the right time span of a path, the time-
lines of all fragments contributing to this path should be
aligned to make the AnchorPhotos of two fragments have
the same time. Based on the common timeline, we use the
time span of all photos related to this path as the discovered
stay time of this path. For example, as shown in Fig. 6, four
incomplete fragments with different timelines are merged
into a more complete path with a common timeline. From
Fig. 6 we can see that, the path discovered by the Internal
Path Discovering algorithm is much more complete, based
on which the stay time is estimated.

Based on the statistical analysis of stay times, a stay time
distribution could be obtained for each destination. Ex-
ample result is shown in Section 5.3.2. For each possible
stay time, we can also obtain a list of typical internal paths
ranked according to the ranking principle discussed at the
end of Section 4.3.2.

The time cost for a trip consists of two parts. One is
the stay time in all destinations along the trip, which is
discussed above. The other is the passing time, which could
be obtained using the similar approach as in the stay time
estimation. We will omit the details of this part due to space
limitation.

4.4 Trip Planning
In this section, we propose a novel Travel Route Sug-

gestion (TRS) algorithm to generate travel route plans for
tourists. A typical trip plan targeted in this work is sup-



posed to have the following output. “The suggested travel
routes of a one-day trip in Beijing: three hours in Forbid-
den City → two hours in Tian An Men Square → two hours
in Qian Men. Typical internal paths related to corresponding
suggested stay time in each destination are also provided for
reference.” The system also enables users to identify their
preferences in advance or change the suggested trip plan in
an interactive manner.
In order to mine this kind of trip plans according to users’

preferences and previous tourists’ experiences encoded in
photo/travel collections, we need to answer the following
questions: 1) How to choose typical destinations in a lo-
cation? 2) How to order these selected destinations in the
trip? 3) how to manage the stay time in each destination?
4) how to take into account of a user’s preference? It should
be noted that the above four questions are highly related
with each other and cannot be easily solved separately. For
example, we need to consider the typical stay time of each
destination when we recommend the visiting destinations.
If a user only has 5 hours to visit 2 places of interest, it
might be improper to recommend him/her a route which
costs more than 8 hours for most previous tourists.
In order to answer the above questions and generate a

customized trip plan for a user, in this work, we formulate
the aforementioned trip planning task as a graph analysis
problem, which could be solved by a dynamic programming
algorithm. Under this formulation, the destinations now cor-
respond to the nodes V on the directed graph G(V, E), and
the transition from one destination to another corresponds
to the transition on the graph. Thus, the problem turns
to be how to find the optimal path on the graph G(V, E),
along which the total score is maximized subject to the con-
straint that the total time cost is less than or equal to travel
duration set by the user.
In the following subsections, we first introduce how to dy-

namically construct the directed graph G(V, E) according to
users’ preferences, followed by how to apply dynamic pro-
gramming on the graph to generate customized trip plans.

4.4.1 Dynamic Graph Construction

1) Nodes

Each destination is split into several nodes according to
the typical stay times mined in the last section. For exam-
ple, if the typical stay times in a destination are 2 hours,
3 hours, and 4 hours, with stay time probability 0.4, 0.5,
and 0.1, there will be three nodes which contains different
stay time property. As more nodes will lead to more time
cost in trip planning, to find a trade-off solution, we only
consider the stay times when their probabilities normalized
by the maximal probability are higher than 0.6. In the algo-
rithm, we also prevent the same destination with different
stay times from appearing in the same route.
Each node vi in graph G = (V, E) has three attributes: the

stay time ti, node score si, and destination id desti, where
ti is introduced in Section 4.3.3, and si is determined by
four factors: destination popularity Spop, stay time weight
wi, destination style preference score Sdsp, and visiting time
preference score Svtp. desti is the destination which node v
represents. Two nodes may represent the same destination
with different stay times.
Destination popularity Spop is the number of tourists who

have visited this destination in historical records. The stay
time weight wi is the stay time probability normalized by

the maximal one. Destination style preference score Sdsp is
obtained as in [9], which is the probability of the style term
given the destination. We make a monthly statistic for the
visiting time preference score Svtp, which considers both the
absolute number of tourists in that month and the ratio of
the number in that month to the total number of tourists
in that destination, details of which will be omitted due to
space limitation.

Finally, the score of node vi is defined as

si = (Spop + αSvtp + βSdsp)× wi, (6)

where α and β are two parameters to make Svtp, Spop, and
Sdsp have the same scale, which are both practically set to
be 100 in the implementation.

2) Edges

For each pair of nodes vi and vj , we make an edge eij to
connect them, which has two attributes: edge score sij and
passing time tij between vi and vj . The score sij is equal
to the number of people who have sequentially visited desti
and destj in a single trip. For instance, for a historical trip
A → B → C → D, the occurrences of tuples (A,B), (B,C),
(C,D), (A,C), (B,D) and (A,D) are counted. The passing
time tij is computed according to Section 4.3.3. The edges
with zero scores will be removed from the graph.

4.4.2 Dynamic Programming for Trip Planning

Given the graph G(V, E) and travel duration T specified
by the user, the trip planning problem is interpreted as how
to find the optimal path (in terms of total score of nodes
and edges) with time cost (total stay and passing time of
nodes and edges) less than or equal to T .

Thus the whole process is to calculate the scores of the
paths between all pairs of nodes given time t = step ≤ T and
then calculate these scores given the time t = (step+step) ≤
T . It finishes when t ≤ T and t+ step > T .

To make it more clear, we use the function f(vi, vj , t) to
denote the score of the optimal route between nodes vi and
vj , with time cost on the route less than or equal to t. Rt

ij

is the set of nodes on the route. The goal is to compute
f(vi, vj , T ) for every vi and vj , and then choose the best
several routes for suggestion. We will show that it can be
solved by a dynamic programming algorithm.

Suppose for all t′ < t−step, the score function f(vi, vj , t
′)

are already known. It is easy to proof that, the optimal score
of f(vi, vj , t) can be decomposed into the computation of two
sub-problems f(vi, vk, t

′) and f(vk, vj , t − t′ − tk). There-
fore, computing the function has optimal substructure and
overlapping sub-problems, and can be solved by applying
dynamic programming. Thus, we have:

f(vi, vj , t) = max
vk∈V,t′≤t

Rt′

ik∩Rt′′

kj ={destk}

f(vi, vk, t
′) + f(vk, vj , t

′′)
−sk,

(7)
where t′′ = t− t′ − tk, and

Rt
ij = Rt∗

ik∗ ∪Rt′−t∗−tk
k∗j ∪ {destk∗}, (8)

where vk∗ and t∗ make Eqn. 7 achieve the maximum value.
destk is recorded into Rt

ij to avoid repeatedly visiting the
same destination, as shown in Eqn. 8.

In the implementation, we initialize the graph as follows.



Figure 7: Discovered worldwide destinations using
20 million geo-tagged photos.

We set Rt
ij = {i, j} for all eij ∈ E , and for all t ≥ 0, we have

f(vi, vj , t) =

{

si + sj + sij , eij ∈ E , t ≥ tij , desti ̸= destj

−∞, otherwise

where t = ti + tj + tij . After initializing the score matrix,
we apply the dynamic programming algorithm introduced
above to calculate the maximal score for each pair of two
nodes within the travel duration T .
The time complexity of this algorithm isO(|V|3(T/step)2).

In the implementation, we set step to be 1 hour.

5. EXPERIMENTS
In this section, we evaluate the proposed framework in

terms of destination discovering, internal path discovering,
and trip planning.

5.1 Datasets
We collected about 20 million geo-tagged photos from

Panoramio (http://www.panoramio.com/), whose additional
information such as taken time and photographer ID were
also collected. Meanwhile, about 200, 000 travelogues writ-
ten in English or Chinese were crawled from Weblogs such as
Windows Live Spaces, and professional travel websites like
TravelPod, IgoUgo, TravelBlog, and Ctrip.

5.2 Destination Discovering

5.2.1 Destination Discovery

Over 30, 000 destinations (attractions/landmarks) in more
than 100 countries and territories have been discovered for
travel route planning based on the 20 million geo-tagged
photos. The coverage of discovered destinations all over the
world is shown in Fig. 7. From Fig. 7, we can see that
the discovered destinations using geo-tagged photos cover
five continents, i.e., Asia, Europe, Australia, America, and
Africa. Statistical data show that more than 30, 000 desti-
nations covering over 100 countries and areas are discovered.
To evaluate the accuracy of destination naming to the

photo clusters, we randomly select ten photos from each of
twenty randomly selected clusters. We consider the desti-
nation name of a photo cluster as correct if the contents
of more than 50% photos in this cluster are exactly about
this destination. Notice this is a relatively strict measure,
since even the photo is taken within this destination, if the
labeler cannot see the typical attraction or landmark in the
photo, it will be labeled as wrong. The results show that
the accuracy of destination naming is about 90%.

Table 1: Examples of discovered destination styles
Destination Style terms
Times Square broadway island village square
Walt Disney World park resort magic epcot animal
Central Park park subway skate rink garden
Statue of Liberty island ferry statue boat liberty
Grand Canyon canyon grand rim hike park
Golden Gate Bridge bridge bay alcatraz cable gate
Pearl Harbor memorial attack battleship
Niagara Falls fall mist maid water cave island
The White House monument memorial president
Hearst Castle william pool house garden

5.2.2 Preference Discovery

1) Destination Style Discovery

We used the same destination style discovering algorithm as
introduced in [9], which reported that the accuracy of top 20
discovered style terms for a destination is higher than 80%.
In Table 1, we show some discovered destination style terms
for some destinations in the United States.

2) Popular Visiting Time Discovery

Fig. 8 shows the visiting popularity distribution of six exam-
ple destinations in China and the United States in different
months of a year. From Fig. 8 we can see that the popu-
lar visiting time for Millennium Park is summer; for Walt
Disney World in Orlando is December; and for Fragrant Hill
the best visiting time is autumn. For Washington Monu-
ment and Forbidden City, all the time in a year is good for
visiting.

5.3 Internal Path Discovering

5.3.1 Internal Path Discovering

In order to evaluate the internal path discovering algo-
rithm, we manually find fifteen website recommended in-
ternal paths from trip planning forums or official websites
of destinations as the groundtruth. They are destinations
in China and the United States , including West Lake in
Hangzhou, Square Market in Lijiang, Bund of Shanghai,
Temple of Heaven, Forbidden City, Summer Palace, Tian
An Men Square, Fragrant Hill, Millennium Park, Central
Park, Statue of Liberty, Grand Canyon, Battery Park, Ellis
Island, and Pike Market.

We first check whether the ground truth path or its sim-
ilar paths (i.e., more than 80% overlap with it) have been
discovered by the proposed Internal Path Discovering (IPD)
algorithm, or exist in the original fragments. If it is dis-
covered by IPD rather than by the original fragments, IPD
wins; while if it exists in the original fragment collection
rather than the discovered path collection using IPD, IPD
loses. If both the two collections contain the ground truth
path, we compare the rankings of the path in the two col-
lections. The one with higher ranking wins. IPD algorithm
ranks the paths by their quality and popularity, as intro-
duced in Section 4.3.2. Individual fragments are ranked by
the number of photos on it. As a result, IPD won 6 times,
lost 1 time, and broke even for other 8 times.

Besides the superiority in discovering website recommended
path, compared with the original fragments, the IPD algo-
rithm could discover more diverse paths within a destina-
tion which is different a lot from the website recommended
path. On the other hand, although a small part of fragments
might happen to be similar to the website recommended



(a) Example destinations in China.

(b) Example destinations in the United States.

Figure 8: Visiting popularity distribution in a year.
(a) shows example destinations in China. (b) shows
example destinations in the United States.

path, most of the individual fragments are incomplete and
are difficult to cover other typical paths. In order to ver-
ify this point, we ask 20 users to manually compare the top
10 discovered paths with the top 10 individual fragments in
the 8 destinations at which the two collections broke even in
discovering the website recommended path. The users are
asked to label “much better”, “better”, “equal”, “worse”, or
“much worse” for each comparison. For example, “much bet-
ter” means that discovered paths are much better than the
original fragments. Out of the 20 × 8 = 160 comparisons,
we get 16 “much better”, 74 “better”, 42 “equal”, 28 “worse”,
and 0 “much worse”.
Fig. 9 and Fig. 10 show the typical discovered paths with

different stay times in the Forbidden City and Millennium
Park. Comparing with the original fragments as shown in
Fig. 11, we can see that the discovered paths are more
complete and could reveal more details.
Another advantage of the discovered paths is that they

can help accurately discover the typical stay time in a des-
tination, which will be verified in the next subsection.

5.3.2 Typical Stay Time Discovering

Typical stay time in a destination could be estimated
based on the discovered internal paths. To evaluate the
stay time discovering algorithm, two baseline algorithms,
i.e., the average time span of individual fragments (AVE)
and Gaussian model-based method (GMB) are introduced.
GMB supposes that individual stay time in a destination
is drawn from Gaussian distribution, but the stay time is
translated and scaled due to the noise. We have trained a
model on labeled destinations and thus estimated the stay
time for other destinations.
We asked 20 labelers from China to label the typical stay

time of the following 10 destinations: Bund of Shanghai,

(a) A 2-hour path. (b) A 3.5-hour path.

(c) A 4.2-hour path. (d) A 5-hour path.
Figure 9: Discovered internal paths in Forbidden
City with different stay time. (a) 2-hour path; (b)
3.5-hour path; (c) 4.2-hour path; and (d) 5-hour
path.

Sunshine Rock, Nan Putuo Temple, Badaling Great Wall,
Summer Palace, Forbidden City, Longmen Grottoes, City
God Temple, Tiger Leaping Gorge, and Ancient Culture
Street. The labelers are only allowed to label the desti-
nations they have visited. Each destination was at least
labeled by three labelers. The mean value of labeled typical
stay times was used as the groundtruth.

The stay time differences in terms of hours between the
ground truth and that estimated by each algorithm were
calculated for each destination. The results are shown in
Fig. 12, from which we can see that for most destinations
IPD performs the best. GMB is better than AVE, since the
imprecision of the stay time is usually caused by the incom-
plete footprints and it could be naturally considered as a
kind of noise and modeled by GMB. However, GMB still
cannot handle all cases in a uniform framework, since the
learned parameters of GMB seem quite sensitive to differ-
ent destinations. AVE has inferior performance compared
with the other two methods, since no effective techniques
are leveraged to deal with the problem caused by incom-
plete individual fragments. The results further confirm the
assumption that individual photos from Web albums show
incomplete footprints and the proposed IPD algorithm over-
comes this challenge to a large extent.

Fig. 13 (a)-(d) show the stay time distributions of tourists
who visited Forbidden City, Bund of Shanghai, Madison
Square Garden Center, and Golden Gate Bridge. We can
see that, the stay time distribution discovered by IPD is
more reasonable and robust than the other two methods.

5.4 Trip Planning
We conducted extensive user study to evaluate the pro-

posed trip planning framework. Twenty graduate students
were asked to complete the task as follows. First, they in-



(a) A 1.6-hour path. (b) A 2.2-hour path.

(c) A 3.6-hour path. (d) A 5-hour path.

Figure 10: Discovered internal paths in and around
Millennium Park with different stay time. (a) 1.6-
hour path; (b) 2.2-hour path; (c) 3.6-hour path; and
(d) 5-hour path.

(a) Forbidden City (b) Millennium Park

Figure 11: Individual fragments. (a) Sample frag-
ments in the Forbidden City. (b) Sample fragments
in and around Millennium Park. This figure is bet-
ter viewed in color. Fragments with different colors
are from different individuals.

put requests on travel location, travel time duration, visiting
time, and destination styles, to trigger trip plans. They were
asked to score the suggested routes using 1 to 5 ratings,
and select the best plan made by different approaches for
each destination. Then, if they want, they can change any
of the input, add/delete destinations to make a customized
and satisfactory trip plan. Similarly, the students who have
never been to the destination were not allowed to label it.
Four aspects are asked and evaluated for travel route plan-

ning: (1) representativeness (i.e., to what extent destina-
tions in the recommended route reflect the culture and char-
acteristics of the location.); (2) diversity (i.e., to what ex-
tent destinations in the recommended route provide rich in-
formation about the location.); (3) rationality (i.e., to what
extent destinations are reasonably arranged within time re-
quirement.), and (4) overall satisfaction (i.e., are you sat-
isfied with the suggested route?).
To evaluate the proposed interactive trip planning method,

we compared the following three algorithms: 1) the proposed
Travel Route Suggestion (TRS) algorithm, 2) TRS, except

Figure 12: Popular stay time evaluation based on
the ground truth given by native long-time residents
in different cities. The x-coordinate indicates the in-
dex of used destinations. From 1 to 10 are Bund
of Shanghai, Sunshine Rock, Nan Putuo Temple,
Badaling Great Wall, Summer Palace, Forbidden
City, Longmen Grottoes, City God Temple, Tiger
Leaping Gorge, and Ancient Culture Street.

(a) Forbidden City (b) Bund of Shanghai

(c) Madison Square Garden
Center

(d) Golden Gate Bridge

Figure 13: Stay time distributions using different
approaches. The distribution is determined by the
number of people who visited the destination under
certain stay time. (a)-(d) show the distribution in
Forbidden City, Bund of Shanghai, Madison Square
Garden Center, and Golden Gate Bridge.

that the individual fragments are used for stay time esti-
mation, denoted by TRS-AVE, 3) Random Trip Planning,
denoted by RTP. RTP randomly selects destinations in a
location and randomly arranges their orders. Ten cities in
China, i.e., Beijing, Shanghai, Sanya, Tianjin, Dalian, Xia-
men, Hangzhou, Harbin, Xi’an, and Chengdu, were used in
the user study.

The results are shown in Fig. 14, from which we can see
that the trips suggested by TRS contain more representative
and diverse destinations, and TRS has organized them more
rationally. Although TRS-AVE could select representative
destinations, due to the poor stay time estimation in each
destination, the destinations could not be well-organized to
be a satisfactory trip. RTP is the worst one, which fails in
both destination selection and organization.

To illustrate the interactive process of our trip planning
system, we shows two example results in Fig. 15. To re-
sponse to user A who desired to have a two-day trip in Bei-
jing in autumn, TRS automatically recommended the fol-
lowing plan: visiting Fragrant Hill to enjoy red leaves in the



Figure 14: Comparison results of different algo-
rithms for trip planning.

(a) User A (b) User B

Figure 15: Interactive trip planning results. (a)
the second day trip in Beijing requested by user A,
where dotted lines links the destination (i.e., San Li
Tun) added by user. The final trip adopted by user
A is 3 hours in 1⃝ Forbidden City, 2 hours in 2⃝ Tian
An Men Square, 2 hours in 3⃝ Qian Men, and 2 hour
in 4⃝ San Li Tun. (b) a trip plan with preference of
snacks in Shanghai. The trip is 2 hours in 1⃝ Bund
of Shanghai, 3 hours in 2⃝ Oriental Pearl Tower,
and 3 hours in 3⃝ Town’s God Temple. Town’s God
Temple is famous for snacks.

first day; visiting Forbidden City (3 hours), Tian An Men
square (2 hours) and Qian Men (2 hours) in the second day.
The user was generally satisfied with the results, but he had
particular interests in the bar culture of Beijing. In this case,
he decided to modify the results and planned the two-day
trip as follows: on the first day, visiting Fragrant Hill at the
day time, and Hou Hai in the evening; on the second day,
he preferred to visit the destination we planned at first and
then go to San Li Tun at the evening (Hou Hai and San Li
Tun are places famous for bar culture). The trip plan on the
second day is shown in Fig. 15(a). User A commented on
our system that “It is a very interesting system, which pro-
vides representative and rational travel routes suggestions.
I hope it can include more attractive destinations for young
people, such as Huan Le Gu and Nan Luo Gu Xiang”.
User B was especially interested in snacks, and she ex-

pected to have a one-day trip in Shanghai. The suggested
trip plan using our system is shown in Fig. 15(b), which
starts from The Bund of Shanghai (2 hours), to the Orien-
tal Pearl Tower (3 hours) and ends at Town’s God Temple
(3 hours). Town’s God Temple is actually very famous for
snacks. User B felt enjoyable about the suggested trip plan.
To evaluate the efficiency of the TRS algorithm, we sam-

pled ten cities to make trip plans. As shown in Table 2 and
3, we present average time cost for different numbers of des-
tinations and different time durations. We can see that our
system could recommend trip plans for tourists in real-time.

6. CONCLUSIONS
In this paper, we have presented a novel automatic trip

planning framework, by leveraging Web scale geo-tagged

Table 2: Average time cost of one-day trips for dif-
ferent numbers of destinations.

Destination Number 20 30 40 50 60
Time (Seconds) 0.03 0.05 0.11 0.17 0.28

Table 3: Average time cost for different travel du-
rations with destination number fixed to be 60.

Travel Duration 4 hours 8 hours 2 days 3 days
Time (Seconds) 0.11 0.28 0.53 0.75

photos and textual travelogues. Owning to the 20 million
geo-tagged photos, an online system has been developed to
help users plan travel routes for over 30, 000 sites/landmarks
in more than 100 countries and territories. To the best of
our knowledge, it is the first research work to systemati-
cally investigate the trip planning problem. It is also the
first system that could interactively help users plan travel
routes. Experimental results have shown the intelligence
and effectiveness of the proposed framework.
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