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ABSTRACT

The tumour microenvironment (TME) is a complex cellular ecosystem

subjected to chemical and physical signals that play a role in shaping

tumour heterogeneity, invasion and metastasis. Studying the roles

of the TME in cancer progression would strongly benefit from

non-invasive visualisation of the tumour as a whole organ in vivo,

both preclinically in mousemodels of the disease, as well as in patient

tumours. Although imaging techniques exist that can probe different

facets of the TME, they face several limitations, including limited

spatial resolution, extended scan times and poor specificity from

confounding signals. Photoacoustic imaging (PAI) is an emerging

modality, currently in clinical trials, that has the potential to overcome

these limitations. Here, we review the biological properties of the TME

and potential of existing imaging methods that have been developed

to analyse these properties non-invasively. We then introduce PAI

and explore the preclinical and clinical evidence that support its use in

probing multiple features of the TME simultaneously, including blood

vessel architecture, blood oxygenation, acidity, extracellular matrix

deposition, lipid concentration and immune cell infiltration. Finally, we

highlight the future prospects and outstanding challenges in the

application of PAI as a tool in cancer research and as part of a clinical

oncologist’s arsenal.
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Introduction

The focus of cancer research has moved from treating the tumour as

a homogenous mass of cancer cells to considering the wider tumour

microenvironment (TME; see Box 1 for a glossary of terms) (Quail

and Joyce, 2013). The infrastructure of a growing solid tumour is a

heterogeneous mixture of cancer and stromal cells. In addition to

this complex cellular picture, chemical signals such as hypoxia

(Box 1) and physical signals arising from fibrosis (Box 1), among

others (Fig. 1), are linked to poor patient prognosis (Gilkes et al.,

2014). Importantly, these features of the TME interact with and

regulate one another (De Palma et al., 2017; Kalluri, 2016; LaGory

and Giaccia, 2016), and such dynamic relationships influence

tumour growth and heterogeneity.

Improving our understanding of the role of the TME in cancer

progression would strongly benefit from non-invasive visualisation

of the tumour as a whole organ in vivo, both preclinically in mouse

models of the disease, as well as in patients. Unfortunately, features of

the TME remain challenging to resolve with non-invasive imaging.

As a result, many studies still rely on excised tissues ex vivo, which

only interrogate a small portion of the tumour at a fixed time point,

and are not able to capture its full spatial and temporal heterogeneity.

Visualising the dynamic TME in vivo would allow researchers to

investigate key questions about the interplay between different

features of the microenvironment, for example, the functional

relationship between hypoxia and fibrosis (Gilkes et al., 2014). The

biomarkers resulting from these studies could then be applied

clinically to predict tumour aggressiveness, stratify patients and

monitor treatment response. Ultimately, this would transform patient

care and improve survival by helping to guide therapeutic strategies

(Abadjian et al., 2017; Weissleder et al., 2016).

A range of existing in vivo imaging techniques can be used to

visualise different facets of the TME and have already provided

valuable insight. Unfortunately, they come with limitations that

include limited spatial resolution, extended scan times and poor

specificity from confounding signals. Photoacoustic (also referred to

as optoacoustic) imaging (PAI; Box 1) is a promising technique with

potential to overcome these limitations for imaging TME features in

vivo. This Review will first introduce key aspects of the TME,

focusing on tumour vasculature and hypoxia, the extracellular matrix

(ECM; Box 1) and lipids, together with the immune cell

compartment, explaining their individual importance in cancer

biology and their dynamic interactions as a microenvironment. We

will then review the advantages and disadvantages of current

techniques for imaging these key components in vivo and specifically

focus on the potential of PAI in such studies. We conclude by

discussing the potential of PAI for clinical imaging of the TME and

the outstanding challenges that must be overcome to achieve this.

Features of the TME

Tumour vasculature and hypoxia in the TME
A growing tumour mass requires a vascular network to supply

cancer cells with nutrients and remove metabolic waste products,

which then permits cancer cells to extravasate and metastasise.

Development of a vascular network typically begins in response to

diffusion-limited or chronic hypoxia, which arises when the

diffusion of oxygen from surrounding blood vessels is insufficient

to meet the demand of the proliferating cancer cells (LaGory and

Giaccia, 2016; Lundgren et al., 2007). Activation of hypoxia-

inducible factors (HIFs) drives the transcription of genes involved in

a wide range of cellular functions (LaGory and Giaccia, 2016;

Lundgren et al., 2007), including the production of pro-angiogenic

factors, such as vascular endothelial growth factor (VEGF), that

stimulate endothelial cells to proliferate, sprout and form new blood

vessels (Folkman, 1971; Hoeben et al., 2004). Often an imbalance

of pro- and anti-angiogenic factors then occurs, which results in a

chaotic and heterogeneous network of blood vessels, including
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many immature vessels with poor pericyte coverage (Ribeiro and

Okamoto, 2015), irregular branching and a tortuous morphology

(Hanahan andWeinberg, 2011; Krishna Priya et al., 2016; Nagy and

Dvorak, 2012; Nagy et al., 2007).

Several important prognostic consequences arise from these

features of the tumour vasculature. Firstly, perfusion-limited

(Box 1), or cycling, hypoxia occurs in cancer and stromal cells

adjacent to the immature tumour blood vessels, generating repeated

dynamic cycles of ischaemia and reperfusion that produce oxidative

stress, which leads to increased stem-cell-like properties of cancer

cells and resistance to therapy (Michiels et al., 2016). Secondly,

heterogeneity of vessel perfusion leads to unequal access of systemic

therapeutic agents within the tumour. Although some areas of the

tumour – those that are well perfused – will likely receive the

expected therapeutic dose, other poorly perfused areas may receive a

lower dose, meaning that they can survive the treatment (Trédan et al.,

2007). Finally, as tumours shift to a predominantly glycolytic

metabolism via the expression of HIF target genes, poor perfusion

allows lactic acid (from anaerobic glycolysis) and protons (from the

conversion of CO2 produced from the pentose phosphate pathway) to

accumulate in the TME, giving rise to acidosis (Parks and

Pouysségur, 2017; Parks et al., 2010). Acidosis can increase cancer

cell invasion (Estrella et al., 2013) and metastatic potential (Rofstad

et al., 2006), and decrease drug efficacy (Vukovic and Tannock,

1997). The HIF1α, VEGF and associated pathways are linked to poor

prognosis in a range of solid tumours (Hegde et al., 2013; Lundgren

et al., 2007; Semenza, 2016), demonstrating the consequences of

tumour hypoxia on patient outcome.

ECM and lipid composition of the TME
The tissue ECM is a three-dimensional, non-cellular structure

composed primarily of collagen, which forms the interstitial

connective tissue and the basement membrane. ECM function

extends beyond physical support to directly influence cell growth

and motility. Dysregulation of ECM remodelling in cancer leads to

excessive production and deposition of ECM proteins, termed

fibrosis (Lu et al., 2012), which drives tumour progression by:

stimulating cancer cell proliferation (Levental et al., 2009);

changing cancer cell contractility, polarity and mechanosignalling

(Gilkes et al., 2014); providing a reservoir of growth factors and pro-

angiogenic factors (Bonnans et al., 2014; De Palma et al., 2017);

and promoting epithelial-to-mesenchymal transition (EMT) (Zhang

et al., 2013). It is therefore unsurprising that increased expression of

ECM remodelling genes, particularly in breast cancer, leads to

higher mortality (Chang et al., 2005). Although the absence of

fibrotic foci does not necessarily indicate benignity, highly fibrotic

breast tumours have a poor prognosis (Conklin et al., 2011), with a

high risk of recurrence (Hasebe et al., 1997).

The lipid content of tumours is significantly different from that of

healthy tissues and plays an important role in the TME, particularly

in lipid-rich tissues such as the breast (Baenke et al., 2013; Choi

et al., 2018). Fatty acids, arising from adipocytes or synthesised by

cancer cells themselves in de novo lipogenesis, can provide cancer

cells with an alternative energy source in times of chronic nutrient

depletion, which may be spatially heterogeneous and relates to the

state of tumour perfusion (Baenke et al., 2013; Choi et al., 2018;

Kuhajda et al., 1994; Michiels et al., 2016; Walter et al., 2009). In

addition to providing an alternative energy source, lipids have

Box 1. Glossary
Absorption coefficient: the fraction of incident radiant energy absorbed

per unit mass or thickness of an absorber.

Angiogenesis: the development of new blood vessels from pre-existing

vessels. Driven by pro-angiogenic factors such as VEGFand inhibited by

anti-angiogenic factors.

Contrast agent: a substance or molecule that is administered into a

living subject to enhance the visualisation of a particular structure or

biological process within the body in medical imaging.

Extracellular matrix (ECM): a three-dimensional, non-cellular structure

produced and secreted by cells. It is composed primarily of fibrous

elements such as collagen and forms the interstitial connective tissue

and the basement membrane.

Fibrosis: the thickening and scarring of connective tissue, usually as a

result of injury.

Hypoxia: a deficiency in the amount of oxygen reaching tissues.

Isosbestic point: awavelength at which the absorption coefficient of two
molecules is equal.

Light fluence: optical energy per unit area.

Optical diffusion limit: the depth in biological tissue beyond which light

propagating along the predefined linear trajectory becomes too weak to

be detected in practice (Wang and Hu, 2012).

Perfusion: the flow rate of blood per mass of tissue.

Photoacoustic (optoacoustic) imaging (PAI): a biomedical imaging

modality based on the photoacoustic effect.

Photoacoustic effect: the generation of sound waves following light

absorption in a material such as tissue.

Tumour microenvironment (TME): the cellular environment in which a

tumour exists, including blood vessels, fibroblasts, immune cells and

the ECM.

Key

Cancer cells

Hypoxic cells

Necrotic cells

Fibroblasts

Lymphocytes

Macrophages

Lipids

Adipocytes

Blood vessel

Extracellular matrix

Fig. 1. The tumourmicroenvironment (TME). Schematic diagram illustrating

the involvement of multiple cell types in a tumour, including endothelial cells

and pericytes that make up blood vessels, as well as immune cells, fibroblasts

and adipocytes, alongside the cancer cells. Lipids are synthesised by

adipocytes and cancer cells. Hypoxia arises as the tumour grows beyond the

limit of oxygen diffusion from the surrounding vessels. Fibrosis arises from

excessive deposition of extracellular matrix (ECM) components without

concurrent degradation. A supportive environmental niche of these chemical

and physical signals evolves with the cancer cells to promote tumour

development and progression.
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structural roles in phospholipid membranes, which are needed for

cell proliferation, and lipid mediators such as prostaglandin E2

promote cancer cell proliferation and survival via MAPK signalling

(Krysan et al., 2005).

Cellular components of the TME
The presence of endothelial cells, adipocytes and fibroblasts in the

TME serve to define the aforementioned environmental features.

Cancer-associated fibroblasts (CAFs) are the predominant stromal

cell type secreting ECM in the TME and have a complex role that

has been extensively reviewed elsewhere (Kalluri, 2016; LeBleu

and Kalluri, 2018). It is worth noting that, in addition to ECM

production, CAFs secrete matrix metalloproteases (MMPs)

(reviewed in LeBleu and Kalluri, 2018). MMPs break down ECM

and basement membrane, promoting cancer cell invasion and EMT.

Endothelial cells also secrete MMPs to allow sprouting and

angiogenesis (Box 1) (reviewed in Egeblad and Werb, 2002;

Kalluri, 2016).

However, a major cellular component that merits discussion is the

immune cell infiltrate. It is nowwell known that immune cells play a

vital role in tumour development (Fridman et al., 2017; Joyce and

Fearon, 2015), which has led to the recent emergence of

immunotherapy strategies (reviewed in Rosenberg and Restifo,

2015; Sharma and Allison, 2015). The dual role of immune cells in

the TME is exemplified by the fact that cancer cells evade the

immune system in order to survive (Sharma and Allison, 2015),

while, on the other hand, many immune cell types release

immunosuppressive cytokines and act in a pro-tumorigenic

manner (Box 2).

Monitoring tumour response to immunotherapy is currently a

major clinical challenge due to the dynamic nature of the immune

TME. To optimise immunotherapy use whilst minimising toxicity

and cost in non-responders, appropriately validated non-invasive

imaging techniques could be applied to monitor the evolution of the

TME in response to immunotherapy in real time and avoid repeated

tissue sampling (Gibson et al., 2018; Mehnert et al., 2017;

Schuurhuis et al., 2009; Tavaré et al., 2014). There is currently no

single accurate biomarker to stratify patients for immunotherapy; it

is likely that multiple biomarkers will need to be used together to

give an accurate representation of a patient’s TME (Gibney et al.,

2016; Mehnert et al., 2017).

Dynamic interactions of TME features
It is increasingly evident that features of the TME regulate each

other. Hypoxia plays a central role in these interactions. For

example, increased deposition of ECM proteins and recruitment of

stromal cells leads to fibrotic contraction of the interstitial tissue

space, which is associated with: increased interstitial fluid pressure

(Heldin et al., 2004); the collapse of immature blood vessels; and

restricted oxygen diffusion, which causes hypoxia (Jain et al.,

2014). Conversely, at the molecular level, HIF1α directly activates

transcription of genes required for collagen synthesis and cross-

linking, such as procollagen lysyl hydroxylase 2 (Erler et al., 2006;

Gilkes et al., 2013a,b), which increases angiogenic signalling

and vessel permeability (Bordeleau et al., 2017; Saupe et al., 2013).

This could actually result in decreased oxygen delivery to the

tumour and thus further hypoxia.

The pro-angiogenic signalling of many stromal cell types is also

hypoxia-mediated. Hypoxia drives macrophage polarisation

towards an M2 phenotype (Box 2), which is anti-inflammatory

and pro-angiogenic (Colegio et al., 2014). Many M2 macrophages

are Tie2+ and cluster around existing blood vessels, promoting

angiogenesis (Britto et al., 2018; De Palma et al., 2003, 2005;

Hughes et al., 2015) and vessel permeability (Stockmann et al.,

2008). The milieu of cytokines and growth factors secreted by CAFs

contain further pro-angiogenic factors (De Palma et al., 2017), while

hypoxia upregulates the production of sphingosine lipids (Ahmad

et al., 2006; Pyne and Pyne, 2010) that are also likely to drive

angiogenesis (Baenke et al., 2013; Nakajima et al., 2017).

Additionally, hypoxia and acidosis modulate the function of all

immune cell types, meaning that hypoxic niches spatially fine-tune

the TME (Calcinotto et al., 2012; LaGory and Giaccia, 2016).

Finally, many therapies modulate the evolution of the TME and

the dynamic relationships within. Anti-angiogenic treatments,

which often target the VEGF pathway, have been shown to

‘normalise’ tumour vasculature by increasing vessel maturity,

leading to re-oxygenation of the tumour and decreased hypoxia in

mouse models (Dickson et al., 2007; Winkler et al., 2004). As

mentioned above, immunotherapies such as checkpoint receptor

inhibitors (Box 2) aim to overcome the negative regulation of

immune cells in the TME (Joyce and Fearon, 2015) and have been

particularly successful in melanoma patients displaying a large

immune infiltrate (Hodi et al., 2010).

Box 2. The immune system in the tumour

microenvironment
Anti-tumour immunity
Immune cells can recognise cancer cells as foreign and initiate an

immune response against them (see the following reviews for more

detail: Blomberg et al., 2018; Joyce and Fearon, 2015). This is normally

initiated in the sameway the immune system recognises and kills foreign

pathogens. A tumour-specific antigen released by cancer cells is taken

up by dendritic cells (DCs), which are part of the innate immune system.

Under pro-inflammatory signals from the tumour microenvironment

(TME), DCs migrate to the nearest lymph node, where they interact

with and activate T cells, which are part of the adaptive immune system.

CD8+ cytotoxic T cells specific to the tumour antigen migrate from the

lymph node back to the tumour to kill cancer cells that express the

antigen. Ideally, the adaptive immune response should generate

immunological memory, meaning that the CD8+ T cells will expand

and kill any future cancer cells expressing the same tumour-specific

antigen. This is in contrast to innate immune cells, which generally

recognise foreign antigens and activate the adaptive immune system.

Innate immune cells such as natural killer cells can also kill cancer cells.

Unfortunately, cancer cells develop many mechanisms to evade anti-

tumour immunity and survive, for example by expressing immune

checkpoint receptors. When these receptors bind to CD8+ T cells, they

cause the T cell to become deactivated (anergic) and unable to carry out

its cytotoxic functions. Immunotherapies such as checkpoint receptor

inhibitors aim to increase anti-tumour immunity by blocking these

immunosuppressive signals (Sharma and Allison, 2015).

Pro-tumour immunity
Cancer cells can also evade the anti-tumour immune response via pro-

tumour immune cells. Cytokines such as TGF-β and IL-10 released by

cancer cells or other stromal cells such as cancer-associated fibroblasts

(CAFs) can skew CD4+ T-helper cells to become immunosuppressive

and begin to inhibit the effect of cytotoxic cell types. Innate

immunosuppressive cells such as tumour-associated macrophages

(TAMs) are also anti-inflammatory and pro-angiogenic, driving tumour

progression (Blomberg et al., 2018). TAMs are often considered to have

a classical ‘M2’ anti-inflammatory phenotype, although there are some

differences in gene expression (Franklin et al., 2014). This is in contrast

to the pro-inflammatory ‘M1’ phenotype; however, the subsets of

macrophages in the TME should be considered as more of a spectrum

of phenotypes, rather than two distinct groups (Hobson-Gutierrez and

Carmona-Fontaine, 2018).
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These dynamic relationships paint a complicated picture of the

TME that will be explored for many years to come. Being able to

monitor the dynamics of the TME in vivo is therefore essential to

improve our understanding of tumour biology and ultimately

improve treatments for patients.

Visualising the TME

Existing imaging modalities
Several preclinical and clinical imaging techniques are already

available to probe various features of the TME (Table 1). Vascular

perfusion can be visualised using intravenous administration of a

contrast agent through ‘dynamic contrast-enhanced’ approaches

(Box 1) (Alonzi et al., 2007; Ohno et al., 2014; Saini and Hoyt,

2014), which, despite being widely used, do have some associated

toxicity concerns (Heiken, 2008; Rogosnitzky and Branch, 2016).

Hypoxia represents a challenge for imaging in medical

diagnostics, as the method must generate a positive signal for the

absence of oxygen. Preclinical studies using intravital imaging have

revealed blood flow fluctuations and perivascular changes in

hypoxia (Michiels et al., 2016), but these approaches have limited

prospect for routine clinical use because they are invasive (Table 1).

Magnetic resonance imaging (MRI)-based approaches such as

blood-oxygen-level-dependent (BOLD) MRI (Hoskin et al., 2007)

and oxygen-enhanced (OE) MRI (O’Connor et al., 2016) correlate

with tissue oxygenation and histological markers of hypoxia

(Hoskin et al., 2007; O’Connor et al., 2016). However, they suffer

from intrinsically low sensitivity (Hallac et al., 2014; Howe et al.,

2001). Positron emission tomography (PET) agents for hypoxia

visualisation, including those derived from nitroimidazole, are also

available (Koch and Evans, 2015; Lopci et al., 2014), but

application to studying the TME is limited by the inherently low

spatial resolution of PET and the requirement to administer a

radiopharmaceutical. Diffuse optical spectroscopic imaging (DOSI)

is a low-cost and readily accessible approach that measures local

optical absorption coefficient (Box 1). DOSI can measure

concentrations of oxy- and deoxy-haemoglobin (HbO2 and Hb,

respectively) as surrogate markers of hypoxia (Cerussi et al., 2006;

Di Leo et al., 2017; Tromberg et al., 2005) but has poor resolution at

depths beyond ∼1 mm due to light scattering in tissue (see ‘optical

diffusion limit’ in Box 1) (Wang and Hu, 2012).

A number of modalities can image fibrosis and lipids (Table 1).

Dynamic contrast-enhanced (DCE)–computed-tomography (CT) is

clinically approved for imaging tumour fibrosis but it measures

interstitial tissue volume, so can be confounded by oedema and

necrosis (Koyasu et al., 2016). Diffusion-weighted (DW) MRI, as

well as ultrasound and MR-based elastography methods, can image

fibrosis but are non-specific and generally have low sensitivity

(Muzard et al., 2009; Talwalkar et al., 2007; Taouli et al., 2007).

Ultrasound elastography can also have technical failures if obesity

or ascites are present, although using MRI elastography instead may

overcome this problem (Akkaya et al., 2018). Lipids can be detected

in tumours by using MRI (Pokharel et al., 2013), and imaging the

rate of fatty acid synthesis is possible with PET agents (Lewis et al.,

2014; Schöder and Larson, 2004), but, due to the disadvantages

described above, PET is not used regularly.

Preclinical tracking of CAFs, the predominant ECM-producing

cell type (Kalluri, 2016), has been achieved using a PET tracer to

target fibroblast activation protein (FAP) expressed on CAFs (Giesel

et al., 2019), and intravital microscopy in transgenic mice with

fibroblasts expressing a green fluorescent reporter protein (Arina

et al., 2016). Tracking cells in vivo with reporter gene technology is

ideal, as daughter cells will also express the reporter, meaning the

contrast agent is not diluted. However, as it requires genetic

manipulation, reporter gene technology has not yet been translated

into clinical applications (Ramamonjisoa and Ackerstaff, 2017).

Despite overwhelming evidence for the importance of immune

cells in tumour biology (Fridman et al., 2017; Joyce and Fearon,

2015), there is currently no clinical in vivo imaging method approved

to visualise immune cells in the TME. Intravital microscopy and PET

are most commonly employed in the research setting (Table 1).

Intravital imaging of immune cells expressing a fluorescent reporter

gene provides single-cell resolution and has revealed new immune-

cell–tumour-cell interactions in preclinical models (Hanna et al.,

2015, 2016). 18F-fluorodeoxyglucose PET is used to monitor tumour

glucose metabolism and could also monitor inflammatory cell

infiltration, as these cells are also glycolytic (Hammoud, 2016;

Kostakoglu et al., 2003;Wu et al., 2013). Researchers also developed

PET agents to specifically track immune cell populations and

cytokines and monitor response to immunotherapy (Gibson et al.,

2018; Larimer et al., 2016, 2017; Maute et al., 2015; Natarajan et al.,

2017; Tavaré et al., 2014). Radiolabelled antibodies have been used

to label T-cell populations (Larimer et al., 2016; Natarajan et al.,

2017; Tavaré et al., 2014) as these cells infiltrate the tumour and can

predict immunotherapy response (Larimer et al., 2016). In the clinic,

anatomical CT images of patients on immunotherapy have shown a

‘pseudoprogression’ effect, whereby tumour size initially increases

due to abundant T-cell infiltrate and, later, tumour size decreases in

responders (Nishino et al., 2018).

Notably, many of the techniques described here suffer from

limited spatial resolution, poor specificity from confounding signals

and the need to administer contrast agents (Table 1). Additionally,

none of the techniques described reveal multiple features of the TME

within the same imaging scan. Mapping the dynamic interactions of

TME features is paramount to our understanding of tumour biology

and could have significant clinical applications. Hence, there remains

an unmet clinical need for validated imaging biomarkers of the TME

that can be measured cost-effectively at high spatial and temporal

resolution. PAI could offer the flexibility tomonitormultiple features

with one modality using multi-wavelength imaging, providing a

more complete picture of the TME.

Photoacoustic imaging
PAI is an emerging imaging modality, currently in clinical trials

(Knieling et al., 2017; Steinberg et al., 2019), that could improve our

visualisation of the TME. To create an image, the tissue of interest is

illuminated with pulses of light, which cause a pressure change when

absorbed and generate ultrasound waves that are detected at the tissue

surface using one or more detectors (see ‘Photoacoustic effect’ in

Box 1; Fig. 2A) (Beard, 2011; Ntziachristos et al., 2005; Wang and

Yao, 2016). A major advantage of PAI is its scalability: by selecting

different light sources, ultrasound detectors and scanning methods, it

is possible to tune the spatial resolution, temporal resolution, imaging

depth and image contrast. Both image spatial resolution and tissue

attenuation scale with increasing ultrasound frequency: low-

frequency ultrasound detection at a few MHz enables deep-tissue

imaging with centimetre penetration and submillimetre resolution,

whereas increasing the detection frequency pushes towards micron

resolution but compromises the penetration depth. Technical

developments in data acquisition and processing speeds will lead to

improvements in the temporal resolution, but current state-of-the-art

technology can achieve sub-second two-dimensional imaging, and

three-dimensional images in seconds to minutes (Beard, 2011;

Ntziachristos et al., 2005; Wang and Yao, 2016). To form an image,

ultrasound signalsmust be acquired fromdifferent locations, either by
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Table 1. Current imaging techniques for visualising different features of the tumour microenvironment (TME) in vivo

Technique Principle Advantages Disadvantages References

Tumour vasculature and hypoxia
DCE-CT Iodinated contrast agents are

injected to measure vascular

perfusion

• Well-established CT

technique

• Low cost

• Widely available

• Contrast agent can cause

toxicity

• Ionising radiation

• Lack of standardised

protocols

Heiken, 2008; Ohno et al., 2014

DCE-MRI Paramagnetic contrast agents are

injected to measure vascular

perfusion

• Well-established MRI

technique

• Widely available

• Many gadolinium chelates are

approved clinically

• Contrast agent can cause

toxicity

• High cost of MRI

Alonzi et al., 2007; Ohno et al.,

2014; Rogosnitzky and

Branch, 2016

BOLD MRI Measures blood oxygenation

using the paramagnetic property

of Hb

• Well-established MRI

technique

• Utilises endogenous contrast

• Measurements correlate with

tissue oxygenation

• Signal can be confounded by

changes in blood volume

and flow

• Intrinsically low signal

• High cost of MRI

Hallac et al., 2014; Hoskin et al.,

2007; Howe et al., 2001

OE MRI T1 relaxation time is inversely

proportional to plasma dissolved

oxygen. ΔT1 is measured

following a breathing gas

challenge to measure areas of

low and high blood oxygenation

• Oxygen contrast is more

rapidly reversible than

injectable contrast

• Measurements correlate with

tissue oxygenation

• Intrinsically low signal

• High cost of MRI

Hallac et al., 2014; Howe et al.,

2001; O’Connor et al., 2016

FMISO-PET An injected radiolabelled

nitroimidazole derivative

accumulates in hypoxic areas

• FMISO has the potential to

give a direct quantification

of tissue hypoxia

• Can be used to trace

metabolic processes

• Long uptake time of tracers

such as FMISO leads to

poor SNR in tumour

• Radioactive isotope

administration

• Intrinsically low resolution of

PET (∼5 mm)

Lopci et al., 2014

EF5-PET An injected radiolabelled

nitroimidazole derivative

accumulates in hypoxic areas

• More stable than FMISO

• Possible correlation to

outcome

• Limited experimental

evidence compared to

FMISO

• More complicated labelling

chemistry compared to

FMISO

• Radioactive isotope

administration

• Intrinsically low resolution of

PET (∼5 mm)

Koch and Evans, 2015; Lopci

et al., 2014

H2
15O- PET Radioactive water is injected to

measure vascular perfusion

• Short half-life of 15O enables

serial measurements in a

single scan

• Short half-life of 15O limits

application to sites with an

on-site cyclotron

• Radioactive isotope

administration

• Intrinsically low resolution of

PET (∼5 mm)

van der Veldt et al., 2010

DCE- ultrasound Microbubbles are injected to

generate differences in acoustic

impedance with the surrounding

tissue, to measure perfusion

• Low cost

• High resolution

(∼100 μm to 1 mm)

• Increased SNR compared to

conventional ultrasound

• Contrast agent can cause

toxicity

• Ultrasound limited to

localised imaging

Heiken, 2008; Saini and Hoyt,

2014

Doppler

ultrasound

Utilises the Doppler effect to image

the movement of fluids (e.g.

blood) and measure their

direction and velocity

• Low cost

• Widely available

• Allows for serial

measurements of blood

flow and perfusion without a

contrast agent

• Easy to combine with other

ultrasound techniques

• Challenging to detect motion

in small, deep vessels

• Cannot distinguish signal

arising from individual or

aggregated erythrocytes

• Ultrasound limited to

localised imaging

Fleischer, 2000; Gee et al.,

2001; Postema et al., 2015;

Sehgal et al., 2000; Xu et al.,

2017

Continued

5

REVIEW Disease Models & Mechanisms (2019) 12, dmm039636. doi:10.1242/dmm.039636

D
is
e
a
s
e
M
o
d
e
ls
&
M
e
c
h
a
n
is
m
s



Table 1. Continued

Technique Principle Advantages Disadvantages References

DOSI Utilises the distinct spectra of Hb

and HbO2 to visualise blood

haemoglobin concentration and

oxygenation

• Utilises endogenous contrast

• Fast acquisition

• Allows visualisation of

multiple TME features

through spectral separation

• Low resolution (∼1 cm) at

depths at or above 1 cm

due to strong attenuation

and scattering of diffuse

light in tissue

Cerussi et al., 2006; Di Leo et al.,

2017; Tromberg et al., 2005

Intravital

microscopy

An intravascular fluorescent

contrast agent is injected to

enable optical microscopy of

tumour vasculature in a living

animal through surgical

procedures

• Micron resolution

visualisation of capillary

networks

• Invasive

• Challenging to apply

clinically

• Small field of view

• Depth limit of ∼1 mm due to

strong attenuation and

scattering of diffuse light in

tissue

Michiels et al., 2016;

Ramamonjisoa and

Ackerstaff, 2017

PAI Utilises the distinct spectra of Hb

and HbO2 to visualise blood

haemoglobin concentration and

oxygenation

• Higher penetration depth

compared to other optical

techniques

• Utilises endogenous contrast

• Fast acquisition

• Good technical and biological

validation of haemoglobin

measurements

• Low cost

• Easy to implement into

existing ultrasound systems

• Allows visualisation of

multiple TME features

through spectral separation

• PAI limited to localised

imaging

• Difficult to quantify and

resolve chromophores

with current reconstruction

and processing algorithms

Beard, 2011; Brochu et al., 2017;

Cox et al., 2012; Diot et al.,

2017; Ntziachristos et al.,

2005; Wang and Hu, 2012;

Wang and Yao, 2016

Tumour fibrosis
DCE-CT Delayed-enhancement after

iodinated contrast agent

injection can reveal fibrotic

tissue

• Well-established CT

technique

• Low cost

• Widely available

• Contrast agent can cause

toxicity

• Ionising radiation

• Lack of standardised

protocols for fibrosis

assessment

• Not specific to fibrosis:

delayed enhancement can

be confounded by oedema

and necrosis

Heiken, 2008; Koyasu et al.,

2016; Ohno et al., 2014;

Qureshi et al., 2016

DW-MRI Utilises the diffusion of water

molecules to generate contrast

in MR images to calculate an

apparent diffusion coefficient

that can relate to fibrosis

• Well-established MRI

technique

• Widely available

• Signal can be confounded by

tumour cell necrosis

• Motion interferes with signal

• High cost of MRI

Muzard et al., 2009; Taouli et al.,

2007

Ultrasound

elastography

Measures tissue stiffness by

analysing tissue strain under

stress (compression) or by

imaging shear waves, whose

propagation is governed by

tissue stiffness

• Low cost

• Can image deep organs

• Ease of use

• Not specific to fibrosis: can

be confounded

• Compression-based

methods depend on

operator, leading to

reproducibility issues

• Ultrasound limited to

localised imaging

Muzard et al., 2009; Talwalkar

et al., 2007

MRI

elastography

Uses a specialist MR sequence to

measure the wavelength of

applied mechanical shear

waves as they propagate

through tissue, which is

governed by tissue stiffness

• Imaging not influenced by

presence of ascites and

obesity, which limit the use

of ultrasound elastography

• Can be implemented into a

conventional MRI system

with a few hardware and

software modifications

• May require patient to

repeatedly hold their

breath, to reduce motion

artefacts

• When imaging liver tissue,

excess iron decreases the

SNR

• High cost of MRI

Akkaya et al., 2018; Venkatesh

et al., 2008
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Table 1. Continued

Technique Principle Advantages Disadvantages References

Intravital

microscopy

Uses collagen second harmonic

generation for optical

microscopy in a living animal

through surgical procedures

• Micron resolution

visualisation of collagen

fibres

• Invasive

• Challenging to apply

clinically

• Small field of view

• Depth limit of ∼1 mm due to

strong attenuation and

scattering of diffuse light in

tissue

Ramamonjisoa and Ackerstaff,

2017

PAI Utilises the endogenous optical

contrast of collagen

• Higher penetration depth

compared to other optical

techniques

• Utilises endogenous contrast

• Fast acquisition

• Low cost

• Easy to implement into

existing ultrasound systems

• Allows visualisation of

multiple TME features

through spectral separation

• PAI limited to localised

imaging

• Difficult to quantify and

resolve chromophores

with current reconstruction

and processing algorithms

• Lack of technical and

biological validation of

collagen imaging

• At wavelengths above

1000 nm, water absorption

increases dramatically,

limiting sensitivity to other

absorbing species

Lei et al., 2016; Zhu et al., 2018

MRI Uses specific fat-detection-

imaging MR sequences to

provide lipid-weighted images of

soft tissue

• Utilises the intrinsic excellent

soft-tissue contrast of MRI

• Many available imaging

sequences are available,

which provides flexibility

• Widely available

• High cost of MRI

• Lack of standardised data-

acquisition protocols

Pokharel et al., 2013

Tumour lipid content
[1-11C]acetate-

PET

Injected radiolabelled acetate is

incorporated via de novo

lipogenesis to monitor the rate of

fatty acid synthesis

• Promising alternative

metabolic tracer,

particularly for identifying

metastases

• The short half-life of

[1-11C]acetate limits

application to sites with an

on-site cyclotron

• Acetate accumulates in

normal tissues, leading to

high background

• Radioactive isotope

administration

• PET has intrinsically low

resolution (∼5 mm)

Lewis et al., 2014; Schöder and

Larson, 2004

PAI Utilises the endogenous optical

absorption of lipids

• Higher penetration depth

compared to other optical

techniques

• Utilises endogenous contrast

• Fast acquisition

• Low cost

• Easy to implement into

existing ultrasound systems

• Allows visualisation of

multiple TME features

through spectral separation

• PAI limited to localised

imaging

• Difficult to quantify and

resolve chromophores

with current reconstruction

and processing algorithms

• Lack of technical and

biological validation of lipid

imaging with PAI

• At wavelengths above

1000 nm, water absorption

increases dramatically,

limiting sensitivity to other

absorbing species

Cao et al., 2018; Diot et al.,

2017; Jansen et al., 2014;

Wang et al., 2012; Wilson

et al., 2014; Wu et al., 2015

CT Monitors anatomical changes in

tumour size associated with

changing immune cell infiltrate

• Good soft-tissue contrast and

anatomical imaging

• Low cost

• Widely available

• Ionising radiation

• Anatomical images do not

provide molecular

information, such as the

subtype of immune cells

infiltrating

Nishino et al., 2018
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scanning a single detectorover the region of interest or byemploying a

detector array, and then these signals can be naively backprojected

(beamformed) or subjected to more complex reconstruction

algorithms to improve image quality (Beard, 2011).

Photoacoustic image contrast arises due to optical absorption,

which results in ultrasound generation. When using near-infrared

wavelengths of light (620-950 nm) for illumination, several vital

endogenous molecules for the TME strongly absorb light (Fig. 2B).

Using only endogenous contrast and acquiring data at multiple

wavelengths, PAI can therefore non-invasively visualise vascular

morphology, blood oxygenation, fibrosis and lipid content

simultaneously with a single technique. Other features, such as

immune cell infiltration, can be imaged by introducing targeted

exogenous contrast agents or in-vitro-labelled immune cells,

allowing a complete picture of the dynamic relationships in the

TME to be revealed with a single technique. Such contrast agents,

either injected externally, taken up by cells (Weber et al., 2016) or

expressed in genetically modified cells (Brunker et al., 2017), work

by providing additional sources of optical absorption with distinct

spectra; the contrast agent is typically bound to, or expressed by, a

targeting component in order to highlight specific structural or

functional tissue features. PAI with exogenous contrast agents

remains subject to the same spatial resolution and penetration depth

trade-off as imaging of endogenous molecules; in addition, it is

Table 1. Continued

Technique Principle Advantages Disadvantages References

Immune cell infiltration
18F-FDG PET Injected radiolabelled glucose is

avidly taken up in identify

infiltrating inflammatory cells

• FDG-PET has been widely

used to identify and monitor

inflammatory diseases

• Produces false-positive

results when used post-

surgery or post-biopsy due

to surgically induced

inflammation

• Produces false-negative

results if tumour is close to

sites of physiological

uptake such as kidney and

liver

• Cancer cells also have

increased glucose

metabolism: not specific to

inflammatory immune

cells

• Radioactive isotope

administration

• PET has intrinsically low

resolution (∼5 mm)

Hammoud, 2016; Kostakoglu

et al., 2003; Wu et al., 2013

Intravital

microscopy

Immune cells are fluorescently

labelled or express genetic

reporters to enable optical

microscopy of tumour immune

cell infiltrate locally in a living

animal through surgical

procedures

• Single-cell resolution for

monitoring cell-cell

interactions

• Invasive

• Challenging to apply

clinically

• Small field of view

• Depth limit of ∼1 mm due to

strong attenuation and

scattering of diffuse light in

tissue

Arina et al., 2016; Hanna et al.,

2016; Ramamonjisoa and

Ackerstaff, 2017

PAI Immune cells are labelled with an

exogenous contrast agent or

express genetic reporters

• Higher penetration depth

compared to other optical

techniques

• Fast acquisition

• Low cost

• Easy to implement into

existing ultrasound systems

• Allows visualisation of

multiple TME features

through spectral

separation, with one

modality

• PAI limited to localised

imaging

• Difficult to quantify and

resolve chromophores

with current reconstruction

and processing algorithms

• Limited sensitivity due to the

limited number of

signalling molecules that

can be labelled per cell

Brunker et al., 2017; Filippi et al.,

2018; Tzoumas et al., 2014;

Yin et al., 2018; Zheng et al.,

2018

Radiolabelled

antibodies in

PET

Injected radiolabelled antibodies

target whole-body tracking of

immune cell populations and

signalling molecules

• Correlation with outcome

• Antigen specificity

• Ease of production

• May lack tumour penetrance

• Can negatively impact T-cell

effector functions

• Radioactive isotope

administration

• PET has intrinsically low

resolution (∼5 mm)

Gibson et al., 2018; Larimer

et al., 2016; Larimer et al.,

2017; Maute et al., 2015;

Natarajan et al., 2017; Tavaré

et al., 2014

BOLD, blood oxygen level dependent; CT, computed tomography; DCE, dynamic contrast-enhanced; DOSI, diffuse optical spectroscopic imaging; DW, diffusion-

weighted; 18F-FDG, 2-deoxy-2-18F-fluoro-D-glucose; FMISO, fluoromisonidazole; Hb, deoxyhaemoglobin; HbO2, oxyhaemoglobin; MRI, magnetic

resonance imaging; OE, oxygen enhanced; PAI, photoacoustic imaging; PET, positron emission tomography; SNR, signal-to-noise ratio.
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important to select a signalling compound with distinct absorption

peaks and strong optical absorption above 600 nm, thus avoiding

signal corruption by endogenous molecules (Fig. 2B).

Compared to existing optical techniques such as DOSI and

intravital microscopy, PAI maintains high spatial resolution to a

greater imaging depth due to the detection of ultrasound waves,

which scatter less than light in tissue. By utilising optical absorption

and contrast, PAI maintains high molecular specificity (Beard,

2011; Ntziachristos et al., 2005; Wang and Yao, 2016) compared to

standard ultrasound techniques (Table 1). Additionally, many TME

features can be detected simultaneously with PAI due to the multi-

wavelength data acquisition, without administration of a contrast

agent or radioactive agent. Despite the ability of PAI to image

beyond the optical diffusion limit (Box 1), it has limited penetration

depth compared to clinical whole-body modalities such as MRI,

PET and CT. Preclinically, PAI is frequently used as a whole-body

imaging modality, but this is not possible clinically, where the depth

limits of PAI are approached. Introducing PAI through endoscopes

can lift this limitation to some extent, but PAI would not compete

with whole-body modalities such as PET for disease staging in

patients (Table 1). Nonetheless, in tumours growing within the

depth-detection limits of PAI, such as in the breast, PAI could

follow initial conventional diagnostic imaging with MRI or

ultrasound to provide additional insight into the TME. It is worth

noting that combining imaging in a multi-modal approach would

allow the limitations of one technique to be compensated for by

another, and it is likely that PAI will be used in this way, for example

by combining PAI with ultrasound (Bar-Zion et al., 2016; Diot

et al., 2017; Neuschler et al., 2018). For the remainder of this

Review, we will discuss how PAI has been used so far to image the

TME, some of the challenges currently faced, and its potential for

preclinical and clinical application in oncology.

Photoacoustic imaging of vasculature and oxygenation

Preclinical PAI in small animal models allows detailed tumour

vascular architecture andmorphology to be visualised non-invasively

over time at sub-100-μm resolution using just a single wavelength of

light, commonly selected as an isosbestic point (Box 1) of Hb and

HbO2 (e.g. 532 nm). This method has been used to monitor the

developing vasculature in early tumours, showing changes in

structure such as increased tortuosity (Fig. 3A) (Laufer et al., 2012),

diameter and density (Lao et al., 2008), as well as the recruitment of

existing vessels to feed the tumour mass (Laufer et al., 2012; Omar

et al., 2015). Imaging biomarkers such as blood volume and vessel

connectivity could be extracted from these images, but themajority of

studies to date did not include quantification. Nonetheless, they show

howPAI can provide high-resolution visualisation of the development

of tumour vasculature at depths of several centimetres.

Alternatively, utilising the differential absorption spectra of Hb

and HbO2 (Fig. 2B), PAI data can be recorded at multiple

wavelengths and subjected to spectral unmixing algorithms to

calculate imaging biomarkers related to total haemoglobin

concentration (THb=Hb+HbO2) and blood oxygen saturation

(sO2=HbO2/THb). These functional parameters can provide

further insight into the TME, as detailed below.

PAI THb tends to be higher in tumours compared to normal tissue

(Chekkoury et al., 2016; Li et al., 2008; Raes et al., 2016) because of

increased angiogenesis, and also tends to be concentrated around the

periphery as the cell line models used, such as melanoma cell-line-

derived xenografts (Lavaud et al., 2017), tend to be less vascularised

in their core. One study demonstrated a decrease in THb as the

tumour developed (Imai et al., 2017), showing that this parameter

may be context-dependent and that PAI can sensitively resolve such

differences.

PAI generally measures lower sO2 values in tumours compared to

normal tissue (Chekkoury et al., 2016; Imai et al., 2017; Lavaud

et al., 2017; Li et al., 2008; Raes et al., 2016), consistent with poor

perfusion and/or high consumption of O2 from the blood due to

tumour hypoxia. A recent study in breast cancer models

demonstrated that sO2 measurements correlated with vascular

maturity, measured by pericyte coverage of vessels ex vivo

(Quiros-Gonzalez et al., 2018). Altering the gas delivered to the

mouse from air to 100% oxygen and measuring the change in sO2

can distinguish between well-perfused (with high ΔsO2) and poorly

perfused (with low ΔsO2) prostate cancer models (Fig. 3B)

(Bendinger et al., 2018; Tomaszewski et al., 2017). Importantly,

low sO2 and ΔsO2 spatially correlate with regions of tissue hypoxia

and necrosis (Gerling et al., 2014; Tomaszewski et al., 2018). In the
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Fig. 2. Principles of photoacoustic imaging (PAI). (A) During PAI, pulses of light illuminate the tissue (1). When light is absorbed (2), a transient heating gives

rise to ultrasound waves (3). The ultrasound waves are then detected and used to reconstruct an image of the optical absorption in tissue (4). (B) Absorption

spectra of endogenous molecules that absorb light pulses and can provide insight into the tumour microenvironment (TME). Panel B is reproduced with

permission from Weber et al. (2016). This image is not published under the terms of the CC-BY licence of this article. For permission to reuse, please see

Weber et al. (2016). Hb, deoxyhaemoglobin; HbO2, oxyhaemoglobin.
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same studies, vascular perfusion was measured in vivo using

Indocyanine Green, a clinically approved near-infrared dye. In

general, functional PAI studies have focussed on blood flow (van den

Berg et al., 2015) rather than perfusion, and measuring blood flow at

clinically relevant depths has proved to be challenging (Brunker and

Beard, 2016) due to a poor velocity signal-to-noise ratio (SNR).

However, it is possible that alternative approaches (for example,

speckle tracking) could provide semi-quantitative flow/perfusion

information that, combined with measures of blood oxygenation,

could indicate the level of oxygen delivery to the tumour.

PAI biomarkers relating to vascular function have also been used

to predict and monitor treatment response in preclinical cancer

models. A decrease in THb and a corresponding increase in HbO2

has been seen in ovarian mouse tumour models following anti-

angiogenic therapies, indicating vessel normalisation, which was

shown ex vivo by an increase in pericyte coverage of vessels and

decreased vessel density (Bohndiek et al., 2015). High tumour sO2

was demonstrated to be an early biomarker of radiotherapy response

(Rich and Seshadri, 2016) and could predict which tumours would

respond to radiotherapy in mouse models of head and neck cancer

(Costa et al., 2018). These studies demonstrate the potential of PAI

in predicting and monitoring tumour response, which could assist

with patient stratification and inform therapeutic strategies.

Exogenous contrast agents can also be used to assess metabolic

changes in the hypoxic TME. Amine-oxide probes can give a direct

measure of tissue hypoxia (Knox et al., 2017), complementing the

assessment of vascular features with endogenous PAI. The pH can

be evaluated (Chen et al., 2015) using ratiometric changes in the

optical absorption coefficient of a given probe (Chatni et al., 2011;

Jo et al., 2017), allowing visualisation of the acidic pH of the TME

(Fig. 3C), particularly in the tumour core (Jo et al., 2017). The

ability to image several of these features within a single tumour

simultaneously, by acquiring data at multiple wavelengths, is one of

the unique advantages of PAI that could yield tremendous insight

into the dynamic TME interactions.

In a clinical context, application of PAI to monitor vascular

features of the TME have focussed on breast cancer, where PAI can

be combined with existing ultrasound imaging approaches. Hand-

held PAI probes, similar to existing ultrasound probes, have been

used in clinical trials to demonstrate higher THb in tumours

compared to normal tissue (Diot et al., 2017) and an increase in

abnormal features such as vessels radiating from the tumour mass

(Neuschler et al., 2018). Similar to standard X-ray mammography,

the Twente photoacoustic mammoscope compresses the breast

between a glass window and a flat ultrasound transducer matrix

(Manohar et al., 2005). This system identified malignant lesions that

displayed high PA contrast independent of breast density (Heijblom

et al., 2016), but specificity remains a concern (Heijblom et al.,

2016). Bespoke hemispherical transducer arrays, which form a cup

that surrounds the whole human breast, have also been developed.

These systems have become highly sophisticated in recent years,

revealing the detailed vessel networks in the breast (Kruger et al.,

2016; Lin et al., 2018; Toi et al., 2017; Yamaga et al., 2018). A

pivotal study recently demonstrated that, when the patient holds

their breath during the scan, thereby decreasing motion artefacts,

detailed vascular features can be resolved to a depth of up to 4 cm
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Fig. 3. Example photoacoustic images of the vasculature.
(A) Shown are x-y maximum intensity projections of a human

colorectal tumour (SW1222) and the surrounding vasculature

between day 7 and day 8 post-inoculation. Dashed white lines

indicate tumour margins. Green arrows show common vascular

features between images. Increasing tortuosity of normal blood

vessels between day 7 and 8 is indicated by blue arrows.

Reproduced with permission from Laufer et al. (2012) and the

Journal of Biomedical Optics. This image is not published under

the terms of the CC-BY licence of this article. For permission to

reuse, please see Laufer et al. (2012). (B) Representative images

of PC3 (left) and LNCaP (right) tumours showing the spatial

distribution of ΔsO2 measured using PAI at multiple wavelengths.

PC3 tumours displayed lower ΔsO2 compared to LNCaP tumours

and had a core with low ΔsO2 (black arrow). Reproduced with

minor formatting changes from Tomaszewski et al. (2017).

(C) Photoacoustic pH image of rat glioma tumours at 75 min after

SNARF-5F nanoparticle injection. The pH in the centre area

(i.e. the area within the solid line) and the peripheral areas (i.e. the

area between the solid line and the dashed line) are averaged,

respectively. Reproduced with minor formatting changes from Jo

et al. (2017). (D) Depth-encoded PAI images of the breast acquired

while the patient, a 49-year-old woman with a stromal fibrosis or

fibroadenoma, held her breath. Dashed white lines indicate tumour

margin. Reproduced with minor formatting changes from

Lin et al. (2018).
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(Fig. 3D) (Lin et al., 2018). These studies demonstrate how PAI

could be utilised to diagnose and stage breast cancers based on

vascular TME features.

Photoacoustic imaging of the ECM and lipid composition

To date, the application of PAI to detect fibrosis and lipids in vivo has

been focused mainly on diseases beyond cancer, such as Crohn’s

disease (Lei et al., 2016; Zhu et al., 2018) and atherosclerosis (Cao

et al., 2018; Jansen et al., 2014; Wang et al., 2012; Wu et al., 2015);

however, early studies show promise for its application in the TME.

In preclinical studies of chronic fibrotic diseases such as Crohn’s

disease, collagen content has been probed at wavelengths above

1000 nm to detect fibrotic disease in ex vivo and in vivo rat intestine

(Lei et al., 2016; Zhu et al., 2018), with results correlating to

histological analyses. In a pivotal PAI clinical trial of 108 patients,

active and non-active Crohn’s disease was distinguished by

measuring THb levels in the intestinal wall, bypassing the need to

visualise collagen directly (Knieling et al., 2017). In a preclinical

model of liver fibrosis, the PAI signal was higher in fibrotic livers

compared to control livers, although the individual contributions of

collagen, haemoglobin and possibly other chromophores to the

signal could not be determined with the single 808 nm wavelength

used in this study (van den Berg et al., 2016). Visualising collagen

with PAI is challenging, as light above 1000 nmwill be absorbed by

lipids, water and collagen in the skin, ultimately leading to a

decreased signal from deeper tissues (Zhu et al., 2018), which may

explain the lack of clinical studies to date. To enable clinical

translation, the application of depth- and wavelength-dependent

light fluence (Box 1) correction models could be evaluated,

although the application of these models in vivo remains

challenging due to limited knowledge of the spatial distribution of

optical parameters in living tissue (Brochu et al., 2017; Cox et al.,

2012). Alternative methods of light delivery directly to the tumour

site using fibre optics may also circumvent such challenges with

minimally invasive rather than completely non-invasive imaging.

Monitoring the production or activity of MMPs in the TME could

provide a diagnostic or predictive biomarker of metastasis and has

also been achieved with PAI using exogenous contrast agents

(Dragulescu-Andrasi et al., 2013; Levi et al., 2013; Yin et al., 2019).

The production of MMPs has been monitored preclinically, with a

probe cleaved by MMP-2 and MMP-9 giving an increase in PAI

signal upon cleavage in preclinical models of follicular thyroid

carcinoma (Levi et al., 2013), which express high levels of MMP-2,

MMP-7 and MMP-9 compared to benign thyroid adenomas.

Recently, a similar PAI probe design was also shown to quantify

MMP-2 expression in mouse mammary tumours (Yin et al., 2019).

Given the many roles of MMPs in tumour development and

progression (Egeblad andWerb, 2002), monitoring their production

and activity in vivo is of interest.

PAI of lipids has been mainly applied to monitor atherosclerotic

plaques using an intravascular-imaging catheter in either rabbit

aorta or ex vivo human coronary arteries (Cao et al., 2018; Jansen

et al., 2014; Wang et al., 2012; Wu et al., 2015), although these

studies lack quantification. Nonetheless, using the catheter bypasses

the issue of absorption of light above 1000 nm in the skin, allowing

visualisation of lipid distribution in the vessel wall. Single-

wavelength imaging visualised relative lipid content in diseased

and non-diseased states (Cao et al., 2018; Wang et al., 2012),

whereas dual- or multi-wavelength imaging identified cholesterol

derivatives in the plaques (Jansen et al., 2014; Wu et al., 2015). This

methodology could also be used to monitor lipid content in tumours

that can be accessed endoscopically, such as colorectal cancer,

which has been shown to be driven by fatty acid synthesis pathways

(Zhan et al., 2008).

As mentioned earlier, lipids play a vital role in the breast TME. In

transgenic mice, in vivo multi-wavelength PAI has demonstrated a

decrease in lipid content with increasing tumour stage (Fig. 4A),

presumably as fatty structures in the breast are replaced with fibrotic

structures (Wilson et al., 2014). The clinical potential of lipid PAI in

breast cancer has been demonstrated using a hand-held multispectral

optoacoustic tomography probe. This study showed that lipid

structures nearby tumours were disrupted, perhaps as tumours

invaded the surrounding healthy adipose tissue (Diot et al., 2017).

Additionally, signals attributed to lipids were higher in larger

tumours compared to smaller ones, but how this affected the biology

of these patients’ tumours remains to be elucidated (Diot et al., 2017).

Photoacoustic imaging of immune cell infiltration

Exogenous contrast agents can theoretically label any cell type of

interest and track these cells in the TME. Strong absorbers with little

or no fluorescence provide the best contrast because the absorbed

energy can be converted efficiently into ultrasound signals rather

than being re-emitted as fluorescence. Fluorophores with a low-

quantum yield have also proved successful in providing

photoacoustic contrast. Fluorescently labelled T cells were first

imaged with PAI ex vivo (Tzoumas et al., 2014). Since then,

exogenous T-cell migration into subcutaneous tumours in vivo was

monitored with PAI after labelling with a near-infrared fluorescent

dye (Fig. 4B) (Zheng et al., 2018). This is one of the first reports of

immune cell tracking with PAI and demonstrates the capability of

PAI to longitudinally monitor immune cells in the TME at depths

beyond the optical diffusion limit (Box 1). Organic nanoparticles

and small-molecule dyes have been used as contrast agents to label

and track injected stem cells in vivo with PAI (Filippi et al., 2018;

Yin et al., 2018), a method that could be applied to numerous cell

types (Meir et al., 2014; Weber et al., 2016). Such pre-loading of

cells with nanoparticles avoids macrophage phagocytosis, which is

an issue with systemic delivery of nanoparticles (Weber et al.,

2016). In addition to cell labelling, the use of PAI with genetic

reporters has expanded (Brunker et al., 2017). For example, cancer

cells engineered to produce eumelanin via tyrosinase reporter

expression allowed detailed 3D imaging of tumour growth in vivo

(Jathoul et al., 2015). The extent to which this more invasive genetic

approach would be tolerated by the immune system in a clinical

setting has yet to be established. Another challenge with reporter

genes is the interference of background signal from endogenous

chromophores such as haemoglobin, which could be overcome with

the use of photoswitchable proteins whose absorption spectra

changes upon illumination with a specific wavelength (Yao et al.,

2015). Reporter gene technology could be applied to track immune

cells in the future (Brunker et al., 2017).

Conclusions

We have moved into an age of cancer biology research where

tumours are considered not as isolated masses of cancer cells but

as ‘organs’ with multiple cell types supporting growth and

development. The complex contribution of the TME to tumour

evolution is now well recognised as influencing cancer cell gene

expression, growth, survival, motility, local invasion and

metastasis. There are also dynamic interactions between different

TME features that regulate processes such as blood vessel outgrowth

that we are just beginning to understand.

Given the importance of the TME in tumour development and

progression, it is surprising that our ability to image TME features is
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lacking both in preclinical models and in clinical applications.

Many existing imaging modalities have been used to visualise

vasculature, hypoxia, fibrosis, lipid synthesis and immune cells

(Table 1); however, they tend to carry high cost, require injection of

contrast agents, resolve just one feature at a time, and exhibit poor

spatial and temporal resolution. PAI is a relatively low-cost

modality that has the potential to overcome some of these

shortfalls; for example, it can visualise multiple features by

acquiring data at multiple wavelengths to separate both

endogenous contrast from haemoglobin, collagen and lipids, and

visualise injected exogenous contrast agents for features such as

acidity, enzyme activity and immune cells, generating a complete

picture of the TME. PAI spatial resolution scales with penetration

depth, reaching ∼100 μm at ∼3 cm depth, which is advantageous

for exploring relationships between the different TME features

preclinically.

The studies reviewed here indicate that PAI can inform on TME

features in preclinical models and holds promise for clinical

translation. Currently, further technical and biological validation of

PAI biomarkers is needed to increase uptake of the modality in

studies of TME biology or clinical evaluation of TME features

(Waterhouse et al., 2019). In terms of technical validation, some

studies have reported on standardisation of data acquisition and

analysis (Abeyakoon et al., 2018; Bohndiek et al., 2013; Joseph et al.,

2017; Martinho Costa et al., 2018; Neuschmelting et al., 2016).

Establishing precise and accurate PAI biomarker measurements will

provide confidence, while development of standardised stable test

objects, or ‘phantoms’, that can be applied in a multi-centre setting is

vital for routine quality assurance and control (O’Connor et al.,

2017). Additionally, correcting for spectral distortions of illumination

light as it passes through tissuewould allow absolute quantification of

optically absorbing molecules, but remains a significant challenge to

apply in vivo and hence is an active area of research in the field

(Brochu et al., 2017; Cox et al., 2012).

In terms of biological validation, the extensive use of cell-line-

derived cancer models in PAI studies limits the clinical applicability

of the work due to the stark genomic and phenotypic differences

between clonal cell lines and patient samples (Choi et al., 2014).

More clinically relevant models, such as patient-derived xenografts,

are gaining popularity (Bruna et al., 2016), although the use of

immunocompromised mice limits studies of the immune infiltrate

in the TME and of the regulation of angiogenesis by immune cells

(De Palma et al., 2017). Humanising the immune system of

immunocompromised mice is underway in many laboratories

(Morton et al., 2016; Shultz et al., 2007), and applying PAI in

these more advanced models would help to advance the imaging

modality. Further insights can be obtained by correlating in vivo PAI

data with other well-validated in vivo imaging methods as well as ex

vivo analyses such as immunohistochemistry and biochemical

assays. In the few studies where this has been achieved preclinically,

PAI provided in vivo biomarkers of vascular maturity and function

that correlate with hypoxia (Gerling et al., 2014; Quiros-Gonzalez

et al., 2018; Tomaszewski et al., 2017). Additionally, validation of

photoacoustic mammography in patients showed an in vivo

distribution of haemoglobin signal that had good colocalisation

with DCE-MRI and correspondence with vascular patterns

measured ex vivo (Heijblom et al., 2015).

Most clinical studies discussed in this Review are observational

and/or conducted in a limited number of patients (Diot et al., 2017;

Heijblom et al., 2016; Kruger et al., 2016; Lin et al., 2018; Toi et al.,

2017; Yamaga et al., 2018). Their purpose was to investigate how

PAI biomarkers could be used in disease diagnosis or assessment of

disease severity, for example in differentiation between benign and

malignant disease. The best-developed application in this regard,

including multi-centre studies, is in breast cancer. PAI could be

easily combined with ultrasound imaging, which is conventionally

used in breast cancer patient management. PAI has been

demonstrated to accurately downgrade benign masses (Menezes

et al., 2018; Neuschler et al., 2018) with higher specificity than

ultrasound imaging (Neuschler et al., 2018), which could reduce

unnecessary biopsies and follow-up appointments, reducing patient

distress and healthcare costs. As yet, PAI has not been used in
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Fig. 4. Example photoacoustic images of lipid content and immune
cell tracking. (A) Representative transverse B-mode ultrasound images

(top row) and PAI performed at multiple wavelengths to reveal lipid

content (bottom row) of four histologies [normal, hyperplasia, ductal

carcinoma in situ (DCIS) and invasive carcinoma] from distinct animals

of a transgenic mouse model of breast cancer progression. Lesion

severity increases from left to right. Regions of interest are outlined in

red on B-mode images. Scale bars: 2 mm. Reproduced with minor

formatting changes fromWilson et al. (2014). (B) In vivo imaging of near-

IR-797-labelled T cells in a mouse sarcoma model displaying infiltration

of T cells over time with a peak at 12 h and subsequent decline up until

72 h post-adoptive transfer. Copyright Wiley-VCH Verlag GmbH & Co.

KGaA. Reproduced from Zheng et al. (2018) with permission, with minor

formatting changes. This image is not published under the terms of

the CC-BY licence of this article. For permission to reuse,

please see Zheng et al. (2018).
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clinical decision-making and the results of these studies did not

affect the diagnostic pathways of the patients involved; radiologists

interpreting the photoacoustic images were blinded to the rest of the

diagnostic work-up. Other superficial malignancies could also be

monitored with PAI. For example, high-resolution PAI is capable of

visualising microvasculature in human skin and could be applied to

monitor the pathological neovascularisation of melanoma

(Hindelang et al., 2019; Omar et al., 2015). Photoacoustic

endoscopy is expanding, bypassing limitations in the penetration

depth, so could be used to monitor angiogenesis in gastrointestinal

tract cancers or cervical cancer with further technological advances

(Li et al., 2018; Qu et al., 2018; Yoon and Cho, 2013). Large-scale

clinical trials are also being planned for inflammatory conditions

(Knieling et al., 2017).

To conclude, PAI can visualise multiple TME features with a

single modality; high spatiotemporal resolution, low cost, use of non-

ionising radiation and non-invasive properties with potentially easy

integration into existing ultrasound systems make PAI an attractive

option for monitoring dynamic TME features not only in a preclinical

setting but also throughout a patient’s treatment regime, from

diagnosis and staging to monitoring treatment response.
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