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Photoacoustic Source Detection and Reflection
Artifact Removal Enabled by Deep Learning

Derek Allman , Austin Reiter, and Muyinatu A. Lediju Bell

Abstract— Interventional applications of photoacoustic
imaging typically require visualization of point-like targets,
such as the small, circular, cross-sectional tips of needles,
catheters, or brachytherapy seeds. When these point-like
targets are imaged in the presence of highly echogenic
structures, the resulting photoacoustic wave creates a
reflection artifact that may appear as a true signal. We pro-
pose to use deep learning techniques to identify these types
of noise artifacts for removal in experimental photoacoustic
data. To achieve this goal, a convolutional neural network
(CNN) was first trained to locate and classify sources and
artifacts in pre-beamformed data simulated with k-Wave.
Simulations initially contained one source and one artifact
with various medium sound speeds and 2-D target loca-
tions. Based on 3,468 test images, we achieved a 100%
success rate in classifying both sources and artifacts.
After adding noise to assess potential performance in more
realistic imaging environments, we achieved at least 98%
success rates for channel signal-to-noise ratios (SNRs) of
−9dB or greater, with a severe decrease in performance
below −21dB channel SNR. We then explored training with
multiple sources and two types of acoustic receivers and
achieved similar success with detecting point sources. Net-
works trained with simulated data were then transferred
to experimental waterbath and phantom data with 100%
and 96.67% source classification accuracy, respectively
(particularly when networks were tested at depths that
were included during training). The corresponding mean
± one standard deviation of the point source location
error was 0.40 ± 0.22 mm and 0.38 ± 0.25 mm for water-
bath and phantom experimental data, respectively, which
provides some indication of the resolution limits of our
new CNN-based imaging system. We finally show that the
CNN-based information can be displayed in a novel artifact-
free image format, enabling us to effectively remove reflec-
tion artifacts from photoacoustic images, which is not
possible with traditional geometry-based beamforming.
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I. INTRODUCTION

P
HOTOACOUSTIC imaging has promising potential to

detect anatomical features or metal implants in the

human body [1]–[3]. It is implemented by transmitting pulsed

laser light, which is preferentially absorbed by structures

with higher optical absorption than their surroundings. This

absorption causes thermal expansion, which then generates

a sound wave that is detected with conventional ultrasound

transducers. Potential uses of photoacoustic imaging and its

microwave-induced counterpart (i.e., thermoacoustic imaging)

include cancer detection and treatment [3]–[6], monitoring

blood vessel flow [7] and drug delivery [8], detecting metal

implants [4], [6], and guiding surgeries [6], [9]–[15].
The many potential clinical uses of photoacoustic imaging

are hampered by strong acoustic reflections from hyperechoic

structures. These reflections are not considered by traditional

beamformers which use a time-of-flight measurement to create

images. As a result, reflections appear as signals that are

mapped to incorrect locations in the beamformed image.

The surrounding acoustic environment additionally introduces

inconsistencies, such as sound speed, density, or attenuation

variations, that make acoustic wave propagation difficult to

model. Although photoacoustic imaging has not yet reached

widespread clinical utility (partly because of the presence of

these confusing reflection artifacts), the outstanding challenges

with reflection artifacts would be highly problematic for the

clinicians reading the images when relying on existing beam-

forming methods. These clinicians would be required to make

decisions based on potentially incorrect information, which

is particularly true in brachytherapy for treatment of prostate

cancers [4], [16] as well as in minimally invasive surgeries

where critical structures may be hidden by bone [9], [17].
Several alternative signal processing methods have been

implemented to reduce the effect of artifacts in photoacoustic

images and enhance signal quality, such as techniques using

singular value decomposition [18] and short-lag spatial coher-

ence [6], [19], [20]. However, these methods exhibit lim-

ited potential to remove artifacts caused by bright acoustic

reflections. A recent technique called photoacoustic-guided

focused ultrasound (PAFUSion) [21] differs from conventional

photoacoustic artifact reduction approaches because it uses

ultrasound to mimic wavefields produced by photoacoustic

sources in order to identify reflection artifacts for removal.

A similar approach that uses plane waves rather than focused
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waves was similarly implemented [22]. These two methods

assume identical acoustic reception pathways, which may not

always be true. In addition, the requirement for matched

ultrasound and photoacoustic images in a real-time environ-

ment severely reduces potential frame rates in the presence

of tissue motion caused by the beating heart or vessel pulsa-

tion. This motion might also introduce error into the artifact

correction algorithm. Methods to reduce reflection artifacts

based on their unique frequency spectra have additionally

been proposed [23], [24], but these methods similarly rely

on beamforming models that ignore potential inter- and intra-

patient variability when describing the acoustic propagation

medium.

We are proposing to address these outstanding challenges

by exploring deep learning with convolutional neural net-

works (CNNs) [25]–[29]. CNNs have experienced a significant

rise in popularity because of their success with modeling

problems that contain a high degree of complexity in areas

such as speech [30], language [31], and image [25] processing.

A similar level of complexity exists when describing the

many patient-specific variables that impact the quality of

photoacoustic signal beamforming. Despite the recent trend

toward CNNs, neural networks have been around for much

longer. For example, Nikoonahad and Liv [32] used a neural

network to estimate beamforming delay functions in order

to reduce artifacts in ultrasound images arising from speed

of sound errors. Although this approach [32] is among the

first to apply neural networks to beamforming, it does not

effectively address the multipath reflection artifacts which arise

in photoacoustic images.

Reiter and Bell [33] demonstrated that a deep neural

network can be applied to learn spatial impulse responses

and locate photoacoustic point sources with an average posi-

tional accuracy of 0.28 mm and 0.37 mm in the depth and

lateral image dimensions, respectively. Expanding on this

previous work, we propose the following key contributions

which build on results presented in our associated conference

papers [34], [35]. First, we develop a deep neural network

capable of locating both sources and artifacts in the raw

photoacoustic channel data with the goal of removing artifacts

in the presence of multiple levels of channel noise and multiple

photoacoustic sources. Second, we remove artifacts from the

photoacoustic channel data based on the information provided

by the CNN. Finally, we explore how well our network,

which is trained with only simulated data, locates sources and

artifacts in real experimental data with no additional training,

particularly in the presence of one and multiple point sources.

II. METHODS

A. Simulating Sources and Artifacts for Training

1) Initial Simulations: Simulations are a powerful tool in the

context of deep learning, as they allow us to generate new

application-specific data to train our algorithm without the

need to expensively gather and hand-label experimental data.

We simulated photoacoustic channel data with the k-Wave

simulation software package [36]. In our initial simulations,

each image contained one 0.1 mm-diameter point source and

one artifact. Although reflection artifacts can be simulated in

TABLE I

RANGE AND INCREMENT SIZE OF SIMULATION VARIABLES

k-Wave, the amplitudes of the reflections are significantly

lower than that of the source, which differs from our exper-

imental observations. To overcome this discrepancy, a real

source signal was shifted deeper into our simulated image to

mimic a reflection artifact, which is viable because reflection

artifacts tend to have wavefront shapes that are characteristic

of signals at shallower depths. Thus, by moving a wavefront to

a deeper location in the image, we can effectively simulate a

reflection artifact. The range and increment size of our simula-

tion variables for this initial data set are listed in Table I. Our

initial dataset consisted of a total of 17,340 simulated images

with 80% used for training and 20% used for testing. This

dataset was created using a range of sound speeds, and this

range was included to ensure that the trained networks would

generalize to multiple possible sound speeds in experimental

data.

2) Incorporating Noise: Most experimental channel data con-

tain some level of background noise. Thus, to study CNN

performance in the presence of noise, our initial dataset

containing reflection artifacts was replicated four times to cre-

ate four additional datasets with white-Gaussian, background

noise (which is expected to simulate experimental channel

noise). The added channel noise corresponded to channel

signal-to-noise ratios (SNRs) of −3dB, −9dB, −15dB, and

−21dB SNR, as listed in Table I and depicted (for the same

source and artifact combination) in Fig. 1. Each of these new

datasets were then used independently for training (80% of

images) and testing (20% of images).

3) Testing With Previously Unseen Locations: Our initial

networks were trained using source and artifact locations at

5 mm increments. Thus, in order to test how well the trained

networks adapted to signal locations that were not encountered

during training, three additional noiseless datasets were created

by: (1) shifting the initial lateral positions by 2.5 mm to the

right while keeping the initial depth spacing, (2) shifting the

initial depth positions by 2.5 mm while keeping the initial

lateral spacing, and (3) shifting the initial lateral and depth

dimensions by 2.5 mm each. The placement of all shifted

points relative to the initial point locations is depicted in Fig. 2.
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Fig. 1. The channel data noise levels used in this work: (a) noiseless, (b) −3dB, (c) −9dB, (d) −15dB, and (e) −21dB SNR. Gaussian noise was
added to simulate the noise floor for a typical imaging system. Note that as noise level increases beyond −9dB channel SNR, it becomes more
difficult to see the wavefronts.

Fig. 2. Diagram showing the location of simulated source signals used
to create training and testing datasets. A network was trained using the
red points indicated as initial, while the blue, magenta, and green points
were used to test against the initial trained network.

These shifted datasets were only used for testing with the

previously trained noiseless network, as indicated in Table I.

4) Source Location Spacing: Building on our initial sim-

ulations, which were tailored to clinical scenarios with a

high probability of structures appearing at discrete 5 mm

spacings (e.g., photoacoustic imaging of brachytherapy seeds

[4]), a new set of simulated point sources was generated with

more finely spaced points. The depth and lateral increment was

reduced from 5 mm to 0.25 mm, as listed in Table I. While

the initial dataset contained 1,080 sources, this new dataset

contained 278,154 sources. Because of this larger number

of sources, point target locations were randomly selected

from all possible source locations, while artifact locations

were randomly selected from all possible points located less

than 10 mm from the source. A total of 19,992 noiseless

channel data images were synthesized, and a new network

was trained (80% of images) and tested (20% of images).

5) Shifting Artifacts: When generating reflection artifacts,

two different methods were compared. In the first method,

the artifact wavefront was shifted 5 mm deeper into this image.

This 5 mm distance was chosen because it corresponds to the

spacing of brachytherapy seeds [4], which motivated this work.

In the second method, the shift was more precisely calculated

to equal to the Euclidean distance, �, between the source and

artifact, as described by the equation:

|�| =

√

(zs − zr )
2 + (xs − xr )

2 (1)

where (xs, zs) are the 2D spatial coordinates of the source

location and (xr , zr ) are the 2D spatial coordinates of the phys-

ical reflector location, as illustrated in Fig. 4. A similar shifting

method was implemented to simulate artifacts in ultrasound

TABLE II

SIMULATED ACOUSTIC RECEIVER PARAMETERS

channel data [37]. To compare our two shifting methods, two

networks were trained with the noiseless photoacoustic data

containing finely spaced sources noted in Table I. One of the

two shifting methods were implemented for each network.

6) Multiple Sources: To test the proposed method with

more complex images containing more than one photoacoustic

source, we created 10 additional datasets each with a fixed

number of sources that ranged from 1 to 10, with example

images shown in Fig. 3. A summary of the parameters used

for this training and testing are listed in Table I. One major

difference between this network and previous networks is

that multiple noise levels and multiple source and artifact

intensities were included in each training data set. There

was no fixed increment size for these two parameters, and

these parameters were instead randomly chosen from the

range of possible values, as indicated in Table I. To compare

performance, 10 separate networks were trained, one for each

fixed number sources. The 10 trained networks were then

tested with the test set reserved for each fixed number of

sources (i.e., 20% of the data generated for each fixed number

of sources).

7) Modeling a Linear Discrete Receiver: We additionally

compared network performance with two different receiver

models. First, the acoustic receiver was modeled as a con-

tinuous array of elements, which was the method used for all

networks described in Sections II-A1 to II-A6. The default

k-Wave setting for these networks varies the sampling fre-

quency as a function of the speed of sound in the medium,

which is not realistic when transferring these networks to

experimental data [35]. Therefore, we also modeled a receiver

with a nonzero kerf and a fixed sampling frequency. In both

cases, the element height was limited to a single point. The

network for each receiver model was trained with one source

and one artifact over multiple noise levels and object inten-

sities, as described for the multisource dataset summarized

in Table I. The parameters for each acoustic receiver model

are summarized in Table II.
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Fig. 3. The channel data for multiple sources: (a) 2, (b) 4, (c) 6, (d) 8, and (e) 10 sources and reflectors. Note that as number of sources increases,
the images become increasingly complex.

Fig. 4. Schematic diagram showing a geometry that causes reflection
artifacts. The arrows indicate the direction of wave propagation for the
imaged reflection artifact.

B. Network Architecture and Evaluation Parameters

We preliminarily tested the discrete receiver dataset with a

standard histogram of oriented gradients features and classified

the results with an ensemble of weak learners [38]. Although

we achieved 100% classification accuracy, we obtained

4.82 false positives per image (i.e., misclassification and

missed detection rates of 229-253%), which further motivates

our exploration of a deep learning approach rather then a more

standard classifier machine learning approach. Based on this

motivation, independent CNNs corresponding to the various

cases listed in Tables I & II were trained with the Faster-

RCNN algorithm, which is composed of two modules [28].

The first module was a deep fully convolutional network con-

sisting of the VGG16 network architecture [29] and a Region

Proposal Network [28]. The second module was a Fast R-CNN

detector [27] that used the proposed regions. Both modules

were implemented in the Caffe framework [39], and together

they form a single unified network for detecting wavefronts

in channel data and classifying them as sources or artifacts,

as summarized in Fig. 5.

The unified network illustrated in Fig. 5 was initial-

ized with pre-trained ImageNet weights and trained for

100,000 iterations on the portion of the simulated data reserved

for training. The PC used for this process was an Intel

Core i5-6600k CPU with 32GB of RAM alongside an Nvidia

GTX Titan X (Pascal) with 12GB of VRAM and a core

clock speed of 1531MHz. With this machine, we trained

the networks at a rate of 0.22 seconds per iteration and

tested them at a rate of 0.068 seconds per image, which

translates to 14.7 frames per second when the trained network

is implemented in real time.

The Faster R-CNN outputs consisted of the classifier pre-

diction, corresponding confidence score (a number between

0 and 1), and the bounding box image coordinates for each

detection, as illustrated in Fig. 5. These detections were

evaluated according to their classification results as well as

their depth, lateral, and total (i.e. Euclidean) positional errors.

To determine classification and bounding box accuracy, each

simulated image was labeled with the classes of the objects

in the image (i.e., source or artifact), as well as the bounding

box corresponding to the known locations of these objects. The

bounding box for each object measured approximately 8 mm

in the lateral dimension by 2 mm in the depth dimension, and

it was centered on the peak of the source or artifact wavefront.

Detections were classified as correct if the intersect-over-

union (IoU) of the ground truth and detection bounding box

was greater than 0.5 and their score was greater than an

optimal value. This optimal value for each class and each

network was found by first defining a line with a slope equal

to the number of negative detections divided by the number

of positive detections, where positive detections were defined

as detections with a IoU greater than 0.5. This line was

shifted from the ideal operating point (true positive rate of 1

and false positive rate of 0) down and to the right until it

intersected the receiver operating characteristics (ROC) curve.

The point at which this line first intersected the ROC curve was

determined to be the optimal score threshold. The ROC curve

was created by varying the confidence threshold and plotting

the rate of true and false positives at each tested threshold. The

ROC curve indicates the quality of object detections made by

the network. Misclassifications were defined to be a source

detected as an artifact or an artifact detected as a source, and

missed detections were defined as a source or artifact being

detected as neither a source nor artifact.

In addition to classification, misclassification, and missed

detection rate, we also considered precision, recall, and area-

under-the-curve (AUC). Precision is defined as the number of

correct positive detections over the total number of positive

detections, and recall is defined as the number of correct

positive detections over the total number of objects which

should have been detected (note that recall and classification

rate are equivalent in this work). AUC was defined as the total

area under the ROC curve.

C. Transfer Learning to Experimental Data
To determine the feasibility of training with simulated data

for the eventual identification and removal of artifacts in real

data acquired from patients in a clinical setting, we tested

our networks on two types of experimental data. We con-

sider training with simulated data and transferring the trained

network to experimental data to to be a form of transfer

learning. Fig. 6 shows a schematic diagram and corresponding

photograph of the first experimental setup. A 1 mm core

diameter optical fiber was inserted in a needle and placed in the
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Fig. 5. Summary of our network architecture.

Fig. 6. (a) Schematic diagram and (b) photograph of the experimental
waterbath setup.

Fig. 7. (a) Schematic diagram of the phantom with brachytherapy seeds
labeled 1 through 4 and the two possible imaging sides for transducer
placement noted as Side 1 and Side 2. Although the phantom extends
beyond the dashed line, this region of the phantom was not included in the
photoacoustic image. (b) Photograph of one version of the experimental
setup for the phantom experiment, with the parameters for this setup
noted as Image 3 in Table III.

imaging plane between the transducer and a sheet of acrylic.

This setup was placed in a waterbath. The optical fiber was

coupled to a Quantel (Bozeman, MT) Brilliant laser operating

at 1064 nm and 2 mJ per pulse. When fired, the laser light

from the fiber tip creates a photoacoustic signal in the water

which propagates in all directions. This signal travels both

directly to the transducer, creating the source signal, and to

the acrylic which reflects the signal to the transducer, creating

the reflection artifact. The acrylic plate represents a highly

echoic structure in the body such as bone.

Seventeen channel data images were captured, each after

changing the location of the transducer while maintaining the

distance between the optical fiber tip and the acrylic plate.

The transducer was attached to a Sawyer Robot (Rethink

Robotics, Boston, MA), and it was translated in 5 mm incre-

ments in the depth dimension for 5-6 depths and 10 mm

TABLE III

BRACHYTHERAPY PHANTOM IMAGE PARAMETERS

in the lateral dimension for 3 lateral positions. An Alpinion

(Bothell, WA) E-Cube 12R scanner connected to an

L3-8 linear array ultrasound transducer was used to acquire

channel data during these experiments. Six of the previously

described networks trained with the finely spaced sources were

used to test the experimental waterbath data. The differences

between these six networks included the noise levels, artifact

shifting method, and receiver designs used during training,

as described in more detail in Section III-D.

The second experiment was performed with a phantom

containing 4 brachytherapy seeds and 2 air pockets as depicted

in Fig. 7. This phantom was previously described in [16].

In order to generate a photoacoustic signal, the combination of

brachytherapy seeds noted in Table III were illuminated with

multiple separate optical fibers that were bundled together and

connected to a single input source. The input end of the fibers

was coupled to an Opotek (Carlsbad, CA) Phocus Mobile

laser operating at 1064nm. The signals from the illuminated

brachytherapy seeds were considered to be the true sources

and all other signals were considered to be artifacts, including

reflections from the air pockets and brachytherapy seeds.

Fifteen images were captured in total by illuminating different

combinations of the brachytherapy seeds and changing the

orientation of the transducer as well as orientation of the phan-

tom, as detailed in Table III. The phantom was imaged with

an Alpinion (Bothell, WA) E-Cube 12R scanner connected to

an L3-8 linear array ultrasound transducer which was held in

place by a Sawyer Robot (Rethink Robotics, Boston, MA).
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Fig. 8. (a) Classification results in the presence of various noise
levels. The dark and medium blue bars show the accuracy of source
and artifact detections, respectively. The light blue and green bars show
the misclassification rate for sources and artifacts, respectively. The
dark and light yellow bars show the missed detection rate for sources
and artifacts, respectively. Corresponding (b) source and (c) artifact
ROC curves demonstrate that performance degrades as channel SNR
decreases.

When classifying sources and artifacts in channel data from

the waterbath and phantom experiments, the confidence thresh-

old was equivalent to the confidence threshold determined with

simulated data.

D. Artifact Removal

After obtaining detection and classification results for the

simulated and experimental data, three methods for artifact

removal were tested. The first two methods replaced the pixels

inside the detection bounding box in the channel data with

either the average pixel value of the entire image or noise cor-

responding to the noise level of the image. The third method

used the network outputs to display only the locations of the

detected source signals in the image. Source detections were

visualized as circles centered at the center of the detection

bounding box with a radius corresponding to 2σ , where σ is

the standard deviation of location errors found when testing

the network.

For the first two artifact removal methods, delay-and-

sum (DAS) beamforming was implemented replacing pixels in

regions identified as artifacts with either noise or the average

value. To implement DAS beamforming, the received channel

data was delayed based on the distance between the receive

element and a point in the image space. The delayed data was

then summed across all receive elements to achieve a single

scanline in a DAS photoacoustic image.

III. RESULTS

A. Classification Accuracy

1) Classification Accuracy in the Presence of Channel Noise:

The classification results from the initial noiseless data and

the four noisy datasets are shown in Fig. 8(a). The results

Fig. 9. (a) Classification results for the shifted datasets after testing with
networks that were trained with our initial noiseless dataset. The dark and
medium blue bars show the accuracy of source and artifact detections,
respectively. The light blue and green bars show the misclassification rate
for sources and artifacts, respectively. The dark and light yellow bars
show the missed detection rate for sources and artifacts, respectively.
These results and the corresponding (b) source and (c) artifact ROC
curves indicate poor generalization to depth positions that were not
included during training.

of testing show that the networks classified signals with

greater than 98% accuracy when the noise level was less

than −9dB SNR. For the −15dB SNR dataset, the classi-

fication accuracy fell to 82% accuracy, while classification

accuracy dropped even further to 4.35% with −21dB channel

SNR. Fig. 8(a) also shows that the rate of misclassification

is less than 0.5% for all datasets. It is additionally observed

that the rate of missed source and artifact detections increases

greatly for higher noise levels (i.e., less than −9dB SNR).

Fig. 8(b) and (c) depict the ROC curves for the sources and

artifacts, respectively. The results of each dataset is indicated

by the different colored lines with true positive rate on the

vertical axis and false positive rate on the horizontal axis.

As noise increases the curves diverge from the ideal operating

point.

2) Classification Accuracy for Previously Unseen Locations:

Fig. 9 shows the results from testing with the shifted datasets,

which were included to quantify performance when the net-

work is presented with sources in previously unseen locations.

The laterally shifted points yielded a classification accuracy

of 100% for both sources and artifacts and a misclassification

rate of 0%, which is identical performance to that of the initial,

noiseless dataset. However, for the two trials that included

depth shifts, the classification accuracy was 0%, indicating

that the network fails when presented with depths that were

not included during training. This result informs us that our

network is not capable of generalizing to these untrained

locations, however, because the network was trained with

simulated data, we can remedy this limitation by simulating

more points with finer depth spacing in order to achieve
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Fig. 10. (a) Classification results for finely spaced datasets. The
dark and medium blue bars show the accuracy of source and artifact
detections, respectively. The light blue and turquoise bars show the
misclassification rate for sources and artifacts, respectively. The dark
green and light green bars show the missed detection rate for sources
and artifacts, respectively. The dark yellow and light yellow bars show
the misclassification rate for sources and artifacts, respectively, after
removing overlapping sources and artifacts from calculations. These
finely spaced networks exhibit performance levels comparable to the
initial noiseless network, but can now correctly classify at a wider range
of depths, corresponding (b) source and (c) artifact ROC curves are
consistent with this observation.

Fig. 11. Example of the overlapping of source and artifact wavefronts
that occurs when shifting the artifact by the Euclidean distance.

consistent classification performance across all depths, which

is the primary purpose of the finely spaced network.

3) Classification Accuracy With Finer Source Spacings:

Results from the finely spaced datasets are shown in Fig. 10.

The network trained with finely spaced sources and 5 mm

artifact shifts behaved similarly to the network trained with

the initial noiseless dataset in terms of source and artifact

classification accuray, which measured 99.7% and 99.7%,

respectively. The network derived from finely spaced,

Euclidean-based shifting produced similar classification accu-

racy, but the misclassification rate increased to 10%. However,

this network with Euclidean shifting implemented contains

several special cases where the artifact and sources overlap,

as shown in Fig. 11, and these special cases are not present

when shifting artifacts by 5 mm only. The presence of

overlapping wavefronts causes a significant overlap between

source detections and the artifact ground truth bounding boxes.

Similarly, artifact detections overlap with the source ground

Fig. 12. (a) Source and (b) artifact classification results for multisource
datasets, where blue indicates better performance. (c) Source and
(d) artifact misclassification results for multisource datasets, where
yellow indicates better performance. (e) Source and (f) artifact missed
detection results for multisource datasets, where yellow indicates better
performance.

truth bounding boxes. These cases are incorrectly defined as

misclassifications. Thus, when these overlapping sources and

artifacts are excluded from the misclassification calculations,

we obtain misclassification rates comparable to that of the

finely spaced, 5 mm shifted network and performance is

consistent across both shifting methods (5 mm and Euclidean),

as shown in Fig. 10.

The results for precision, recall, and AUC for the noiseless,

noisy, and finely spaced datasets are reported in the first

seven rows of Table IV. For noise levels below −9dB SNR,

precision, recall, and AUC all exceed 0.97. For the −15dB

SNR dataset precision, recall, and AUC drop to 0.76, 0.82, and

0.93, respectively, while for the −21dB SNR dataset precision,

recall, and AUC drop even further to 0.64, 0.04, and 0.25,

respectively. For the finely spaced datasets, precision, recall,

and AUC exceed 0.99.

4) Classification Accuracy for Multiple Sources: Fig. 12

shows source and artifact classification, misclassification, and

missed detection rates for networks which were trained with

1 to 10 sources where the vertical axis indicates the number of

sources in the datasets used for training the networks and the

horizontal axis indicates the number of sources in the dataset

used for testing each network. For example, the first row in

Fig. 12(a) indicates the source classification rate for a network

trained with only one source and tested against datasets

containing 1 to 10 sources. In the first row of Fig. 12(a),
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TABLE IV

SUMMARY OF CLASSIFICATION PERFORMANCE FOR SIMULATED DATA

the network suffers performance losses when tested with more

sources than the network was trained to detect (i.e., 97.13%

of sources were detected in the one source dataset and less

than 68.00% of sources were detected in the multiple source

datasets). For the remaining rows, the performance generally

decreases moving left to right across columns (values ranging

from 90.06% to 97.23% for the second column and 80.41% to

91.46% for the last column), with the first column of Fig. 12(a)

presenting an exception to this general trend. In rows 2-10

of the first column of Fig. 12(a), the values ranged from

67.48% to 89.50%, which is substantially worse than the

97.13% performance noted in row 1 of this column. This

result indicates that data containing one known source will

have the best performance when only one source is included

during training. In Fig. 12(b) the values generally decrease

moving left to right across columns (82.18% to 89.41% for

the first column and 9.38% to 63.31% for the final column).

Fig. 12(c,d) show source and artifact misclassification rate,

respectively, with the lowest rates generally occurring when

both training and testing with more than one source. The

misclassification rate for sources in the first two columns and

rows of Fig. 12(c) ranged from 2.41% to 18.75% and the

remaining values were less than 3.60%. The misclassification

rate for artifacts in the first column and row of Fig. 12(d)

ranged from 2.74% to 40.45% and the remaining values

were less than 6.98%. Figs. 12(e) and 12(f) generally exhibit

similar trends to Figs. 12(a) and 12(b), respectively, where the

single-source network suffers significant performance losses

with the multisource test sets (see first row). Otherwise,

the missed detection rate generally increases from 6.64%

to 19.56% in Fig.12(e) and 2.77% to 35.94% in Fig.12(f)

when moving from left to right across the columns, with

the exception of the first column in Fig. 12(e). The results

for precision, recall, and AUC for these datasets contain-

ing multiple noise levels and multiple sources are reported

in Table IV.

Fig. 13. (a) Classification results comparing the continuous and discrete
receiver models. The dark and medium blue bars show the accuracy of
source and artifact detections, respectively. The light blue and green bars
show the misclassification rate for sources and artifacts, respectively. The
dark and light yellow bars show the missed detection rate for sources
and artifacts, respectively. Corresponding (b) source and (c) artifact ROC
curves demonstrate that both networks perform similarly for sources with
less agreement for artifacts. However, the ideal operating point differs for
each ROC curve, thus the classification results are less similar.

5) Classification Accuracy With Continuous vs. Discrete

Receivers: Results comparing the performance for the contin-

uous and discrete receivers are shown in Fig. 13 for a single

photoacoustic source. We note that for the network trained

and tested with the continuous receiver model, source and

artifact accuracy measured 97.13% and 86.18%, respectively,

and these results are the same as those shown in the first row

and first column of each result in Fig. 12.. For the network

trained and tested with the discrete receiver model, source and

artifact accuracy measured 91.6% and 93.16%, respectively.

In addition, source and artifact misclassification rates were

14.8% and 2.82%, respectively, for the network trained with

the continuous receiver, and 11% and 12.63%, respectively

for the network trained with the discrete receiver. For both

networks, missed detection rates for both sources and artifacts

were less than 0.7%. The results for precision, recall, and AUC

for the dataset modeled with the discrete receiver are reported

in Table IV.

B. Location Errors for Simulated Data

Table V lists the percent of correct detections which had

errors below 1 mm and 0.5 mm for both sources and artifacts.

Results indicate that within each dataset, location errors less

than 1 mm were achieved in over 97% of the data. Location

errors less than 0.5 mm were achieved in over 88%, with the

exception of the finely spaced data.

The box-and-whiskers plots in Fig. 14 demonstrate the depth

and lateral errors for sources and artifacts within each dataset.

The top and bottom of each box represents the 75th and 25th

percentiles of the measurements, respectively. The line inside
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Fig. 14. Summary of distance errors for all tested simulated data in the depth (a,b) and lateral (c,d) dimensions for sources (a,c) and artifacts (b,d).
Note that the depth errors are consistently lower than the lateral errors. For the multisource networks, distance errors were evaluated only for the
number of sources for which the network was trained (i.e. the network which was trained with one source was only tested using the test set containing
one source).

TABLE V

SUMMARY OF EUCLIDEAN DISTANCE ERRORS FOR SIMULATED DATA

each box represents the median measurement, and the whiskers

(i.e., lines extending above and below each box) represent

the range. Outliers were defined as any value greater than

1.5 times the interquartile range and are displayed as dots.

Figs. 14 (a) and (b) show that the networks are more accurate

in the depth dimension, where errors (including outliers) were

frequently less than 0.6 mm, when compared to errors in the

Fig. 15. Histograms of lateral errors of correctly classified sources for
varying depths in the image for the noiseless, finely spaced, (a) 5 mm
shifted network and (b) Euclidean shifted network. Note that the profiles
of the histograms are similar with depth.

lateral dimension (Figs. 14 (c) and (d)), where outliers were as

large as 1.5-2.0 mm. However, in both cases, the median values

were consistently less than 0.1-0.5 mm, which is supported by

the results reported in Table V.

Figure 15 depicts the distribution of lateral errors for sources

that were correctly classified with the noiseless, finely spaced,

5 mm shifted network. These errors are shown as a function

of their depth in the image. These figures confirm that the

majority of sources have lateral errors less than 0.5 mm.

We also note that the for every source depth, the histograms

have similar distributions.

C. Artifact Removal for Simulated Data

Fig. 16 shows the result of our three methods to remove

regions that were identified as artifacts. Sample channel data

inputs to the network are shown in Figs. 16 (a)-(c) for

three noise levels, and the corresponding B-mode images
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Fig. 16. Sample images from the noiseless, −3dB, and −9dB cases, shown from left to right, respectively, (a)-(c) before and (d)-(f) after
applying traditional beamforming. Three artifact removal techniques are shown for each sample image: (g)-(i) average value substitution,
(j)-(l) noise substitution, and (m)-(o) a CNN-based image that displays the location of the detected source based on the location of the bounding
box. The yellow boxes in (a)-(c) indicate the portion of the images displayed in (d)-(o).

are shown in Fig. 16 (d)-(f). The average value substitution

(Fig. 16 (g)-(i)) and the noise substitution (Fig. 16 (j)-(l))

methods successfully remove the center of the reflection

artifact after beamforming. However, the tails of the reflection

artifacts are still present in these new images. In addition,

the noise substitution method further degrades image quality

by exhibiting a blurring of these new values across the image.

These two methods also pose a problem for cases where

sources and artifacts overlap (e.g. Fig. 11) as they do no not

take into consideration source locations in the image and could

potentially remove a source in the process of removing an

artifact.

Another method for artifact removal is to only display

objects which were classified as sources, as shown in

Fig. 16 (m)-(o). This method was implemented by placing a

disc-shaped object at the center of the detected bounding box

and displaying it with a diameter of ±2σ , where σ refers to

the standard deviation of the location errors for that particular

noise level. One major benefit of this display method is

that we can visualize true sources with an arbitrarily high

contrast. In addition, this image is not corrupted by reflection

artifacts because we do not display them, and we will not

unintentionally remove sources in the process of removing

artifacts with this method.

D. Experimental Results

The channel SNR in the experimental waterbath images

was −3.3dB. Each image had one source signal and at least

one reflection artifact, as seen in Fig. 17(a). The corresponding

beamformed image and CNN-based image with the artifact

removed are shown in Figs. 17(b) and (c), respectively.

The channel SNR in the experimental phantom images

was −4dB. Multiple source signals are present in each image

along with multiple reflection artifacts, as noted in Table III

and observed in Fig. 17(b) and (g). The corresponding beam-

formed images are shown in Fig. 17(e) and (h), respectively.
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Fig. 17. (a, d, g) Sample images of experimental channel data where wavefronts labeled source indicate a true source and artifacts are unlabeled.
The first row shows an example from the waterbath experiment while the second and third rows show examples from the phantom experiment.
(b, e, h) The corresponding beamformed images where wavefronts labeled as sources indicate true sources and artifacts are unlabeled. (c, f, i) The
corresponding image created with the CNN-based artifact removal method where source detections are displayed as white circles.

TABLE VI

SUMMARY OF CLASSIFICATION PERFORMANCE FOR EXPERIMENTAL DATA

The corresponding CNN-based images with artifacts removed

are shown in Fig. 17(f) and (i) respectively.

The first six rows in Table VI show the percentage

of correct, misclassified, and missed detections for sources

and artifacts across the seventeen experimental waterbath

images, revealing four notable observations. First, when the

network was trained using Euclidean shifting, it performed

better (100% source classification accuracy) when compared

to 5mm shifting (88.24% source classification accuracy).

Second, the best continuous receiver model correctly clas-

sified 70.27% of artifacts while the discrete model classi-

fied 89.74% of artifacts, indicating a performance increase

with the discrete receiver model. Third, the network trained

over a range of noise levels classified artifacts better

(70.27% artifact classification accuracy), when compared to

the network trained on one noise level (54.17% artifact clas-

sification accuracy). Fourth, contrary to Fig. 13, there is no

decrease in source detection performance when switching from

the continuous to discrete receiver. For visual comparison,

the results from the two complementary continuous and dis-

crete receiver models applied to experimental data are shown

in Fig. 18.

When using the network trained with the discrete receiver,

the mean absolute distance error between the peak location of

the wavefront in channel data and the center of the detection

bounding box for the waterbath dataset was was 0.40 mm
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Fig. 18. Classification results for the experimental waterbath data when
using the network trained with finely spaced point targets, −5dB to +2dB
noise, and Euclidean shifting. Results from using networks trained with
both the continuous and discrete receiver models (trained and tested
with a single photoacoustic source) are shown for comparison.

Fig. 19. Classification results for the experimental phantom data when
using the network trained with finely spaced point targets, −5dB to +2dB
noise, Euclidean shifting, and the discrete receiver. Blue bars indicate
source classification accuracy, teal bars indicate source misclassification
rate, and yellow bars indicate source missed detection rate. Results
are compared for all illuminated sources and illuminated sources within
depths at which the network was trained (5mm to 25 mm).

with a standard deviation of 0.22 mm. For the same network,

the mean absolute distance error for the phantom dataset was

0.38 mm with a standard deviation of 0.25 mm.

For the phantom dataset, only source detections were con-

sidered as it was difficult to quantify the number of artifacts in

these experimental channel data images (see Fig. 17(b) and (d)

for examples). The network trained with finely spaced point

targets, −5dB to +2dB noise, Euclidean shifting, and dis-

crete receiver correctly classified 74.35%, misclassified 2.56%,

and missed 25.64% of sources across the 15 images, which

included 39 source objects. These results are shown in Fig. 19

and reported in Table VI. These numbers show a marked

decrease in performance when compared to the waterbath

data. The main reason for this decrease in performance was

due to the network only being trained at depths of 5 mm to

25 mm (as noted in Table I). When limiting our classification

results to depths for which the network was trained, the same

network classified 96.67%, misclassified 3.33%, and missed

3.33% of sources. This result agrees with the result from

Section III-A2, where the trained networks failed to generalize

to depths that were not included during training. Although

Fig. 12 shows that networks trained with only one source do

not transfer well to multisource test sets, it is interesting that

the single source network used to test this experimental data

set correctly classified multiple sources in 11 of the 15 total

images.

IV. DISCUSSION

This work demonstrates the first use of CNNs as an alter-

native to traditional model-based photoacoustic beamforming

techniques. In traditional beamforming, a wave propagation

model is used to determine the location of signal sources.

Existing models are insufficient when reflection artifacts devi-

ate from the traditional geometric assumptions made by these

models, which results in inaccurate output images. Instead,

we train a CNN to distinguish between true point sources and

artifacts in the channel data and use the network outputs to

derive a new method of displaying artifact-free images with

arbitrarily high contrast, resulting in improvements that exceed

existing reflection artifact reduction approaches [21], [22].
We revealed several notable characteristics when applying

CNNs to identify and remove highly problematic reflection

artifacts in photoacoustic data. First, we learned that the

classification accuracy is sufficient to differentiate sources

from artifacts when the background noise is sufficiently low

(Fig. 8), which is representative of photoacoustic signals

generated from low-energy light sources. While our network

is tailored to detecting point-like sources such as the circular

cross-sections of needle or catheter tips (enabled by insertion

of optical fibers in these needles and catheters), this approach

could be extended to other types of photoacoustic targets

through training with various initial pressure distribution sizes

and geometries. We can potentially train these networks to

learn other characteristics of the acoustic field, such as the

medium sound speed and the signal amplitude.
We additionally demonstrated that this training requires

incorporating many of the potential source locations in order

to maximize classification accuracy, based on the poor results

shown in Fig. 9 (i.e., when testing depth shifts that were not

used during training). However, this initial network performed

well at classifying sources when only the lateral positions

were shifted, likely because wave shapes at the same depth are

expected to be identical, regardless of their lateral positions.

Based on these observations, it would be best to use our

proposed machine learning approach when all possible depth

locations are included during training, which is verified by

the randomly selected training depths from the finely spaced

network achieving better classification accuracy (see Fig. 10).

This is also verified by the experimental phantom results

failing in cases where depths were not trained (see Table VI).

There is otherwise greater flexibility when choosing lateral

training locations if we are primarily concerned with classi-

fication accuracy (and less concerned with location accuracy,

for example, if we are only interested in knowing the number

of sources present in an image).
It is highly promising that our networks were trained

with simulated data, yet performed reasonably well when

transferred to experimental data. Table VI and Fig. 18

demonstrate that as the simulations become more similar

to experimental data (enabled by modeling the transducer,

including several noise levels in the same network, etc.)

the performance increases when transferring these networks

to the experimental data domain. It is also promising that

networks trained with only one simulated source and tested

on the experimental data with multiple sources had increased
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performance when compared to testing this same network

on simulated data with multiple sources (e.g., compare

Fig. 12(a,c,e) with the phantom results in Table VI). This

increased performance likely occurs because the sources are

sufficiently separated from each other. A similar increased

performance was observed when the discrete receiver model

was applied to simulation versus experimental data (compare

Figs. 13 and 18). While the reason for this increased per-

formance with experimental data is unknown, one possible

explanation is that the presence of a single sound speed in the

experimental data versus the multiple sound speeds present

in simulated data decreases the data complexity of the test

data set, leading to increased performance in experimental

data [35].

Fig. 12 suggests that there could be multiple optimal

networks, depending on the desired weighting of the six

performance metrics (i.e., classification accuracy, misclassi-

fication rates, and missed detection rates for both sources and

artifacts), as network performance depends on the number of

sources and thus complexity of the imaging field. Thus, future

work will explore a multiple, ensemble network approach

that combines the outputs of several independently trained

networks.

The sub-millimeter location errors in simulation and exper-

imental results can be related to traditional imaging system

lateral resolution, which is proportional to target depth and

inversely proportional to the ultrasound transducer bandwidth

and aperture size [1], [5]. For example, traditional trans-

abdominal imaging probes have a bandwidth of 1-5 MHz.

To image a target at a depth of 5 cm with a 2 cm aperture

width, the expected image resolution would be approximately

0.8-3.9 mm. Fig. 14 and Table V demonstrate that a large

percentage of the location errors are better than the max-

imum achievable system resolution at this depth. Fig. 15

demonstrates that the lateral errors have a relatively constant

distribution regardless of depth, indicating that the lateral

resolution of our system is constant with depth. These obser-

vations suggest that our proposed machine learning approach

has the potential to significantly outperform existing imaging

system resolution at depths greater than 5 cm, thus mak-

ing this a very attractive approach for interventional surg-

eries that require lower frequency probes because of the

deeper acoustic penetration and the reduced signal attenua-

tion (e.g. transabdominal, transcranial, and cardiac imaging

applications).

Of the three artifact removal methods we explored,

the CNN-based method was most promising, as it results

in a noise-free, high contrast, high resolution image

(e.g., Figs. 16(m)-(o)). This type of image could be used as

a mask or scaling factor for beamformed images, or it could

serve as a stand-alone image. The stand-alone image would be

most useful for instrument or implant localization and isolation

from reflection artifacts during interventional photoacoustic

applications. To achieve greater accuracy, we can design

specialized light delivery systems that attach to surgical tools

(e.g., [17]) and learn their unique photoacoustic signatures.

The results presented in this paper are additionally promising

for other emerging approaches that apply deep learning to

photoacoustic image reconstruction [40], [41]. Our trained

code and a few of our datasets are freely available to fos-

ter future comparisons with the method presented in this

paper [42].

V. CONCLUSION

The use of deep learning as a tool for reflection artifact

detection and removal is a promising alternative to geometry-

based beamforming models. We trained a CNN using sim-

ulated images of raw photoacoustic channel data containing

multiple sources and artifacts. Our results show that the net-

work can distinguish between a simulated source and artifact

in the absence and presence of channel noise. In addition,

we successfully determined the lateral and depth locations of

the signal using the location of the bounding box. The network

was successfully transferred to experimental data with similar

classification accuracy to that of simulated data. Results are

promising for distinguishing between photoacoustic sources

and artifacts without relying on the inherent inaccuracies

with traditional beamforming. This approach has additional

potential to eliminate reflection artifacts from interventional

photoacoustic images.
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