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Photoacoustic Spatial Coherence Theory and
Applications to Coherence-Based Image
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Abstract— The photoacoustic effect relies on optical
transmission, which causes thermal expansion and gen-
erates acoustic signals. Coherence-based photoacoustic
signal processing is often preferred over more traditional
signal processing methods due to improved signal-to-noise
ratios, imaging depth, and resolution in applications such
as cell tracking, blood flow estimation, and imaging. How-
ever, these applications lack a theoretical spatial coher-
ence model to support their implementation. In this article,
the photoacoustic spatial coherence theory is derived to
generate theoretical spatial coherence functions. These
theoretical spatial coherence functions are compared with
k-Wave simulated data and experimentaldata from point and
circular targets (0.1–12 mm in diameter) with generally good
agreement, particularly in the shorter spatial lag region.
The derived theory was used to hypothesize and test pre-
viously unexplored principles for optimizing photoacoustic
short-lag spatial coherence (SLSC) images, including the
influence of the incident light profile on photoacoustic spa-
tial coherence functions and associated SLSC image con-
trast and resolution. Results also confirm previous trends
from experimental observations, including changes in SLSC
image resolution and contrast as a function of the first M
lags summed to create SLSC images. For example, small
targets (e.g., <1–4 mm in diameter) can be imaged with
larger M values to boost target contrast and resolution, and
contrast can be further improved by reducing the illuminat-
ing beam to a size that is smaller than the target size. Overall,
the presented theory provides a promising foundation to
support a variety of coherence-based photoacoustic signal
processing methods, and the associated theory-based sim-
ulation methods are more straightforward than the existing
k-Wave simulation methods for SLSC images.

Index Terms— Acoustic signal processing, coherence-
based beamforming, photoacoustic imaging, spatial coher-
ence.
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I. INTRODUCTION

P
HOTOACOUSTIC imaging techniques rely on the pho-
toacoustic effect to generate acoustic signals. To achieve

the photoacoustic effect, pulsed light is transmitted, and
an acoustic wave is generated from the thermal expansion
and contraction of an optically absorbing target. By tun-
ing the wavelength of the incident light, techniques using
this effect exploit the optical absorption spectrum of bio-
logic chromophores to achieve high target sensitivity [1].
Common clinical targets include hemoglobin, nerves, and
metal with major application areas in blood flow mea-
surement [2], flow cytometry [3], vascular imaging [4],
[5], surgical navigation and guidance [6]–[12], and implant
placement [13], [14].

Coherence-based photoacoustic techniques are increasingly
popular due to their ability to improve resolution and imaging
depth. For example, changes in the volume of red blood
cells flowing through an artery tend to generate fluctuations
in the resulting photoacoustic pressure signal. The temporal
coherence of these pressure signals can be used to implement
photoacoustic correlation spectroscopy to estimate blood flow
with better resolution and higher imaging depth than the
Doppler imaging methods [2].

Similarly, when imaging deep structures, conventional
amplitude-based photoacoustic imaging is often challenged by
low signal-to-noise ratios due to insufficient fluence at the
target depth, optical scattering in tissues, and depth-dependent
acoustic attenuation. The lateral resolution also suffers due
to the depth-dependent acoustic beam widths. As a result,
coherence-based imaging techniques have been introduced,
primarily to reduce side-lobes and acoustic clutter. One exam-
ple of a spatial coherence technique to improve image quality
is coherence factor (CF) weighting, which improves spatial
resolution and contrast [15]. CF weighting has been combined
with other methods, such as synthetic aperture focusing [16]
and an adaptive minimum variance method [17] to achieve
additional improvements in spatial resolution and contrast.
Signal-to-noise ratio (SNR)-dependent CF weighting was also
introduced to preserve contrast in high-noise scenarios [18].
Similar success was achieved when weighting traditional
amplitude-based images with other types of coherence-based
metrics, including coherence weighting to improve resolution
in the elevation dimension [19] and short-lag spatial coherence
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(SLSC) weighting to reduce clutter in amplitude-based
images [20].

Initial implementations of SLSC imaging to photoacoustic
data demonstrate that weighting with amplitude-based images
is not a requirement to achieve the benefits of reduced clutter
and improved contrast and resolution [14], [21]–[24]. SLSC
images directly display measured coherence values, and these
measurements are independent of signal amplitude. As a result,
SLSC images are particularly beneficial for photoacoustic
imaging in high-noise environments, which can be caused
by insufficient laser fluence incident on a target of inter-
est. Insufficient laser fluence often results from low-energy
sources (e.g., when using pulsed laser diodes [23], [25] or
light emitting diodes [26]–[28]) or when imaging structures
that are far away from the light source (e.g., when imag-
ing brachytherapy seeds with an interstitial or transurethral
approach [14], [21], [22], [29]). In these cases, photoa-
coustic SLSC images demonstrate considerable improvements
in border delineations, contrast, contrast-to-noise ratios, and
signal-to-noise ratios compared with traditional delay-and-
sum (DAS) beamforming and Fourier-based reconstruction
techniques.

Although these benefits of coherence-based signal process-
ing are based on experimental observations, a well-developed
theory to describe expected spatial coherence has multi-
ple additional benefits. For example, this theory can be
used to study a wide range of potential optimizations that
would otherwise require lengthy experimental testing, which
is not always feasible. This theory may also be used to
gain insight into potential unexpected and counterintuitive
optimizations. We derived an initial narrowband photoa-
coustic spatial coherence theory in our associated confer-
ence paper [30] and updated this narrowband theory to
consider frequencies within the bandwidth of an ultrasound
probe [31]. In addition, we derived and tested additive
noise models to further improve our initial theory [32].
This article presents a complete mathematical description
of our theory in the presence of noise, including vali-
dation with experimental data from multiple target sizes.
We also discuss how our photoacoustic spatial coherence the-
ory can be applied to optimize the photoacoustic SLSC image
display.

The remainder of this article is organized as follows.
Section II provides a complete description of our theory
for photoacoustic spatial coherence and details how it can
be used to create theoretical photoacoustic SLSC images.
Section III lists our validation methods using SLSC images
that are derived from theoretical equations, k-Wave sim-
ulations [33], and experimental data consisting of thread,
ink-filled tubes, and an in vivo hepatic blood vessel.
Section IV shows the results of our validation methods
and demonstrates the utility of our theory when select-
ing photoacoustic-based parameters to optimize the con-
trast and resolution of SLSC images. Finally, Section V
discusses the major insights and implications derived
from this work, and Section VI contains our concluding
remarks.

II. THEORY

A. Photoacoustic Spatial Coherence

A linear systems approach is used to describe the measured
photoacoustic pressure field P . The first component of the
linear system is χ , which is the random, nonuniform distribu-
tion of moderately dense, spatially incoherent absorbers (also
known as the source function or source distribution function) at
source location X0 = (x, y, z). The moderately dense require-
ment (with moderate defined as 3.18 absorbers/mm2 and dense
defined as 318.3 absorbers/mm2 in [34]) is introduced based
on our observations that photoacoustic absorbers generally
respond as an incoherent source function when their distri-
bution is moderately dense and as a coherent source function
when their distribution is dense. Guo and Li [35] similarly
observed a coherent photoacoustic source when visualizing a
dense ensemble of photoacoustic absorbers.

The second component of the linear system is AN , i.e., the
initial pressure distribution of absorbers located at position Xo

in the presence of noise [32]:

AN (Xo, f ) = A + Nsc (1)

where Nsc scales zero-mean, Gaussian distributed, additive
noise, NA, by the expected value of the amplitude of the
initial pressure distribution A, as described by the following
equation:

Nsc = 〈A〉NA (2)

where 〈·〉 represents the expected value, and 〈A〉 may be
interpreted as an average over uncorrelated pressure signals
generated from a microscopic distribution of moderately dense
photoacoustic absorbers. To avoid confusion with the descrip-
tion provided in [32], we clarify here that Nsc in (1) is
equivalent to the NA term introduced in [32, eq. (8)]. Although
NA has the same definition in both manuscripts, the scaling
term 〈A〉 is introduced in this manuscript in order for us to
relate noise amplitudes to pressure amplitudes.

A is a function of the fluence F at depth z and two
tissue properties (i.e., the Grüneisen parameter Ŵ and the
optical absorption coefficient µa), as defined by the following
equation:

A = µaŴF. (3)

Based on the definitions provided in (1)–(3), AN takes the
following form:

AN =

{

µaŴF, NA = 0

µaŴF + 〈µaŴF〉NA, NA �= 0.
(4)

The uncorrelated source-related noise NA originates from
random fluctuations in the source distribution (e.g., variations
in fluence at the absorber surface [32] and variations in the
optical absorption within the absorber). This additive noise
model is based on our observations of experimental data (as
described in detail in our previous publication [32]). Note
that [32] also describes an additional noise term related to
the channel noise-to-signal ratio, which we assume to be
negligible throughout this article.
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The third component of the linear system is Hr x , which is
the spherical propagation of the sound wave from the source
to a point n on the transducer:

Hr x(X0, Xn, f ) =
e j2π f rn/c

rn

rn = |X0 − Xn| (5)

where Xn is a point on the aperture [e.g., Xn = (xn, yn, 0)],
c is the speed of sound, rn is the travel distance from the
source to the aperture, and f is the acoustic frequency, which
is related to the bandwidth of the ultrasound transducer.

The acoustic pressure measured from a single target is,
therefore, defined as:

P(X0, Xn, f ) = χ(X0, f )AN (X0, f )Hr x(X0, Xn, f ). (6)

The total received pressure at a point on the aperture Xn is
found by integrating the pressure field over X0, as described
by:

P(Xn, f ) =
∫∫∫

V

P(X0, Xn, f ) d3 X0. (7)

To relate this derivation to previous derivations of photoa-
coustic pressure, note that (7) is similar to (2) in [36]. The
photoacoustic spatial covariance Rp is the correlation of the
pressure field at two lateral receiving positions X1 and X2:

Rp(X1, X2, f ) = 〈P(X1, f ), P∗(X2, f )〉 (8)

where P∗ represents the complex conjugate of P . Expansion
of (8) yields:

Rp(X1, X2, f )

=
∫∫∫

V

∫∫∫

V

χ
(

X ′
01

, f
)

χ∗(X ′
02

, f
)

·Hr x

(

X ′
01

, X1, f
)

H ∗
r x

(

X ′
02

, X2, f
)

·AN

(

X ′
01

, f
)

AN
∗(X ′

02
, f

)

d3 X ′
01

d3 X ′
02

(9)

where X ′
01

and X ′
02

are independent variables over which
the pressure field is integrated to determine the total received
pressure at aperture positions X1 and X2, respectively.

Insertion of (1) and (2) into (9) yields:

Rp(X1, X2, f )

=
∫∫∫

V

∫∫∫

V

χ
(

X ′
01

, f
)

χ∗(X ′
02

, f
)

·Hr x

(

X ′
01

, X1, f
)

H ∗
r x

(

X ′
02

, X2, f
)

·
[

A
(

X ′
01

, f
)

A∗(X ′
02

, f
)

+ A
(

X ′
01

, f
)

〈A∗〉N∗
A

(

X ′
02

, f
)

+ 〈A〉A∗(X ′
02

, f
)

NA

(

X ′
01

, f
)

+ 〈A〉〈A∗〉NA

(

X ′
01

, f
)

N∗
A

(

X ′
02

, f
)]

· d3 X ′
01

d3 X ′
02

. (10)

Because the source function χ has a random, nonuniform,
moderately dense, spatially incoherent distribution, note that:

〈

χ
(

X ′
01

, f
)

, χ∗(X ′
02

, f
)〉

= χoδ
(

X ′
01

− X ′
02

)

(11)

where χo represents the average power of the absorber distri-
bution. Similarly, because NA is also a random variable:

〈

NA

(

X ′
01

, f
)

, N∗
A

(

X ′
02

, f
)〉

= Noδ
(

X ′
01

− X ′
02

)

(12)

Fig. 1. Illustration of the Fresnel approximation for an aperture (rectan-
gle) and source (circle) located at the aperture center X0. The distance
from the source to a point on the aperture is rn. The lateral distance
X1 −X2 ≪ z, where z is the axial position of the source. Therefore, r ≈ z.

where No is the variance of the Gaussian distribution of NA .
According to (11) and (12), the expected value of the source
distribution and the associated noise within the source term
are equal to zero except when X ′

01
= X ′

02
.

The expressions in (11) and (12) reduce the expression for
spatial covariance in (10) to a single volume integral:

Rp(X1, X2, f )

=
∫∫∫

V

[

χo | A
(

X ′
0
, f

)

|2 +2χo NA

(

X ′
0
, f

)

〈A〉2

+χo No | 〈A〉 |2
]e j2π f (r1−r2)/c

r1r2
d3 X ′

0

ri = |X i − X ′

0
|. (13)

The initial photoacoustic response is assumed to reside
within an isochronous volume; thus, the spatial covariance
over a short depth z within this volume is taken to be constant,
which reduces the volume integral in (13) to a surface inte-
gral [37]–[39]. This assumption is satisfied in photoacoustic
imaging for multiple reasons (e.g., short-nanosecond-duration
laser pulses, laser pulse repetition frequencies on the order of
several Hz as opposed to hundreds of kHz [23], and acoustic
temporal frequencies limited by the transducer bandwidth).
We then apply the paraxial and Fresnel approximations to
the amplitude and phase terms, respectively. The paraxial
approximation assumes that we are primarily interested in the
received response near the axis of each transducer element:

ri ≈ z. (14)

The Fresnel approximation assumes that the axial distance
between the aperture and source (i.e., z) is orders of magnitude
larger than the lateral and elevation distances between a
position on the aperture and a source, as shown in Fig. 1, for
the lateral dimension. This approximation also supports the
separability of the lateral and elevation dimensions and yields
the following approximations in the lateral dimension:

r1 ≈ z +
(x1 − x)(x1 − x)

2z
(15)

r2 ≈ z +
(x2 − x)(x2 − x)

2z
. (16)

Using the approximations described in (14)–(16) yields
an equation for photoacoustic spatial covariance that only
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depends on the lateral position:

Rp(x1, x2, z, λ)

=
e jπ(x1 x1−x2 x2)/λz

z2

·
∫ ∞

−∞

[

χo | Ŵ(x, z)µa(x, z)F(x, z) |2

+2χo NA〈Ŵ(x, z)µa(x, z)F(x, z)〉2

+χo No | 〈Ŵ(x, z)µa(x, z)F(x, z)〉 |2
]

·e− j2π(x(x1−x2))/λzd x (17)

where λ = c/ f . Because broadband photoacoustic signals
are sensed and filtered by a transducer with finite bandwidth,
the λ term is primarily related to the acoustic frequency
of the transducer [1], [40]. To evaluate (17) and obtain a
spatial covariance, λ can be approximated as the wavelength
corresponding to the center frequency of the transducer λc.
Note that (17) represents the product of a constant term,
a phase term, and a Fourier transform that depends on both
the initial pressure distribution (i.e., A) and scaled noise terms.
The spatial frequencies in this Fourier transform are given by
u = (x1 − x2)/λz.

There are two options to eliminate the phase term in (17)
[41], [42] (i.e., the two points x1 and x2 are symmetric with
respect to the lateral center of the transducer when receiving
unfocused data, or delays were applied to focus the received
channel data and align responses at one point of interest in
the image field). With either option, the new expression for
spatial covariance in the lateral dimension depends only on
spatial frequency u:

C(u) =
1

z2

∫ ∞

−∞

[

χo | Ŵµa F |2 +2χo NA〈Ŵµa F〉2

+χo No | 〈Ŵµa F〉 |2
]

e− j2π xud x (18)

where C represents the spatial covariance in the spatial fre-
quency domain.

Equation (18) is similar to the equation describing the van
Cittert–Zernike (VCZ) theorem applied to pulse-echo measure-
ments [41], with the optics-related terms (i.e., Ŵ, µa, and F)
replacing the term that would describe an acoustic transmit
pressure amplitude (or acoustic receive pressure amplitude
when the equation is derived using acoustic reciprocity [43]).
The VCZ theorem requires incoherent source distributions;
therefore, this analogy for our photoacoustic spatial coherence
theory applies to moderately dense absorber distributions.

A similar equation applies to the elevation dimension, con-
sidering that the lateral and elevation dimensions are separable.
Therefore, a spatial covariance equation that includes both
dimensions can be written as follows:

C(u, v) =
1

z2

∫ ∞

−∞

∫ ∞

−∞

[

χo | Ŵµa F |2 +2χo NA〈Ŵµa F〉2

+χo No | 〈Ŵµa F〉 |2
]

e− j2π(ux+vy)d xd y (19)

where y is the elevation dimension and v is the spatial
frequency in the elevation dimension. Let y1 and y2 be defined
as the equivalent terms to x1 and x2, respectively, in the
elevation dimension rather than lateral dimension. Then, the

Fig. 2. Steering direction from the aperture center to a focal point (xk, z)
in the image, illustrated with the assumption that (17) represents an initial
focus located at lateral position xk = 0.

spatial frequency in the elevation dimension is defined as
v = (y1 − y2)/λz. Note that (19) uses one of the two
assumptions for phase term elimination described earlier (i.e.,
either y1 and y2 are symmetric about the center of the
transducer in the elevation dimension or the data are focused
in the elevation plane of the transducer, which can typically
be accomplished with a transducer lens). Although spatial
covariance is inherently 2-D, as described by (19), throughout
this manuscript, we evaluate our theory in the separable lateral
dimension of the transducer using (17) and (18).

B. Photoacoustic SLSC Imaging

To make photoacoustic SLSC images, we consider the array
steering vector, which encodes the steering direction from
the aperture center to a focal point of interest (xk, z), in the
photoacoustic image. Shifting the focal point along the lateral
image dimension changes the steering direction, as shown in
Fig. 2. Alternatively, with a fixed steering direction, the image
target may be laterally shifted relative to a fixed aperture to
build lateral image pixels. This alternative is mathematically
described using the shifting property of the Fourier transforms,
which states that a shift in space by xk corresponds to
multiplication by a phase term in the spatial frequency domain,
resulting in our final photoacoustic spatial covariance equation:

Rp(m, xk, z, λ)

=
e−( j2π xkm)/λz

z2

∫ ∞

−∞

[

χo | Ŵµa F |2 +2χo NA〈Ŵµa F〉2

+χo No | 〈Ŵµa F〉 |2
]

e−( j2π xm)/λzd x

(20)

where the additional dependences on x and z [as shown in
(17)] are omitted for simplicity. The lag in (20) is defined in
units of distance as:

m = x1 − x2 (21)

and m is related to spatial frequency as defined by:

u =
m

λz
(22)

where λ depends on the bandwidth of the probe, as described
in Section II-A.
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Equation (20) may be expressed in terms of spatial fre-
quency as:

C(u, xk)

=
e− j2π xku

z2

∫ ∞

−∞

[

χo | Ŵµa F |2 +2χo NA〈Ŵµa F〉2

+χo No | 〈Ŵµa F〉 |2
]

e− j2π xud x. (23)

Note that the phase term in (20) and (23) is generalizable
because the definition of lag is represented in spatial units
(i.e., m) rather than units of element number (i.e., m, as in
previous derivations for ultrasound spatial coherence [41],
[43], [44]), which makes this definition independent of the
transducer pitch. An additional benefit of this independence
includes applicability to transducers with variable pitch. The
relationship between m and m is:

m =
m

pitch
(24)

where pitch is the transducer pitch.
To obtain a theoretical SLSC image, the dependence on the

entire bandwidth of the transducer was included by integrating
(20) over wavelengths that correspond to the highest and
lowest acoustic frequencies within the −6-dB bandwidth of the
transducer frequency response (i.e., λH and λL , respectively,
approximating equal weights for each wavelength), normaliz-
ing the result by the value obtained at lag zero [i.e., K (xk, z)]
and then integrating over the first M lags to obtain each pixel
in the theoretical SLSC image, as defined by the following
equation:

SLSCpixel(xk, z)

=
1

K (xk, z)

∫ M

0

∫ λH

λL

Rp

(

m ′, xk, z, λ′)dλ′dm ′

≈
1

K (xk, z)

M
∑

m=1

λH
∑

λ=λL

Rp(m, xk, z, λ). (25)

The dependence on transducer pitch is introduced in (25) in
order to maintain consistency with previous descriptions of the
integration process. As an aside, if transducer pitch is variable,
the relationship between m and m described in (24) would
need to be updated, but this update would not change the
format of (25).

C. Modeling Point Targets

Considering that point targets are defined as any target
smaller than the resolution of the imaging system, we modify
(6) to model point targets by first defining the source function
as a delta function:

χ(x, f ) = δ(Xo, f ). (26)

The correlation of the source function in (26) is defined
as:

〈

δ
(

X ′
01

, f
)

, δ∗(X ′
02

, f
)〉

= δ
(

X ′
01

− X ′
02

)

(27)

which states that the expected value of the point source is
equal to zero except when X ′

01
= X ′

02
. Next, (12) can be

implemented to demonstrate that the noise associated with this

point source is also equal to zero except when X ′
01

= X ′
02

.
Using a similar derivation and the same assumptions that
follow after (12), we arrive at a mathematical expression for
the spatial covariance of a point target:

Rp,point(m, xk, z, λ)

=
e−( j2π xkm)/λz

z2

∫ ∞

−∞

[

| Ŵµa F |2 +2NA〈Ŵµa F〉2

+No | 〈Ŵµa F〉 |2
]

e−( j2π xm)/λzd x.

(28)

Equation (28) may also be expressed in terms of spatial
frequency:

Cpoint(u, xk)

=
e− j2π xku

z2

∫ ∞

−∞

[

| Ŵµa F |2 +2NA〈Ŵµa F〉2

+No | 〈Ŵµa F〉 |2
]

e− j2π xud x. (29)

Equations (28) and (29) each represent a Fourier trans-
form multiplied by a phase term, similar to (20) and (23),
respectively. To create theoretical SLSC images of point
targets, Rp in (25) was replaced with (28).

III. METHODS

A. Theory-Based Simulations

A 2-D phantom was simulated in MATLAB with its lat-
eral dimension corresponding to the lateral dimension of an
ultrasound transducer and axial dimension corresponding to
the depth of the imaging plane. An ultrasound transducer was
modeled with most properties similar to the Alpinion L3-8
transducer (i.e., 128 elements, 0.3-mm pitch, and 3.84-cm total
length) with the exception of the kerf being equal to 0 mm.
This transducer was placed at depth z = 0 cm. The simulated
targets for theoretical testing included a point target and
circular targets with diameters ranging from 0.2 to 12 mm. The
circular targets were modeled as a distribution of randomly
positioned absorbers, as shown in Fig. 3(a), for a simulated
blood vessel surrounded by tissue.

Two types of fluence profiles were simulated to obtain F .
The first profile was a light sheet with a uniform fluence value
of F = 5 mJ/cm2, illuminating the entire phantom. The second
profile was a Gaussian beam with an initial diameter wo of 1 or
5 mm, initial depth z = 6.8 mm, and a beam width that
increased with depth.

This Gaussian beam profile was simulated using the light
propagation model defined as [45]:

F(x, z) = Foe
−2x2/

(

wo

√

1+
(

z
zr

)2
)

(30)

where Fo is the initial fluence (set to 5 mJ/cm2) and zr is the
Rayleigh length (set to 1.2 and 6.2 mm for the 1- and 5-mm
initial beam diameters, respectively).

Unless otherwise stated, the following values were used
to define µa, χ, Ŵ, No , and NA in (20) and (28). The mean
magnitude of µa was 111 cm−1 inside the photoacoustic
target (to model hemoglobin in blood), 0.1 cm−1 outside
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Fig. 3. (a) Optical absorption (µa) distribution for a circular cross section
of a simulated 6-mm-diameter blood vessel with high optical absorption
surrounded by tissue of low optical absorption, (b) Grüniesen parameter
(Γ ) distribution, (c) corresponding photoacoustic pressure distribution
(AN), and (d) lateral profile of AN taken from the axial depth indicated by
the white dashed line.

the target (to model tissue), and 0 cm−1 when no absorbers
were present [46]. The total number of absorbers Nµ for
the phantom with the circular targets was determined by the
density of absorbers, which was fixed at 40 absorbers/mm2.
Because the Grüniesen parameter is known to vary locally
due to the composite nature of biological tissue [46], Ŵ was
modeled as random values ranging 0–0.81 and 0–0.144 in
tissue and in blood, respectively [46], as shown in Fig. 3(b).
The average power of the absorber distribution χo was
modeled as an arbitrary constant. The variance (No) of the
added noise (NA) was empirically determined, resulting in the
values reported in Table I. This combination of parameters
produced a photoacoustic pressure distribution (AN ), as shown
in Figs. 3(c) and 3(d).

To obtain theoretical spatial coherence functions, (20) and
(28) were evaluated with an acoustic wavelength, λ ≈ λc =
269 µm (which corresponds to a transducer with center
frequency fc = 5.5 MHz). This result was then normalized
by the value obtained at lag zero. For each target size, (20)
and (28) were evaluated with ten unique µa , Ŵ, and NA

distributions (with constant No) in order to provide statistical
measurements summarizing the mean and standard deviation
of presented results.

To implement theoretical SLSC imaging, (25) (including
the point source simplification described in Section II-C) was
evaluated over a discrete set of wavelengths that correspond
to the −6-dB bandwidth of the frequency response of the
Alpinion L3-8 ultrasound transducer (i.e., λL = 211 µm to
λH = 395 µm for multiple lateral positions (i.e., xk) and
for a specific M value. The wavelengths were incremented
using a fixed � f = 0.25 MHz, which resulted in a variable
�λ = λn+1 − λn = (� f λnλn+1)/c.

B. k-Wave Simulations

In order to compare our theoretical model to existing
simulation methods for studying coherence-based beamform-
ers, photoacoustic data were additionally simulated using the
k-Wave software package [33]. The k-Wave acoustic receiver
was modeled with most properties similar to the Alpinion
L3-8 transducer (i.e., 128 elements, 3.84-cm total length,
0.3-mm pitch, and 5.5 center frequency) with the exception of
0-mm kerf and 49-MHz sampling frequency. The targets were
circular regions of moderately dense absorbers with diameters
ranging from 0.1 (i.e., a point source) to 12 mm. Absorber
locations within the circular region were randomly chosen
(with the exception of the point source). These locations
were constant between k-Wave and theoretical simulations of
equally sized targets.

After creating ten unique absorber maps for each target
size, each absorber map was combined with one of ten ran-
domly generated Gaussian noise distributions created with the
empirically determined standard deviations reported in Table I
(in order to model the randomness of the initial pressure
distribution associated with variations in fluence). In particular,
each zero-mean Gaussian noise profile was added to the
initial pressure distribution created with k-Wave simulations
to create ten initial pressure distributions for each target size.
For each pressure distribution, a time-domain simulation was
performed to generate 2-D photoacoustic channel data, which
was subsequently bandpass filtered to model the band-limiting
effects of an Alpinion L3-8 ultrasound transducer with a center
frequency of 5.5 MHz.

Spatial coherence functions and SLSC images were cal-
culated from k-Wave data as described by the following
equations from previous publications [6], [14], [47]:

R̂p(m) =
1

N − m

N−m
∑

i=1

∑

n2
n=n1

si (n)si+m(n)
√

∑

n2

n=n1
s2

i (n)
∑

n2

n=n1
s2

i+m(n)

(31)

SLSCpixel =
M

∑

m=1

R̂p(m) (32)

where R̂p(m) represents the normalized spatial correlation
measured from received signals, m and N are defined in
Section II-B, si (n) is the time-delayed acoustic signal received
by the i th element, n is the sample depth in units of samples,
n1 to n2 is the correlation kernel length, which was chosen
to be 2.4λc (with some numerical implementation differences
due to rounding), and SLSCpixel is one pixel in the SLSC
image. The actual correlation kernel length (after rounding)
was 23 samples. Unless otherwise stated, the value of M was
set to 14, which corresponds to 11% of the number of elements
in the receive aperture.

C. India Ink and Point Target Experiments

Two photoacoustic phantoms were used to validate the
theoretical predictions of our model, particularly with regard to
the effects of the illuminating beam diameter, target diameter,
and varying M . The first photoacoustic phantom consisted
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of tubing of inner diameters ranging from 1.3 to 10 mm
submerged in a water bath, as shown in Fig. 4. This tubing was
rigidly fixed in an acrylic plate and initially filled with water to
obtain the photoacoustic signal of the tubing alone. The water
was aspirated and subsequently replaced with a 0.067% India
ink solution without altering the tubing position, enabling
discrimination of signals from the tubing walls relative to
signals from the India ink. The second photoacoustic phantom
was a black thread of diameter 0.2 mm, which was suspended
in a water bath.

Ten frames of photoacoustic channel data of each target
were acquired with an Alpinion (Bothell, WA) E-Cube 12R
ultrasound scanner connected to an Alpinion L3-8 linear array
transducer. The sampling frequency of the ultrasound system
was 40 MHz. The transducer was positioned to visualize the
circular cross section of the thread or tubing diameter in the
image plane. In this transducer orientation, the thread was
considered to be a point target.

Two different light delivery methods were coupled to the
output port of a Phocus Mobile laser (Opotek, Inc., Carlsbad,
CA) and independently used to acquire photoacoustic images
with an optical wavelength of 760 nm. The first light delivery
method was a 1-mm core-diameter and a multimode optical
fiber with 0.5 numerical aperture (as shown in Fig. 4). The
laser output energy was 1.5 mJ/pulse. The second light deliv-
ery method was a larger 5-mm diameter fiber bundle. The laser
output energy was 125 mJ/pulse. Both light delivery methods
were approximated to produce the Gaussian-shaped beams.

Spatial coherence functions and SLSC images of the exper-
imental data were calculated using (31) and (32), respec-
tively. The actual correlation kernel length (after rounding)
was 17 samples. Unless otherwise stated, the value of M was
set to 14, which corresponds to 11% of the number of elements
in the receive aperture.

D. In Vivo Experiment

In vivo photoacoustic data were used to assess the per-
formance of our theoretical framework in a more complex
environment that represents a clinical or surgical scenario
of interest. These data were acquired from a major vein
in a porcine liver study approved by the Johns Hopkins
Animal Care and Use Committee, as described in our pre-
vious publications [11], [32]. To briefly summarize the imag-
ing procedure, a laparotomy was performed to gain access
to the liver, and the same photoacoustic imaging system
described in Section III-C was utilized. The Alpinion L3-8
linear array transducer and 5-mm diameter fiber bundle were
both in direct contact with the liver tissue to visualize a
circular cross section of the hepatic vein. The laser was
operated at 750 nm with an incident energy of 40.5 mJ/pulse
on the tissue surface. The vein was approximately 12 mm
in diameter in the cross-sectional view of the ultrasound
image.

Spatial coherence functions and SLSC images of the in vivo

data were calculated using (31) and (32), respectively. The
actual correlation kernel length (after rounding) was 17 sam-
ples. Unless otherwise stated, the value of M was set to 14,

Fig. 4. Experimental setup showing tubing of inner diameters 4.5, 6, 8,
and 10 mm (1.3-, 2-, and 4-mm diameter tubings not shown) fixed in an
acrylic scaffold and suspended in a water bath. The light source shown is
the 1-mm core-diameter optical fiber that was later interchanged with the
5-mm diameter fiber bundle in the same position relative to the ultrasound
transducer. An Alpinion L3-8 transducer is placed with its imaging plane
viewing a circular cross section of the tubing.

which corresponds to 11% of the number of elements in the
receive aperture.

E. Empirical Methods to Add Noise to Simulated Data
Sets

The magnitude of the noise added to the theoretical and
k-Wave simulated data sets was empirically determined based
on the definition of σN reported in [32], which describes a
phenomenological model of the deviation from a mean value
at each lag in a coherence function. To determine the value
of σN , theoretical and k-Wave data sets were first simulated
with the SNR of the initial pressure distribution, SNRp, varied
from 10 to 45 dB in 5-dB increments. SNRp is related to No

[i.e., the variance of the Gaussian distribution of the additive
noise in the initial pressure distribution, as introduced in (12)]
based on the following definition:

SNRp = 20 log10

(

At√
No

)

(33)

where At is the mean amplitude of the initial pressure distrib-
ution inside the target in the absence of noise [i.e., A in (1)].

The following equation was then evaluated to calculate σN

for the theoretical data sets:

σN =

√

∑k
m=0

(

R̂p(m) − Rp(m)
)2

k − 1
(34)

where R̂p is the normalized coherence function generated by
evaluating and normalizing the result of (28) or (20) for a
theoretical point target or for theoretical targets larger than
a point target, respectively. Otherwise, R̂p was obtained by
evaluating (32) for k-Wave and experimental results. Rp is
the least-squares best fit polynomial for the first 35 lags of
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TABLE I

σN (MEAN ± ONE STANDARD DEVIATION OF TEN MEASUREMENTS)

FOR THE RESULTS REPORTED IN FIGS. 5, 7–11, AND 14

the coherence function at the center of the target, and k is the
number of lags used in the fit.

For each target size with multiple theoretical and k-Wave
SNRp values simulated, the SNRp chosen for the σN values
reported in Table I was the SNRp that generated a coherence
function with the closest σN match to the σN measured from
experimental data. The σN values measured from experimental
data and chosen for theoretical and k-Wave simulations are
reported in Table I. The blank entries in Table I indicate
experimental coherence functions that contained noise less
consistent with the associated phenomenological model (likely
due to the presence of strong coherent reverberations from the
tubing in the experimental data). Therefore, the SNRp value
chosen for each simulated data set in these cases was the SNRp

that generated coherence functions with the most similar σN

values between the theoretical and k-Wave simulations.
In addition to the σN values reported in Table I and

due to notable differences between k-Wave and theoretical
results, we were additionally interested in comparing theo-
retical results directly to experimental data. For these cases,
σN values ranging 0.002–0.020 (which corresponded to SNRp

values ranging 40–20 dB, respectively) were compared. These
ranges were consistent with the range of σN values reported
in Table I.

For completeness, we note that the theoretical value of
σN is related to NA (i.e., the additive noise in the initial
pressure distribution) and No (i.e., the variance of the Gaussian
distribution of NA) by relating (34) and (20) (or (34) and (28)
for the point target case).

F. Exploring Theoretical Implications for SLSC Imaging

To explore notable trends derived from our photoacoustic
spatial coherence theory, SLSC image contrast and resolution
were characterized as functions of the light beam profile
diameter and the target size, for various M values using (25).
Contrast was defined as:

Contrast = 20 log10

(

st

so

)

(35)

where st and so are the mean amplitude of signals within the
target and background region, respectively, of the SLSC image.
Resolution trends were quantified by measuring the full-width
at half-maximum (FWHM) of lateral profiles created with
multiple target sizes and illumination profile diameters. These
theoretical results were compared with the controlled phantom
results from the experiments described in Section III-C.

IV. RESULTS

A. Comparison of DAS and SLSC Images

Fig. 5 compares traditional DAS beamforming with
coherence-based SLSC images of experimental 1.3- and 8-mm
diameter targets comprised of India ink. The 1-mm diameter
optical fiber was used to acquire the photoacoustic image
of the 1.3-mm target. The 5-mm diameter fiber bundle was
used to acquire the photoacoustic image of the 8-mm target.
Theoretical SLSC data was simulated with a Gaussian beam
fluence profile with 1- and 5-mm initial beam diameters for
the 1.3- and 8-mm diameter targets, respectively.

SLSC beamforming more clearly delineates the target con-
tent and boundaries farthest from the light source compared
with DAS beamforming. The DAS photoacoustic images of
the targets may appear smaller than their actual sizes due
to the depth-dependent fluence distribution that is known
to impact a majority of photoacoustic images reconstructed
with DAS beamforming. However, although the amplitude
decreases with depth, the boundaries are better delineated in
the SLSC images because the spatial coherence of the received
signals is independent of amplitude, which is one of the known
benefits of the SLSC beamformer applied to photoacoustic
data. As the tubing surrounding the experimental targets
produces spatially coherent signals, the proximal and distal
tubing and structural boundaries are more clearly visualized in
the SLSC images, while signals above the tubing are possibly
due to a photoacoustic effect generated by the laser beam from
the 1-mm diameter optical fiber (1.3-mm target) or the 5-mm
diameter fiber bundle (8-mm target) interacting with the water
surrounding the tubing.

Boundary delineation is a known benefit of SLSC imag-
ing (compared with DAS and similar amplitude-based beam-
formers) applied to photoacoustic data, particularly when the
target boundary is located at a considerable distance from
the light source [8], [14], [21]. This enhanced target bound-
ary delineation emphasizes the usefulness of coherence-based
beamformers and highlights the importance of developing
photoacoustic-specific spatial coherence theory to support their
implementation.

B. Theoretical Photoacoustic Spatial Coherence
Functions

Although experimental spatial coherence functions are
expected to have some level of noise [32], theoretical spatial
coherence functions were first simulated in the absence of
noise (i.e., NA = 0), to better understand expected trends.
When a light sheet profile is used in theoretical simulations,
the width of the coherence function continuously decreases
from constant across the aperture for a point target to a
significantly shorter coherence length for the 10-mm target,
as shown in Fig. 6(a). In comparison, when a narrow-beam
Gaussian profile is used (1-mm initial beam diameter), the
width of the coherence function follows the same trend as a
light sheet until the target size exceeds the maximum beam
diameter, as shown in Fig. 6(b), where the 2–10-mm targets
have coherence functions that are similar to (and in some
cases overlapping) each other. These noiseless theoretical
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Fig. 5. (a) Experimental delay-and-sum (DAS) image, (b) experimental short-lag spatial coherence (SLSC) image, (c) theoretical SLSC simulation
(with added noise), and (d) k-Wave simulation (with added noise) of 1.3- and 8-mm diameter targets. The circles in the experimental DAS and SLSC
images denote the inner (solid line) and outer (dotted line) diameters of the Tygon tubing filled with India ink. SLSC images are normalized to the
brightest pixel and limited to display a minimum value of zero for M = 11� of the aperture. DAS images are displayed with a 25-dB dynamic range.

results indicate that both the target size and the fluence profile
of the illuminating light source affect photoacoustic spatial
coherence.

Theoretical photoacoustic spatial coherence functions (sim-
ulated with a Gaussian beam fluence profile with 5-mm initial
beam diameter) were compared with k-Wave simulated and
experimental photoacoustic coherence functions created from
multiple target sizes. The light source for the experimental
data was the 5-mm diameter fiber bundle. Fig. 7(a) shows
the agreement between coherence functions for point targets
created with theory and k-Wave in the absence of noise. Both
results have relatively constant coherence across the aperture.

Fig. 7(b) demonstrates that the addition of noise yields a
point target coherence function that decays as a function of
lag. The theoretical, k-Wave, and experimental photoacoustic
spatial coherence functions decrease at a similar rate as a
function of lag and have qualitatively similar σN (i.e., deviation
from a mean value at each lag in the coherence function).

The short-lag region was previously defined as the region
of the coherence function extending to a fixed percentage
the receive aperture. However, when comparing results from
targets larger than a point target, we define the short-lag
region as the region from lag 0 to the lag defined by the
first zero-crossing of the theoretical coherence function. This
new definition is introduced to account for the dependence of
photoacoustic spatial coherence on both target size and the
width of the light profile (as shown in Fig. 6). Our following
results focus on the short-lag region.

Fig. 8 shows coherence functions from theoretical simulated
data sets in the presence of noise compared with experimental
and k-Wave results for targets with diameters of 1.3- and
4.5-mm. Theoretical data were simulated with a Gaussian
beam fluence profile with 1- and 5-mm initial beam diameters
for the 1.3- and 4.5-mm diameter targets, respectively. The
experimental light source was the 1-mm diameter optical fiber
and 5-mm diameter fiber bundle for the 1.3- and 4.5-mm
targets, respectively.

Fig. 6. Noiseless theoretical coherence functions of at the center of
targets ranging in size from a point to 10 mm in diameter using (a) light
sheet and (b) 1-mm Gaussian beam profiles as the illuminating sources.
The x-axis represents lag (i.e., m or m) as a percentage of the receive
aperture.

In Fig. 8(a), the theoretical, k-Wave, and experimental
photoacoustic spatial coherence functions have a general
qualitative agreement (i.e., a similar rate of decrease with
increasing lag and similar σN ). Fig. 8(b) shows a similar
result for the 4.5-mm diameter target, as the three coher-
ence functions generally agree in the short-lag region. How-
ever, values outside of the short-lag region, which should
ideally have zero coherence in the absence of noise (as
shown in Fig. 6), produce significant deviations between data
sets with values that seem to hover near zero. In addi-
tion, the experimental coherence function demonstrates what
appears to be coherent reverberations artifacts at higher
lags, which are not modeled in theoretical or k-Wave
simulations and appear to dominate the noise described
by σN .

The agreement between theoretical results and k-Wave or
experimental results was quantified with the root-mean-square
error (RMSE) of coherence function differences measured at
each lag value. This RMSE was calculated separately for the
short-lag region (defined as 30% of the receive aperture for
the point target and the first zero-crossing for larger targets)
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Fig. 7. Coherence functions from a point target center. (a) Simulated
point target data without noise (NA = 0) shows coherence functions that
are relatively constant across the aperture, indicating a coherent source.
(b) Simulated point target data with noise compared with experimental
point target data, demonstrating partially coherent source functions when
noise is present. The x-axis represents lag (i.e., m or m) as a percentage
of the receive aperture.

Fig. 8. Comparison of theoretical, k-Wave, and experimental coherence
functions at the location corresponding to the center of (a) 1.3-mm
diameter and (b) 4.5-mm diameter targets. The x-axis represents lag
(i.e., m or m) as a percentage of the receive aperture.

Fig. 9. Root mean square error (RMSE) comparing both k-Wave data
with noise and experimental data to theoretical coherence functions with
noise in (a) short- and (b) long-lag regions.

and the long-lag region (defined as all results outside of the
short-lag region), as shown in Fig. 9.

Fig. 9(a) and (b) confirms the qualitative observation
that RMSE is consistently lower in the short-lag region
(RMSE < 0.05 when theory is compared with k-Wave and
RMSE < 0.1 when theory is compared with experiment) than
in the long-lag region.

C. Comparison of SLSC Lateral Profiles

Fig. 10 shows photoacoustic SLSC images and correspond-
ing lateral profiles for a point target and 12-mm diameter

target. For the theoretical simulations, the light profiles were
a Gaussian with 5-mm initial beam diameter when simu-
lating the point target and a light sheet when simulating
the 12-mm target. The experimental results for the point
target and the 12-mm target were derived from the thread
and in vivo data, respectively. The inclusion of in vivo data
enables the comparison of images without the effects of the
tubing and surrounding water previously shown in Fig. 5.
The theoretical, k-Wave, and experimental images in Fig. 10
generally show comparable lateral resolution for the 12-mm
target. However, the k-Wave image has a better resolution than
the theoretical and experimental images for the point target.
These similarities and differences are particularly evident
with the alignment of the lateral profiles through each target
center.

Fig. 11 shows lateral profiles for three target sizes and
multiple M values. The experimental results for the point
target, 4.5-mm target, and 12-mm target were derived from
SLSC images of the thread, India ink, and in vivo hepatic
blood vessel, respectively. For the point target and 4.5-mm
target, theoretical data were simulated with a Gaussian beam
fluence profile with 5-mm initial beam diameter. A light sheet
fluence profile was used for theoretical simulations of the
12-mm target.

Some differences were required to make comparisons across
theory, k-Wave, and experimental data sets in Figs. 10 and 11.
For example, the dynamic range was adjusted to best display
amplitudes within these targets. M values were different for
the 12-mm in vivo target likely due to differences in the
absorber distribution in the experimental data. Lateral profiles
for this target were normalized because of the large amplitude
differences within the target that dominate without normal-
ization. In addition, lateral axes were adjusted to place the
target at the center. There are also differences in the absorber
appearances across the three data sets in Fig. 10.

Despite differences in display methods and appearance,
the following two trends were nonetheless observed when
comparing these data sets in Fig. 11. First, the contrast of
the point target increases with an increase in M for both
simulated data with noise and experimental data. Second, a low
M value (i.e., 1%–3% of the aperture) generally excludes high
spatial frequency content from the SLSC image and results in
blurred target boundaries. As M increases, more high spatial
frequency content is included in the SLSC image and target
boundary delineation improves.

D. Effect of the Light Beam Profile on SLSC Image
Contrast

Fig. 6 indicates that the light beam profile affects the spatial
coherence function, as the narrower light profile increases the
coherence length of larger targets. This trend suggests that we
can improve the SLSC image contrast of larger targets by using
a narrow laser beam. To explore this effect that is based on
our newly derived theory, the contrast of targets in theoretical
and experimental SLSC images was measured as a function
of diameter, resulting in Fig. 12.
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Fig. 10. (a) and (e) Theoretical, (b) and (f) k-Wave, and (c) and (g) experimental photoacoustic SLSC images of a point target and 12-mm diameter
target. The experimental image of the 12-mm diameter target is derived from the in vivo hepatic blood vessel data. Images are displayed with
M = 11� of the aperture, with the exception of the 12-mm in vivo experimental target, which is displayed with M = 1� of the aperture. Images were
normalized and thresholded to a minimum value of 0.3 in (a)–(c) and (g) and 0 in (e) and (f). (d) and (h) Corresponding lateral profiles demonstrate
comparable resolution, target width, and coherence.

Fig. 11. Lateral SLSC profiles at axial depths corresponding to the target center of (a) theoretical, (b) k-Wave, and (c) experimental SLSC images
of the point 4.5- and 12-mm targets, each displayed with three different values of M represented as a percentage of the receive aperture. The
experimental profiles are derived from SLSC images of the thread (point target), India ink (4.5-mm target), and in vivo vessel (12-mm target). The
12-mm in vivo target lateral SLSC profiles were normalized to the maximum value in each line plot.

For the theoretical results in Fig. 12, the upper and lower
bounds of each illumination profile width (i.e., 1 mm, 5 mm,
and light sheet) correspond to the mean contrast measurements
of ten theoretical simulation results with SNRp = 20 dB
and SNRp = 40 dB, respectively. The target contrast with
the 1-mm Gaussian beam illumination profile decreased from
25.6–35.0 dB at a target diameter of 1.3 mm to 23.8–25.2 dB
as the target diameter increased to 10 mm. For the 5-mm

Gaussian beam illumination profile, target contrast decreased
from 26.5–36.2 to 14.0–19.0 dB as the target diameter
increased. For the light sheet illumination profile, target con-
trast decreased from 25.7–35.4 to 10.5–13.7 dB as the target
diameter increased.

The theoretical results in Fig. 12 were compared with exper-
imental photoacoustic SLSC images acquired with a 1-mm
core-diameter optical fiber (for comparison with the 1-mm
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Fig. 12. Theoretical measurements of contrast in SLSC images as a
function of target diameter for three illuminating beam profiles (light sheet,
1- and 5-mm diameter Gaussian beam). These theoretical predictions in
the presence of noise are compared with the experimental India ink data
acquired with the fiber bundle (×) and the optical fiber (o). For the larger
targets, theory and experimental data show improved contrast with the
narrower illumination beam profile. All SLSC images are computed with
M = 11� of the aperture.

narrow-beam Gaussian profile) and a 5-mm diameter fiber
bundle (for comparison with the 5-mm broader Gaussian pro-
file). The experimental data (shown as data points in Fig. 12)
generally agree with the theoretical results, as the smaller light
beam profiles generate images with higher contrast for the
same targets. In addition, the mean contrasts for experimental
data sets are within the range of the theoretical prediction
for the corresponding light source. The results in Fig. 12
demonstrate that the SLSC image contrast of targets can be
improved by limiting the illuminating beam to a size that is
smaller than the target size.

E. Effect of the Light Beam Profile on SLSC Image
FWHM

Although SLSC image contrast can be increased by narrow-
ing the width of the light beam profile (see Fig. 12), intuition
suggests that only the portion of a large target that is illumi-
nated with the narrow beam will be visible in the SLSC image.
Fig. 13 explores this expectation with FWHM measurements
of SLSC lateral profiles (M = 11%) created with target sizes
ranging from 1.3 to 11 mm in diameter. Ideally, a one-to-
one relationship would exist between these two measurements,
as indicated by the dashed line in Fig. 13. The upper and
lower bounds of each illumination profile correspond to the
mean FWHM measurements for ten theoretical simulations
with SNRp = 20 dB and SNRp = 40 dB, respectively. With
the light sheet illumination, the theoretical result in Fig. 13
generally follows the ideal expectation. When the light beam
diameter is decreased to 5 mm, the measured FWHM no
longer follows this ideal trend for targets ≥4.5 mm. Similarly,
when the light beam diameter is further decreased to 1 mm, the
theory shows more of a deviation from the ideal result. The
data points in Fig. 13 show our experimental measurements
for comparison with theoretical predictions. The experimental
measurements generally follow the predicted trends.

Fig. 13. Theoretical FWHM measurements of SLSC lateral profiles as a
function of target diameter for three illuminating beam profiles (light sheet,
1-, and 5-mm diameter Gaussian beams). These theoretical predictions
in the presence of noise are compared with India ink experimental data
acquired with the fiber bundle (×) and the optical fiber (o). The ideal
1:1 relationship is shown as a dashed line. SLSC lateral profiles were
computed with M = 11� of the aperture.

Fig. 14. Lateral resolution calculated with theoretical, k-Wave, and exper-
imental point target data sets as a function of M, which is represented as
a percentage of the receive aperture.

F. Optimal M Value for Photoacoustic SLSC Images

The optimal choice for the number of lags summed to create
SLSC images (i.e., M) is known to be correlated with the
photoacoustic image lateral resolution (as shown in Fig. 11).
To quantify this resolution, Fig. 14 shows the mean FWHM of
SLSC lateral profiles of theoretical, k-Wave, and experimental
point targets as a function of M with ± one standard deviation
of the mean shown as shaded error bars. A 5-mm Gaussian
fluence profile was used for theoretical simulations, and the
5-mm diameter fiber bundle was used as the experimental
light source. Lateral resolution generally decays as a function
of the M value used to create the SLSC images. As noted
in Section IV-C, because coherence functions are a function
of spatial frequency, they encode higher frequency content at
higher M values resulting in SLSC images created with higher
M values having improved target boundary delineation and
resolution.
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In Fig. 14, the mean lateral resolution measured with the-
oretical and experimental data overlap when M ≥ 31%, and
the best mean lateral resolution measurements were 0.6 mm
for both theoretical and experimental data, which occurred
when M ≥ 35% of the aperture. Consistent with the results
in Fig. 10, the best resolution was generally achieved with
k-Wave simulations, which is true regardless of the M value,
although the reason for this lower resolution with k-Wave
results is unclear. The fundamental reason for the theoretical
deviation from experimental results in the short-lag region
is also unclear. However, when comparing mean theoretical
results to mean experimental and k-Wave results, these devi-
ations were ≤1.1 and ≤1.9 mm, respectively. Despite these
differences across the three data sets, there is a general trend
of higher M values providing the best lateral resolution within
each data set, which is consistent with previous results [14].

The contrast of photoacoustic SLSC images was previously
shown to be relatively constant as a function of M (albeit with
a large standard deviation of measurements from multiple laser
firings to image the same target) [14], [32]. However, lateral
profiles from images of point targets (see Fig. 11) indicate that
the optimal choice of M may depend on target size, as the
smaller point target benefits from higher M values to improve
target contrast. This dependence is also shown in our previous
publication for multiple simulated noise levels [32].

Fig. 15 shows contrast as a function of target diameter
for four M values (expressed as a percentage of the receive
aperture) in order to compare theoretical simulations relating
SLSC image contrast, M , and target size with the experimental
data. Theoretical predictions using a 5-mm Gaussian fluence
profile are shown with solid lines, which represents the mean
contrast of simulations with SNRp values ranging 20 dB
to 40 dB. Experimental results obtained with a 5-mm fiber
bundle as a light source are shown as the data points with
the same colors as the corresponding theoretical predictions.
The 1.3-mm target achieves higher contrast at M = 11%
compared with its contrast at M = 4% and M = 8%. This
difference is less apparent for the 4-mm diameter target.
Discrepancies between the contrast predictions and the experi-
mental results in Fig. 15 likely exist because the specific noise
and absorber characteristics needed to match experimental data
are unknown. Despite this discrepancy, the overall trends (i.e.,
higher contrast with smaller targets and larger M values) are
generally consistent across either theoretical or experimental
data. Thus, the presented theory can be used to predict the
optimal choice of M values based on target size, light profile
diameter, and desired resolution. In general, smaller targets
can be imaged with larger M values in order to boost target
contrast and resolution.

V. DISCUSSION

This work is the first to present a complete photoacoustic
spatial coherence theory for point targets and moderately dense
optical absorber distributions. We developed and validated our
theory with experimental and k-Wave data and then explored
applications of this theory to optimize photoacoustic SLSC
image contrast and resolution. Due to the lower accuracy

Fig. 15. Theoretical measurements of contrast in SLSC images as a
function of target diameter for four M values (2%, 4%, 8%, and 11% of
the receive aperture). These theoretical predictions in the presence of
noise are compared with experimental data of SLSC images displayed
with the same four M values (×, o, ∗, and △, respectively).

of theory-based simulations in the long-lag region than the
short-lag region, as shown in Fig. 9, we propose the use of
this theoretical method primarily for predictions within the
short-lag region of the acoustic receiver aperture.

The inclusion of both k-Wave and experimental data in our
analyses was critical to the validation of our theoretical models
for five reasons. First, the controlled phantom experiment
with varied illuminating beam diameters and target diameters
enabled us to gain insights into the effects of these variables
on SLSC image quality, as described in Sections IV-D–IV-F.
Second, including k-Wave data enabled us to compare the-
oretical simulation results to an existing simulation method
for studying coherence-based beamformers for photoacoustics.
Third, support for our theoretical approach was achieved by
showing that we can arrive at similar conclusions with k-Wave
simulations (e.g., for the short-lag region of spatial coherence
functions in Figs. 7 and 8 and for SLSC lateral profiles in
Figs. 10 and 11), particularly in cases where we suffered
from experiment-related artifacts (such as reverberations from
tubing in Fig. 5 or the large amplitude differences within the
in vivo target, which required normalization of the associated
line profiles in Fig. 11). Fourth, the similarities achieved
with k-Wave data in cases where experimental similarity was
not completely achieved (see Fig. 5) enabled us to confirm
that our theoretical derivation is a viable method to study
photoacoustic spatial coherence. Fifth, the inclusion of in vivo

data enabled us to introduce more complexity than capable
with our phantom setup (e.g., optical scattering, acoustic scat-
tering, absorbers, and noise sources of clinical interest) without
including confounding effects from experimental tubing. This
inclusion of in vivo data also enabled us to determine if our
major conclusions would be altered for this more realistic
surgical scenario. Although there were some differences (such
as in the appearance of the final SLSC images in Figs. 5 and
10), these differences did not affect the theory-based insights
provided in Sections IV-D–IV-F.
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Based on these insights, we conclude that there are two
primary advantages of this photoacoustic spatial coherence
theory. First, with the introduction of this theory, experiments
are no longer necessary to explore how light profile designs
will affect SLSC image contrast and resolution. A summary
of the various effects that are supported by this theory include
observations that SLSC image contrast can be improved by
limiting the size of the illumination beam, the lateral width
of the illumination beam limits visualization of the full lateral
extent of target sizes larger than the illumination beam, and
smaller targets can be imaged with higher M values to improve
target contrast and resolution.

The second advantage is that our theory-based method
is a more direct route to create SLSC simulation images
without requiring simulations of channel data received by the
acoustic aperture. Based on (25) and with the consideration
that λ is related to temporal frequency, m is related to
spatial frequency, and integration is a linear filter, the SLSC
image pixel can be interpreted as a joint spatial and temporal
frequency filter applied to a scaled, noisy version of the square
of the traditional initial pressure distribution expression in
photoacoustic imaging. Using this implementation, our theory-
based methods combine the simulations of a light profile and
associated pressure distribution in one straightforward step.
Implementation of this theory does not require Monte Carlo
simulations to model the light profile incident on the target and
the associated fluence distribution within the target in order
to create a custom initial pressure distribution based on the
incident light profile [48].

The presented theory was derived for a moderately dense
distribution of absorbers, which enabled an analogous math-
ematical representation to the VCZ theorem applied to
pulse-echo measurements [41]. This mathematical relationship
can be considered as the VCZ theorem applied to photoa-
coustic imaging of moderately dense absorber distributions,
and it appropriately explains the inverse relationship between
target size and coherence length, which ultimately affects
SLSC image contrast as a function of the number of lags
summed. Thus, based on this theory, it is evident that larger
targets, which produce shorter coherence lengths, will have
the best contrast when SLSC images are created with lower
M values.

Similarly, there is an inverse relationship between the lateral
width of the light profile and the coherence length, which
explains why limiting the size of an illumination beam will
provide higher-contrast SLSC images of targets that are larger
than the beam profile. This light profile adjustment is one
potential method to compensate for our inability to control
target sizes in most imaging cases of interest (e.g., in vivo

imaging) in order to produce optimal-contrast SLSC images.
Alternatively, this theory also supports an adaptive

pixel-wise approach to choosing the optimal M value, which
may be based on known regional target sizes and illumination
profiles. For example, in photoacoustic-guided surgery, locally
changing the M value with the known position of a tool tip has
the potential to optimize visualization of the tool tip relative
to larger anatomical structures [6]–[9]. An additional perspec-
tive is to potentially utilize the measured spatial coherence

properties to predict target sizes based on the presented theory,
which will be the focus of future work.

While it was previously shown that large targets containing
a higher density of individual absorbers produce photoacoustic
images with strong boundary contrast and minimal signal
inside the target [34], [35], this representation is not shown
in our theoretical and k-Wave simulation images because the
associated data sets are based on a moderately dense distri-
bution of absorbers. In this moderately dense case, boundary
signals do not dominate interior speckle, and the entire target
can be visualized with similar intensity throughout the target
interior, as demonstrated with India ink in a 8-mm diameter
tube (see Fig. 5) and with the 12-mm-diameter in vivo blood
vessel (see Fig. 10). These examples demonstrate that photoa-
coustic targets of interest can realistically contain a moderately
dense distribution of absorbers and will not always produce
signals only at the target boundaries.

As indicated by theory and confirmed with experimental
measurements, there is a tradeoff between target contrast and
target boundary detection when optimizing the fluence profile
incident on the target (see Figs. 12 and 13, respectively, which
shows better contrast with smaller optical beam widths and
better FWHM measurements with larger optical beam widths).
This tradeoff can be resolved by raster scanning a narrow
light beam and combining resulting images to improve both
SLSC contrast and resolution. There is also a limit to the
narrowness of the light profile based on laser safety limits
and the incident laser fluence (which is inversely proportional
to the diameter of the incident light profile). As noted earlier,
the presented theoretical expressions are advantageous as they
provide a new method to explore these potential tradeoffs prior
to conducting experiments. One example of an application that
will benefit from this exploration of tradeoffs is the design of
specialized light delivery systems that attach to surgical tools,
where there is a wide range of possible configurations that are
more efficient to test in silico compared with designing and
building prototypes for experimental testing [7], [49], [50].

VI. CONCLUSION

This manuscript describes a theoretical photoacoustic spatial
coherence framework that generally agrees with the exper-
imental data from target sizes spanning point targets to a
12-mm diameter in vivo target. The proposed theory and
associated theory-based simulation methods offer benefits over
previously available methods, including the ability to predict
SLSC image contrast, lateral resolution, and lateral FWHM
values based on target size and the incident light beam profile.
In addition, this theory provides insights into optimizing
photoacoustic SLSC image display based on light profile
width, contrast, and resolution measurements. This theory also
establishes a foundation for future explorations to optimize
other coherence-based photoacoustic techniques.
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