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Abstract  

Ferrous iron(II) hexacyanide in aqueous solutions is known to undergo photoionization and 

photoaquation reactions depending on the excitation wavelength. To investigate this wavelength 

dependence, we implemented ultrafast two3dimensional UV transient absorption spectroscopy, 

covering a range from 280 to 370 nm in both excitation and probing, along with UV pump/visible 

probe or time3resolved infrared (TRIR) transient absorption spectroscopy and density functional theory 

(DFT) calculations. As far as photoaquation is concerned, we find that excitation of the molecule leads 

to ultrafast intramolecular relaxation to the lowest triplet state of the [Fe(CN)6]
43 complex, followed by 

its dissociation into CN3 and [Fe(CN)5]
33 fragments and partial geminate recombination, all within <0.5 

ps. The subsequent time evolution is associated with the [Fe(CN)5]
33 fragment going from a triplet 

square pyramidal geometry, to the lowest triplet trigonal bipyramidal state in 334 ps. This is the 

precursor to aquation, which occurs in ~20 ps in H2O and D2O solutions, forming the 

[Fe(CN)5(H2O/D2O)]33 species, although some aquation also occurs during the 334 ps time scale. The 

aquated complex is observed to be stable up to the microsecond timescale. For excitation below 310 

nm, the dominant channel is photooxidation with a minor aquation channel. The photoaquation reaction 

shows no excitation wavelength dependence up to 310 nm, i.e. it reflects a Kasha Rule behaviour. In 

contrast, the photooxidation yield increases with decreasing excitation wavelength. The various 

intermediates that appear in the TRIR experiments are identified with the help of DFT calculations. 

These results provide a clear example of the energy dependence of various reactive pathways and of the 

role of spin3states in the reactivity of metal complexes. 
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Introduction  

Most of natural and preparative (bio)chemistry occurs in the liquid phase. The solvent molecules 

are by no means spectators as they affect the outcome of the reactions in different ways, either 

dynamically by influencing the course of the reaction, e.g. hindering it as in the so3called cage effect,1 

or by accelerating it, offering a driving force to the escape of fragments into the solvents;2,3 and/or 

statically by introducing relative energy shifts of the reactive potential surfaces on which the reactions 

(including photochemical ones) occur, according to the nature (covalent, charge transfer or, even 

Rydberg) of the states involved.4 For many years now, since the historical work by Frank and 

Rabinowitsch,1 the physical effects of the solvent cage on photochemical reactions have intensely been 

studied by steady3state,436 and time3resolved methods2,3,638on a wide class of systems. Less studied are 

the chemical pathways of the solution phase where intermediates react with solvent species, as 

discussed in a recent review.3 The complexity of such processes arises from the fact that either the 

excited solute or a nascent product sees a complex potential surface in its interaction with solvent 

molecules, which no longer just provide a barrier or a funnel to it, but participate in the chemical 

reaction depending on several aspects such as the nature of the reactants, their translational kinetic 

energy, their internal (electronic, vibrational, rotational) energy, their orientation, etc.  

In attempting to describe liquid phase photochemistry, fundamental questions arise, which 

concern: a) the role of the initially excited state, b) the interplay between intramolecular relaxation 

(electronic or vibrational) in the solute/intermediates and the subsequent reactivity with solvent 

molecules; c) the role of spin states of both educts and products; d) the role of the excess energy 

dependence of the photochemical reactions. While a larger excess of kinetic energy of the fragments 

allows overcoming “physical” solvent cage barriers,5,9 the question remains open for the case of 

chemical reactions. 

In addressing these questions, ligand substitution reactions and redox decomposition processes 

of metal complexes have been the topic of several mechanistic studies in coordination chemistry 

because of the fundamental role these reactions play in various chemical, biological and catalytic 

Page 3 of 38

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

08.05.2017  4 

 

processes.10,11 In such systems, ultrafast intramolecular energy relaxation processes, such as internal 

conversion (IC), intersystem crossings (ISC) and intramolecular vibrational energy redistribution (IVR) 

in the solute may precede the reaction or be concurrent to it. These processes may also occur in the 

products if these are formed in excited states. In addition, intermolecular processes such as solvation 

dynamics, may take place concurrently with the above intramolecular ones,2 and the spin multiplicity 

plays a crucial role in the reactions leading to ligand substitution.12  

Metal carbonyls have been among the most studied systems, probably because they offer the 

possibility to compare the photochemistry of the isolated molecule with that in condensed phases. 

Studies of the latter include UV photolysis in low temperature inert matrices,13 and several ultrafast 

spectroscopic studies in solution using transient absorption (TA) in the visible,14319 and in the 

infrared.20324 More recently, ultrafast studies on the photochemistry of Fe(CO)5 in solution have been 

pushed into the x3ray domain and an Fe K3edge x3ray absorption study was reported by Rose3Petruck 

and co3workers,25 while  Wernet et al.
26,27 implemented femtosecond Fe L33edge resonant inelastic x3

ray scattering (RIXS) at the x3ray Free Electron laser in Stanford. RIXS is a variant of x3ray emission 

spectroscopy and is a sensitive probe of the spin state of molecular systems. The studies on the photo3

induced dynamics of Fe(CO)5 in EtOH suggest formation of the 1[Fe(CO)4(EtOH)] complex, and the 

role of the spin state of the Fe(CO)4 product is still debated. Wernet et al.26 reported a singlet 

complexation on sub3picosecond time scales, which was ascribed to a barrier3less bimolecular reaction 

where steric effects such as ethanol reorientation and concomitant hydrogen3bond breaking are absent 

or can easily be overcome.27 This fast photosubstitution is in line with reports of CO3ligand substitution 

of [Cr(CO)4(bpy)] by solvent molecules,28332 from a vibrationally "hot" excited state, alongside 

relaxation into two lower3lying unreactive states. In this case, dependence on excess energy was 

observed as the quantum yield of the reaction increased with excitation energy. It was argued that 

vibrational excitation provides sufficient distortion of the reacting molecule in the direction of the 

transition state whose structure was described as being similar to that of the undissociated excited 

molecule.  
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Photoaquation is a particular case of the broader class of ligand substitution reactions in 

solutions and its understanding is particularly relevant to biology.33 It was recently studied in the case 

of cis3[Ru(bpy)2(CH3CN)2]Cl2 in water, showing the stepwise replacement of each CH3CN ligand by an 

H2O molecule,34 with the formation of the monoaqua cis3[Ru(bpy)2(CH3CN)(H2O)]2+ taking place in 

<100 ps. Some of the earliest examples of studies on photoaquation concern metal cyanide systems,35338 

such as the [FeII(CN)6]
43 ion, whose absorption spectrum is shown in Figure 1. The peculiarity of this 

system stems from the fact that it is a highly charged ion that has a strong interaction with the 

solvent.39,40 Both oxidation (Equation 1) and aquation (Equation 2) processes have been reported upon 

irradiation in the UV3visible range41,42: 

 

[Fe�CN�6]43* → [Fe�CN�6]33 + ���
3       (1) 

 

[Fe�CN�6]43* + H2O → [Fe�CN�5(H2O)]33
+ CN3    (2) 

 

With the advent of ultrafast laser techniques, detailed femto3 and picosecond TA studies of the 

photooxidation reaction (Equation 1) have been performed.43346 It is generally believed that this reaction 

is a consequence of direct or indirect population of the Charge3Transfer3to3Solvent (CTTS) state 

(Figure 1).41 A tentative assignment of the very short3lived (<< 60 fs) CTTS3state, absorbing around 

490 nm upon 267 nm excitation was made by ultrafast transient absorption (TA),44 but it was assumed 

that the initially populated 1T2g3state relaxes into the CTTS state and therefore, the authors could not 

unambiguously distinguish between these two states. Ultrafast fluorescence up3conversion also failed to 

detect the CTTS state of [Fe(CN)6]
43,47 contrary to the case of aqueous iodide.48 
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Figure 1. Extinction coefficients of solvated [Fe(CN)6]
43 (black line) and [Fe(CN)6]

33 (red line) in water. The vertical dashed lines show 

the energies of relevant excited states of [Fe(CN)6]
43 in water. The inset shows magnified spectra, highlighting the lower3intensity 

transitions. 

 

Anderson et al.45 investigated the ionization process upon 266 nm excitation using time3resolved 

infrared (TRIR) spectroscopy. Their transient spectra in the ν(CN) region in D2O, show a significant 

baseline offset, which they attributed to a direct precursor of the pre3solvated electron generated by 

excitation of the CTTS state. Furthermore, they observed a short3lived absorption peak red3shifted by 

ca. 2 cm31 from the parent ion (at 2038 cm31) as well as a band at 2114 cm31 due to the photoionized 

product [Fe(CN)6]
33. The appearance of the latter at the earliest time delays indicates electron3ejection 

in less than 200 fs.45  

The photoaquation reaction (Equation 2) is less well understood. It is triggered by excitation of 

weak Laporte3forbidden ligand3field (LF or metal3centered) states (ε ≲ 400 M31∙cm31) for λ > 300 nm49 

or, with a lower yield, in the ∼245 3 300 nm range, where the CTTS and LF bands overlap (Figure 1). 

Using flash photolysis, Shirom and Stein42 identified the photoaquated species via an absorption band 

in the 3803480 nm region which they attributed to the 1
A1 →

1
E(1)50 transition of the [Fe(CN)5(H2O)]33 
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complex, and concluded that it is formed within one nanosecond. Quantum yields for aquation (φaq) 

were found to depend on the excitation wavelength, pH and on concentration35,51 and the extracted 

values have large uncertainties. In 10 mM neutral solutions, φaq ∼0.2 was reported for 313 nm and 365 

nm excitation and ∼0.1 for 254 nm excitation, indicating that an increasing energy decreases φaq and 

pointing to another competing relaxation channel at higher energies,41 which is most likely the 

photooxidation channel. 

Recently, Reinhard et al. reported an X3ray aborption spectroscopy (XAS) study with 70 ps time 

resolution of aqueous ferric and ferrous hexacyanide under 355 nm and 266 nm excitation, combined 

with quantum chemical calculations.47 In the case of the ferrous complex upon 355 nm excitation, they 

identified the aquated [Fe(CN)5(H2O)]3− species, confirming the conclusions of optical studies,42 and 

determined its molecular structure. Upon 266 nm excitation, the main photoproduct was the ferric 

hexacyanide complex. The limited time resolution of their experiment did not allow for the time scale 

of photoaquation and therefore, its mechanism to be determined.  

It is indeed unclear if photoaquation of [Fe(CN)6]
43 starts by dissociation of a CN3ligand followed 

by binding of a solvent molecule or if the process is concerted. In either case, the next question is 

whether dissociation starts from the lowest lying singlet 1T1g state or the system undergoes fast ISC to 

the 3T1g or even the 5T2g state, which was theoretically predicted52 but never identified. By measuring 

small but positive activation volumes of the ferrocyanide photoaquation reaction, Finston and 

Drickamer53 excluded a purely associative mechanism, which would involve an intermediate with bond 

formation between the complex and the solvent molecule. They argued that photoaquation is likely to 

proceed via a dissociative interchange pathway in which ligand3to3metal bond breaking and solvent3to3

metal bond formation are concerted. This seems consistent with density functional theory (DFT) 

calculations,52 which estimated the ground state dissociation energy to 6.2 eV per Fe3CN bond, while 

photoaquation already occurs for 3.4 eV excitation into the 1T1g state. However, these calculations 

concern the isolated molecule, excluding solvent effects, which may strongly affect the energetics of 

the system. Indeed, an association mechanism may be compatible with recent x3ray40 and IR39,54 
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studies, hinting to a specific interaction between the solute and water molecules in the ground state of 

the complex. 

The occurrence of excitation energy dependent reaction channels (oxidation, aquation) in the 

photochemistry of [Fe(CN)6]
43 and the fact that it is a highly charged educt make it an ideal system for 

the description of solution phase ultrafast chemical dynamics. We recently demonstrated the power of 

ultrafast 23dimensional (2D) ultraviolet (UV) transient absorption (TA) spectroscopy,55357 to disentangle 

concurrent excitation energy–dependent relaxation channels in biological and chemical systems. Here, 

we combine it with ultrafast UV pump/visible continuum probe and UV pump/IR continuum probe58 

TA spectroscopy to disentangle the excitation wavelength dependence of the processes described by 

Equations 1 and 2 in aqueous [Fe(CN)6]
43.41,42 The present combination of techniques allows an 

unambiguous assignment of the photoproducts and of their time scales of formation for excitation 

wavelengths below and above 310 nm in H2O and D2O and over the time range from <1 ps to 100 µs. 

Finally, DFT calculations have been carried out to simulate the geometries and vibrational frequencies 

of [Fe(CN)6]
43 and of some of its predicted photoproducts, both in vacuo and in solution. The results 

suggest that following photoexcitation, the system relaxes to the lowest triplet state from which 

dissociation occurs, leading to the formation of a triplet [Fe(CN)5]
33 complex. The latter undergoes 

conformational changes predominantly prior to binding of a water molecule. Further details about the 

experimental and computational set3ups and procedures as well as the data treatment are given in the 

supporting information (SI). 

 

Experimental  

Time3resolved Infrared (TRIR) spectroscopy 

TRIR spectroscopy was carried out using the ULTRA facility located at the Rutherford Appleton 

Laboratory, using time resolved multiple probe spectroscopy (TRMPS) on the ULTRA and LIFEtime 

instruments. Detailed descriptions of the experimental setups have been published previously.58,59  
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Briefly, the TRMPS experiment utilizes a pump3probe3probe3probe… recording scheme afforded by 

synchronizing two oscillators with the pump laser tuned to 320 or 266 nm by optical parametric 

amplification (OPA) while the mid3IR probe is generated using OPAs with difference3frequency 

mixing units. The pump3probe time delay is controlled using a combination of electronic and optical 

delays, which allows time3delays from ps to ms to be achieved in a single experiment. The instrument 

response (τIRF,IR) is approximately 300 to 400 fs. The pump pulse was set to ca. 1 µJ/pulse at the sample 

using a neutral density filter. Pump and probe beam polarizations were set at the magic angle. Where 

necessary a portion of the probe beam was dispersed onto an MCT detector as a reference, while the 

remainder was passed through the sample, dispersed by grating monochromators and detected by 1283

channel linear MCT array detectors. [Fe(CN)6]
43 samples were measured in unbuffered H2O and D2O 

(18 mM) and were circulated in a closed flow system attached to a Harrick solution cell with CaF2 

windows, spaced by 100 ^m with Teflon spacers. The sample cells were rastered in the two dimensions 

orthogonal to the direction of beam propagation in order to minimize sample breakdown and localized 

heating. The spectral resolution is ca. 1.5 cm31. 

Two3dimensional Ultraviolet (2D3UV) spectroscopy: 

A detailed description of the set3up was recently published.55357 Laser pulses from a cryogenically 

cooled Ti:Sapphire amplifier (Wyvern, KM Labs) running at 20 kHz, pump a non3collinear optical 

parametric amplifier (NOPA, TOPAS white, Light Conversion) whose output serves as primary light 

source of the experiment. One third of the generated visible light passes a motorized delay line and 

subsequently an achromatic frequency doubling stage, which delivers broad band UV probe pulses in 

the 270 3 360 nm range. After the sample, probe pulses are dispersed by a fiber coupled spectrograph 

and detected on a shot3to3shot basis with a CMOS linear image array. The remaining two thirds of the 

NOPA output are directed through a chopper which is phase3locked to half the repetition rate of the 

laser system (10 kHz) and passes a motorized BBO3crystal whose angle is adjustable with respect to 
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the incident beam in order to allow for a frequency tunable narrow3band pump beam without 

significantly changing the spatial overlap with the probe beam. Polarizations of pump and probe beams 

were parallel and at all pump wavelengths used, fluences were 0.6 mJ/cm
2.  

Samples of 30 mM [Fe(CN)6]
43 in unbuffered aqueous solution (deionized H2O) were prepared 

from purchased potassium ferrocyanide (K4Fe(CN)6·3H2O, Sigma Aldrich) and measured in a 100 µm 

liquid jet. Pure solvent scans did not yield any signals apart from cross3phase modulation (CPM), 

whose width we use to estimate the instrumental response function of τIRF,UV ≈ 150 fs. However the 

relatively small sample signals may be distorted up to ca. 300 fs and we refrain from interpreting data 

at shorter delays. 

UV3pump/visible3probe experiments  

To complement the 2D UV transient absorption studies, we also carried out UV pump/visible 

probe measurements of aqueous [Fe(CN)6]
43 with a white light continuum probe in the 380 3 480 nm 

region generated from a small portion of the 800 nm fundamental. The TOPAS white output and 

motorized BBO3crystal rotation were optimized for efficient pumping at 323 nm with ca. 1.3 mJ/cm
2. 

The number of detector counts is significantly lower in the visible probe region and due to noise 

limitations in this case, we used a 500 µm flow cell instead of the thinner liquid jet used in the 2D UV 

experiment. The larger thickness was chosen in order to minimize the accumulation of photoproducts at 

the cell windows. In addition, during the measurements, the cell was regularly moved within the spatial 

pump3probe overlap region, ensuring the integrity of the accumulated signal scans during the 

measurements. In order to maintain an optical density of ∼ 0.3 a sample concentration of 0.02 M was 

chosen. The relatively large sample thickness increases the instrument response function from ∼ 150 fs 
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in the UV3probe experiments to τIRF,visible ∼ 690 fs in the visible3probe experiments as determined from 

the cross3phase modulation (CPM) on pure water solutions. Further support for this decrease in time3

resolution at earlier times stems from measurements of PPO in cyclohexane where we measured a 

comparable τIRF,visible even though the signal rise time is known to be much faster than 150 fs. Pump and 

probe polarizations were at magic angle. 

 

Results 

The photochemistry [Fe(CN)6]
43 in aqueous solutions had previously been reported41,42 for only a 

few fixed excitation wavelengths. In addition, the ultrafast visible44 and IR45 studies carried out so far 

only considered excitation into the CTTS states of [Fe(CN)6]
43 at 266 nm (Figure 1 and Equation 1). 

Here we complement these studies by covering the excitation range from 280 to 330 nm, using two3

dimensional UV transient absorption spectroscopy in H2O and we focus on specific excitation 

wavelengths using TRIR in H2O and D2O. Given the scarcity of ultrafast studies, it is important to 

benchmark our TRIR experiments against those previously reported under 266 nm excitation.45 

TRIR spectra of [Fe(CN)6]
43 in H2O and D2O, at fixed time delays following excitation at a pump 

wavelength (λpump) of 266 nm are shown in Figures S1 and S2. There is a significant baseline offset at 

early times, in agreement with previous studies that assigned the change in the baseline to the precursor 

of the pre3solvated electron.45 The parent band (2038 cm31) is bleached and a new transient peak at 

2117 cm31 is visible within ~1 ps, with the earlier times obscured by the baseline offset mentioned 

above. The band at 2117 cm31 is due to formation of the ferricyanide ion, [Fe(CN)6]
33, consistent with 

ref. 45. The kinetic traces of significant bands for the sample in H2O are shown in Figure S3 and are 

similar in the case of D2O. There is a partial recovery of the parent with a concomitant partial decrease 

of the intensity of the 2117 cm31 band observed on the nanosecond timescale, fully consistent with the 

partial recombination of the solvated electron with [Fe(CN)6]
33.46 The [Fe(CN)6]

33 band then persists up 

to the longest time delays in our experiment (Figure S2). At early times (Figure S3(a)), an apparent 
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partial recovery of the parent bleach band at 2038 cm31 occurs on a time scale of τ = 20 ± 5 ps. The 

band frequencies and their timescales are summarized in Table 1. A band is also observed at ~2088 cm3

1 at early times, whose decay seems to be independent to the [Fe(CN)6]
33 band at 2117 cm31. We will 

come back to it later. In order to disentangle contributions from different photochemical channels we 

now turn to 2D UV TA spectroscopy.  

Figure 2 shows the 2D UV TA spectra (dA) of aqueous [Fe(CN)6]
43 as a function of pump (λpump) 

and probe (λprobe) wavelengths at selected delays (dt = 0.5, 1, 4 and 50 ps). After 50 ps, there is only 

little change in the observed transient signals, which remain stable up to the limit of our temporal 

window (~780 ps). Two main trends characterize the time and spectral evolution of the system as a 

function of λpump: one below ~310 nm, and the other above. There is a clear dependence of the 

appearance of spectral features on λpump. Upon excitation into the CTTS region (ca. 290 nm), the 

transient ground state [Fe(CN)6]
33 absorption bands can be identified, resulting from photooxidation 

(dashed red line in 50 ps window). The [Fe(CN)6]
33 band is formed within our time resolution (~150 fs) 

and partially decays due to recombination with the photoejected electrons.  

At lower energy, in the region of the 1T1g absorption (blue line in Figure 2), a < 1 ps3lived 

positive signal appears, which is most pronounced in the highest3energy part of the probe range (< 280 

nm). At λprobe < 340 nm, this signal decays and becomes negative such that by ~50 ps, it resembles the 

inverted static [Fe(CN)6]
43 absorption spectrum (Figure 2, 50 ps window, red line), reflecting a long3

lived ground state bleach. At λprobe > 340 nm, the signal remains positive, indicating a long3lived 

absorption band. Therefore, direct excitation of the 1T1g state yields long3lived species, which is (are) 

not explained in terms of a photooxidized product, [Fe(CN)6]
33. In the following, we will mainly focus 

on results obtained at λpump = 284 nm and λprobe = 320 nm, which are representative of the processes 

described by Equations 1 and 2 above.  
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Figure 2. Pump intensity corrected 2D spectra of aqueous [Fe(CN)6]

43 as a function of pump (horizontal axis) and probe (vertical left axis) 

wavelength. The extinction coefficient (in M−1·cm−1) of [Fe(CN)6]
43 vs. pump wavelength is represented by the blue line (left vertical 

axis) in the leftmost panel and vs. probe wavelength by the solid red line (horizontal upper axis) in the rightmost panel. The extinction 

coefficient of [Fe(CN)6]
33 is shown by the dashed red line. CTTS and 1T1g regions of the [Fe(CN)6]

43 extinction coefficient are indicated. 

 

As discussed before, previous time3resolved optical and x3ray studies,41,42,45,47 showed that 

photoaquation is the favored process after 1T1g excitation (320 nm), while the signal upon <300 nm 

excitation is predominantly due to photooxidation. Figures 3(a) and (c) compare the transient spectra at 

284 nm and 320 nm excitation, at different integrated pump3probe delay windows. Relatively large 

temporal integration ranges are chosen for enhanced clarity but all conclusions are confirmed by 

averages over smaller ranges (Figures S4 and S5). Both figures show a dominant absorption in the blue 

most part (<300 nm) of the probe range, which quickly disappears (within 132 ps), leaving the transient 

with a profile that does not evolve much thereafter. In Figure 3(a), the transients at later times are 

dominated by the broad absorption (from about 285 to 355 nm) of the 2T2g → 2T2u (t2uπ → t2gπ) ligand 

to metal charge transfer (LMCT) band of [Fe(CN)6]
33 and the solvated electron (as demonstrated 

Page 13 of 38

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

08.05.2017  14 

 

below).46 In Figure 3(c), the transients show weak negative (bleach) and positive signals, which we 

discuss hereafter. 

The solvated electron is characterized by an extinction coefficient that is much larger than that of 

all other photoproducts as can be seen in Figure S6. This induces a significant offset of the signals at all 

time delays. In order to identify the spectral features in Figures 3(a) and (c), the extinction coefficients 

(ε) of the expected photoproducts were used to simulate the final transient spectra. For the transient 

obtained under 284 nm excitation, the extinction coefficient is calculated as �284	nm = 	8 ∙ 10�� ∙

��[Fe�CN�6�
�� + ����� − �[Fe�CN�6�

���. The coefficients �[Fe�CN�6�
�� , �[Fe�CN�6�

��  and �����  are known from 

the literature60 (Figure S6). The resulting �284	nm is shown as a black dashed line in Figure 3(a) and it 

overall agrees with the transient spectrum at the longest time delays (purple trace) despite some 

deviations between 295 and 330 nm.  

In the case of 320 nm excitation, the most likely final product is the aquated species. We 

therefore calculate �320	nm  = 8 ∙ 10�� ∙ ��[Fe�CN�5(H2O)��� − �[Fe�CN�6�
��� , where the value of 

�
[Fe�CN�6(H2O)�33  is taken from literature.61,62 The result is shown as a black dashed line in Figure 3(c) and 

it nicely reproduces the shape of the longest time delay transient, confirming the presence of the 

photoaquated species [Fe(CN)5(H2O)]33. The rising signal in the low energy part of the spectrum 

therefore likely reflects the tail of the 1A1 → 1E(1) absorption band of [Fe(CN)5(H2O)]33,42 which is 

centered around 440 nm in the static absorption spectrum.  

This is confirmed by probing at lower energies, in the 380 – 480 nm region, and Figure 4(a) 

shows the TA spectra in this region, averaged over different temporal windows. Absorption features 

appear within ~ 0.7 ps with maxima at ~ 400 nm and > 470 nm. After a fast initial decay, further 

evolution of the transient occurs with minor changes around 410 nm. At times > 15 ps, the TA 

spectrum (dark blue and purple traces) converges to the static difference spectrum of the 

[Fe(CN)5(H2O)]33 (1
A1 → 1E(1) transition) and [Fe(CN)6]

43 absorption (�320	nm, black dashed trace). 
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Figure 3. Averaged transient spectra and kinetic traces of aqueous [Fe(CN)6]

43 excited at (a,b) 284 nm and (c,d) 320 nm. The dashed black 

line in (a) corresponds to ε284 nm and the dashed line in (c) corresponds to ε320 nm, as defined in the text. Kinetic traces and fits with 

timescales (Table 1) derived from the full 33dimensional dataset are shown in (b) and (d). 
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Figure 4. Visible probe transients following 323 nm excitation of aqueous [Fe(CN)6]
43. (a) Averaged spectra in the vicinity of the 1A1 

→1E(1) absorption band of the aquated species. The dashed black line is the modelled static absorption difference of the [Fe(CN)5(H2O)]33 

and [Fe(CN)6]
43 species (0.1·ɛ� !, see Figure 3) (b) Smoothed kinetic traces and fits with fixed timescales derived from the UV dataset 

(Table 1).  

 

In order to gain a quantitative understanding of the 2D UV data, a global fit (GF) was carried 

out. Four exponential timescales are required in the photoaquation regime (320 nm excitation, see 

below). For both 284 nm and 320 nm excitation, transient spectra at ~ 50 ps delay still show small 

changes (Figures 3, S4 and S5), presumably due to slow, non3exponential recombination kinetics of the 

corresponding photochemical species, these changes are not properly captured by our multiexponential 

kinetic model. Therefore, the inclusion of an additional timescale is avoided in favor of a more stable 

fit model. This strategy and the extracted time constants are fully confirmed by the IR results presented 
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below. Fitting the initial decay requires two exponential timescales (τ1 = 0.5 ps, τ2 = 4 ps).§  An 

additional time constant of ~16 ps (τ3) is needed to capture the intermediate times. Representative 

kinetic traces for 284 nm and 320 nm excitation are shown in Figures 3(b) and 3(d) together with their 

fits. The time constant for the longest process obtained from the GF of the 2D UV dataset is τ4 ~ 7 ns 

(τ4) but this value should be considered as an order of magnitude due to the limited range of the data 

set. The fitted time constants are summarized in Table 1. 

To disentangle the spectral components making up the full 2D UV data set, we also applied a 

singular value decomposition (SVD) as described in refs 57,63 and in § S4. The SVD analysis of the 2D 

UV data set yields 2D Decay Associated Dispersed Action Spectra (DADAS)57 associated with the four 

decay constants (τ1 = 0.5 ± 0.1 ps, τ2 = 4 ± 2 ps, τ3 = 16 ± 3 ps, τ4 ~ 7 ns). All spectra are subsequently 

corrected for the photolysis yield (§ S2) in order to obtain signal magnitudes, which are directly 

comparable with quantum yields. The extracted four DADAS are plotted in Figure S7 and their detailed 

description is given in § S4.2. The consistency of the extracted parameters is confirmed by a fit of the 

kinetic traces integrated over the spectral regions 380 – 410 nm and 410 – 470 nm. The choice of these 

regions is justified by the spectral evolution shown in Figure 4(a). Assuming that the above four 

timescales of the UV3probe experiment also occur in the visible3probe region, we obtain a satisfactory 

fit of the kinetics, notwithstanding the poor signal3to3noise ratio (Figure 4(b)). Since the visible probe 

measurements were limited by an IRF of τIRF,visible ~ 690 fs (see experimental section), we left out the 

fastest component in this analysis. The ~7 ns component appears in the analysis of both the 284 nm and 

the 320 nm excitation data. As already mentioned, this timescale is much longer than the time range of 

the measurements and is therefore, only indicative of slow processes that reflect the long3lived species 

upon 320 nm excitation and/or the electron3ferricyanide recombination upon 284 nm excitation. 

With these elements in hand, we then extract the DAS in the combined UV3visible probe range 

for 320 nm excitation, which are shown in Figure 5(b), while Figure 5(a) shows the steady state spectra 

of [Fe(CN)6]
43 and of the aquated form. The 0.5 ps (τ1) DAS is only constructed for the UV range due 

                                                      
§
 A stretched exponential fit was attempted but it poorly reproduced the data. 
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to the limited time resolution in the visible range, and it essentially shows the fast decay of the induced 

absorption peaking below 280 nm. In the visible range, an absorption band centered at λprobe ~ 460 nm 

also appears within the time resolution of the experiment (see Figure 4(a)). The 4 ps (τ2) DAS reflects a 

second, slower decay component of the induced UV (<320 nm) absorption and some spectral intensity 

redistribution from 4103480 nm to 3803410 nm of the absorption in the visible range. The 16 ps (τ3) 

DAS displays a ground state bleach recovery below 320 nm and it mirrors the 4 ps DAS above 330 nm, 

pointing to an intensity redistribution back from 3803410 nm to 4103480 nm. The prominent negative 

feature of the 16 ps DAS in the 4103480 nm region reflects the rise of the ~7 ns (τ4) DAS that has a 

broad and intense absorption covering the 3803480 nm range. The ~7 ns DAS is nicely reproduced by 

�320	nm (see above), and it can therefore be assigned predominantly to the [Fe(CN)5(H2O)]33 complex. 

As seen from the scaling factor in Figure 4(a), the photolysis yield was considerably lower in the 

visible probe experiments. This is consistent with calculated excitation yields (see § S2) and the larger 

sample thickness in the latter experiment, which is expected to enhance absorption effects. Therefore, 

the dynamics in the "probe < 320 nm range point to the decay of a single photo3induced species in 0.5 ps 

and 4 ps while the range "probe > 320 nm shows a 4 ps band splitting/broadening process, followed by 

band merging/narrowing in 16 ps, which is indicative of structural and symmetry changes. The 

appearance time of features assigned to [Fe(CN)5(H2O)]33 is ~16 ps, while the nature of the absorption 

bands present at the earliest times and their subsequent spectral evolution is discussed below. 
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��������. Combined decay associated spectra of aqueous [Fe(CN)6]

43. (a) Extinction coefficients of aqueous [Fe(CN)6]
43 (measured) and 

[Fe(CN)5(H2O)]33.61,62 (b) Decay associated spectra from the 2D UV experiment (probe range ~280 3 350 nm) at 320 nm pump (x 0.1) and 

the white light probe experiment with 323 nm pump (probe range ~380 3 480 nm). The 0.5 ps component of the 2D UV data is 

additionally scaled (x 0.2). The static difference spectrum (black dashed line) corresponds to �323	nm = 0.1 ∙ �320	nm. 
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We also estimated quantum yields as a function of excitation wavelength of the photoproducts 

[Fe(CN)6]
33 and [Fe(CN)5(H2O)]33. As their extinction coefficients are known, the differences with 

respect to the [Fe(CN)6]
43 ground state extinction coefficient can be scaled to match the measured 

transient difference spectra, and quantum yields can be estimated from the resulting scaling factors. 

This procedure is described in detail in § S2. The extracted quantum yields for photoaquation (φaq) and 

photooxidation (φox), along with those previously reported,41,42 are shown in Fig. 6 and exhibit rather 

large uncertainties as they involve estimating the fraction of photoexcited molecules fexc, for which we 

assumed an uncertainty of 100% to be conservative. However, the observed trends agree with the 

previously reported values.41,42,46 

 

 

Figure 6. Quantum yields for the production of [Fe(CN)6]
33 (φox, red filled circles) and [Fe(CN)5(H2O)]33 (φaq, blue filled squares), 

estimated from the ~7 ns DADAS (Figure S7(vii)) assuming no other contributing processes. φox is taken as proportional to the action 

spectrum at λprobe = 300 nm, where the photoaquation difference signal is approximately zero. For each λpump the static photooxidation 

spectrum scaled at λprobe = 300 nm is subtracted from the respective 1D DAS and φaq is taken as proportional to the action spectrum of the 

resulting 2D dataset at λprobe = 320 nm. Literature values for the quantum yields of the photooxidation41 (at pH = 6.5) and photoaquation42 

(pH = 9) processes are shown as red and blue dashed lines respectively.  
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From Figure 6, we can draw the following conclusions: First, φaq shows no wavelength 

dependence between 360 nm and 310 nm, pointing to a Kasha3type behaviour for this photochemical 

channel, i.e. internal conversion processes lead to a relaxation to the lowest3energy state(s) that is (are) 

the doorway to the aquation reaction; Second, φaq decreases from ~20% to ~10% between 310 nm and 

250 nm. This can be explained by the fact that φox increases with increasing energy in this same range; 

Third, the total yield (φaq + φox) also increases with increasing excitation energy, pointing to the 

increased photochemical decomposition via photooxidation with increasing excitation energy. Last, 

(φaq + φox)<1  (typically ~0.5 at 285 nm and ~0.2 at 310 nm), suggesting that, either not all molecules 

are decomposed or that a substantial part reform.  

Although photoaquation is observed when we directly excite the lowest lying singlet state 1T1g, 

the intermediate states leading to [Fe(CN)5(H2O)]33 remain unidentified. In order to complement the 

above analysis, we also carried out TRIR spectroscopy exciting at 320 nm, i.e. into the 1T1g state. 

Figure 7 shows the TRIR transient spectra for [Fe(CN)6]
43 in H2O. The corresponding kinetic 

traces are shown Figures S8 and additional transient spectra for H2O are compared in Figure S9 with 

those for D2O. The spectra appear similar for H2O and D2O, and they contain more spectral features 

than those obtained upon 266 nm excitation. A very weak band due to [Fe(CN)6]
33 appears at 2117 cm31 

(inset in Figure 7). This is consistent with the 2D UV TA results (Figures 3(c), 5 and 6), which show a 

weak contribution of photoionization at 320 nm.  

From the earliest times, Fig. 7 shows a depletion near the parent band at 2038 cm31 along with a 

broad absorption band at ca. 2060 – 2090 cm31. The latter decays rapidly (τ1 < 1 ps), concomitant with 

a partial recovery of the parent band (Figures S8(a) and (c)). The initial recovery corresponds to ~40 % 

of the excited molecules and it can tentatively be assigned to geminate recombination of the CN3 

radical with the pentacoordinated species formed by irradiation at 320 nm. The IR absorption bands of 

the aqueous cyanide ion have been reported at 2079 cm31 with a bandwidth of 16318 cm31.64 The 2055 – 

2090 cm31 band probably reflects this contributions, but additional ones may be present as will be 

discussed later. Under 320 nm excitation, the TRIR spectrum obtained 2 ps after photolysis shows 
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absorption bands near 2060 cm31 and ~2090 cm31 (Figure 7). The 2060 cm31 band is clearly 

distinguishable from the initial braod 205532090 cm31 signal at early times as it grows in τ2 = 4 ± 2 ps 

and decays in τ3 = 23 ± 4 ps (Figure S8 (c)), giving rise to a new band at 2049 cm31 that grows on a 

similar time scale (19 ± 4 ps, Figure S8(b)). It partially overlaps the parent bleach band. The 2049 cm31 

band is the IR band of the photoaquated species.65 The parent bleach band exhibits an additional 

recovery in 23 ± 4 ps (Figure S8(a)). A similar behaviour is observed in D2O. 

 

 
Figure 7. TRIR spectra of 18 mM [Fe(CN)6]

43 acquired in H2O at several time3delays after photolysis at 320 nm. The inset shows the 

expanded region of the 2117 cm31 ferricyanide stretch.  

 

The assignment of the 2060 cm31 and the ~2090 cm31 bands is now discussed. Close inspection of the 

profile of the ~2090 cm31 band shows that it is composed of more than one contribution (Figure S10): 

a) its width is significantly broader than the spectral resolution of the instrument (ca. 1.5 cm31); b) there 
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are clear shoulders on its high3 and low3energy wings; c) the kinetic traces at the wings (Figures S8d 

and f) and at the maximum of the band (Figure S8e) confirm its composite nature. At 2088 cm31 the 

intensity decays in τ3 = 23 ± 4 ps, at 2090 cm31 it grows in τ2 = 4 ± 2 ps and decays in τ3 = 23 ± 4 ps. At 

≤  2086 cm31, it first rapidly decays, likely due to overlap with the broad CN3 band at early times, and 

then undergoes a longer decay in 23 ± 4 ps. These various trends are further confirmed by the global 

analysis (§ S5) of the data set in H2O, which provides the decay associated spectra (DAS) plotted in 

Figure 8. Four time components emerge from this analysis: i) The τ1 = 0.5 ps DAS reflects quite well 

the early time transient observed in Figures 7 and S8, with the bleach band at 2038 cm31 having a long 

tail to the red, and the broad positive band in the 205532090 cm31 range; ii) The τ2 = 3.5 ps DAS shows, 

along with the bleach band, a weak positive feature around 202032030 cm31 while it is close to zero 

around ~2086 cm31 presumably due to overlap of a positive (decaying) feature with the negative 

contribution of a growing band at 2090 cm31. The long blue tail of the bleach may be a rising 

component of the band that appears at 2060 cm31 in the 23 ps DAS and also contains a partial rise of 

the band characteristic for the aquated species (see below); iii) The τ3 = 23 ps DAS shows two new 

positive features at 2060 and ~2090 cm31. The distinction between the different bands making up the 

latter (Figure S10) is no longer as clear as seen in the time traces in Figure S8. However, all decay with 

τ3, which is consistent with the corresponding DAS. Finally, the DAS at infinite time exhibits three 

positive features: weak ones around 2026 cm31 and at 2088 cm31 and a prominent one at ~2049 cm31. 

All three are characteristic of the aquated form as discussed below (Table 1). 

Under 266 nm excitation, the ~2088 cm31 band was significantly weaker and any subsequently 

formed species was not clear. However, spectral fitting of the parent bleach is consistent with 

formation of a band at 2049 cm31, which is formed at a similar rate to the decay of the ~2088 cm31 

species. Therefore, the TRIR results support photoaquation under excitation both 266 and 320 nm, but 

the quantum yield for the former is lower, consistent with the 2D3UV TA experiments. Most 

importantly, at both pump wavelengths, the various IR features exhibit kinetic behaviours that parallel 
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those reported in the 2D UV and the visible TA spectra. Therefore in Table 1, we have grouped these 

bands according to their time scales, and we discuss their assignment below.  

 
Figure 8. Decay associated spectra (DAS) obtained from the singular value decomposition of the transient IR data sets in H2O (τ1= 0.5 ps, 
τ2= 3.5 ps, τ3= 23 ps, τ4= infinity). 
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In order to aid the latter, we performed calculations of the electronic and vibrational energies 

using density functional theory (DFT, see § S6). We first calculate the νCN vibrational frequencies and 

structural parameters of the hexacoordinated complexes with an explicit unconstrained water solvent 

model (Figure S11), which is supported by previously published calculations of the spin3state 

energetics of [Fe(H2O)6]
3+ using a similar approach.66 For the [Fe(CN)6]

43 complex in its ground state, 

the calculations give a frequency of 2040 cm31 for the νCN band (Table S2), consistent with the 

experimental value of 2038 cm31. For the T1 state of the complex, calculations predict bands at 2058, 

2067 and 2079 cm31, with the first and last being the most intense ones. The calculated structure for this 

state in water shows a significant distortion: a large elongation (by about 20%) of the axial Fe3C bond 

(Table S3), found to be 2.40 Å compared to 1.92 Å in the ground state, while the equatorial bond 

lengths are 1.95 and 2.00 Å in the triplet state. The molecular orbitals (MOs) show that formation of 

the T1 state involves the population of an antibonding dz23like orbital (Figures S12 and S13) and, 

consistent with the calculated axial elongation, this is expected to induce a Jahn3Teller distortion. The 

elongation of the axial Fe3C bonds is significantly larger than what was measured for Fe(II)3

polypyridine complexes in their quintet states,67 which is identical for all six Fe3N bonds. However, the 

reported values are consistent with optimized triplet state calculations of Ru(II)3polypyridines,68 where 

two opposing Ru3N bonds of [Ru(tap)]2+ (tap = 13435383tetraazaphenanthrene) have been calculated to 

elongate from 2.104 Å in the ground state to 2.516 Å in the triplet ligand field state. Indeed, several 

computational studies on the photodissociation of Ru(II)3polypyridines have noted the dissociative 

nature of 3LF states involving the population of orbitals with a high degree of σ3antibonding character 

between the axial CN ligands and the metal.69,70 Our DFT calculations find the excitation energy for 

the lowest triplet state to be 2.86 eV, which is lower in energy than the predicted lowest quintet state 

(4.66 eV above the ground state), suggesting that the latter is less likely to be formed (Table S4).  

Next, we consider the pentacoordinated complex: DFT geometry optimization and frequency 

calculations have been performed in vacuo and with a polarized continuum model (C3PCM) of the 

solvent for a range of possible pentacoordinated intermediates. The results are summarized in Table S5. 
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The calculations with or without solvent predict a similar energy hierarchy of states: the triplet trigonal 

bipyramidal (3TBP) structure being the lowest energy form, followed by the singlet square pyramidal 

(1SP), and the triplet square pyramidal (3SP). We note that the prediction of accurate singlet3triplet 

splittings is a challenging problem and can be sensitive to the nature of the exchange3correlation 

functional.71 Calculations using the B3LYP* functional, which is parameterized with this in mind,72 

lead to a lowering of the singlet state energy, bringing the 1SP structure within 2 kJ/mol of the 3TBP 

configuration. Furthermore, the calculated C3PCM frequencies for the 3TBP form shows two strong 

bands separated by over 20 cm31, consistent with the 23 ps3lived 2060 and 2090 cm31 bands observed in 

the experiment, although the calculated frequencies are somewhat higher. The singlet spin square 

pyramidal structure has two bands split by less than 10 cm31. 

 

Discussion 

	

��������������
��

We first identify the IR bands. Under 266 nm excitation and as stated above, the 2117 cm31 

band is due to the oxidised product [Fe(CN)6]
33, formed within the time3resolution of our experiments. 

This band partially decays on the timescale of tens of nanoseconds due to recombination with the 

photo3produced solvated electron (Figure S3(b)). Under 320 nm excitation, some of the formed IR 

features are also easily identifiable, such as: the [Fe(CN)6]
33 2117 cm31 band45 and the photoaquated 

species [Fe(CN)5(H2O)]33 band at 2049 cm31 (reported at 2043 ± 10 cm31 in ref. 65, Table S2). In 

addition to the latter band, the DAS also revealed the weaker bands at ca. 2026 cm31 and 2088 cm31 that 

also belong to the aquated species. The calculations indeed predict two weaker bands at 2037 and 2068 

cm31, which we believe are associated to the former two (Table S2).  

As mentioned above, the broad < 1 ps IR band that appears in the 205532090 cm31 region can be 

assigned to the CN3 ion (in a singlet X 1
Σ

+ state, Table S2).64 However since according to the 

calculations (Table S2), the 3[Fe(CN)6]
43 complex also has bands in the same region, we cannot exclude 

that both 3[Fe(CN)6]
43 and CN3 species are observed within the time resolution of the experiment. This 
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early3time IR absorption decays, concomitantly with the partial early time recovery of the parent. It is 

related to the τ1 = 0.5 ps process that appears in the UV (Figures 5 and S7) with maximum absorption < 

280 nm, which we assign to the [Fe(CN)5]
33 fragment, as the CN3 fragment has no known absorption 

bands in this region. Thus the initial sub3ps decay of these IR and UV bands reflects the transient 

lifetime of the 3[Fe(CN)6]
43 state and the geminate recombination of [Fe(CN)5]

33 with CN3.  

Just as for the IR, the UV and visible transitions belonging to [Fe(CN)6]
43, [Fe(CN)6]

33 and 

[Fe(CN)5(H2O)]33 are easily identifiable and Table 1 shows their assignments and lifetimes. Note that 

for the pentacoordinated complex, the predicted frequencies are higher than the experimental ones but 

lie within the expected level of accuracy for an open3shell transition metal complex, and given the 

approximate nature of the solvent model. 

 

�������
������������������

From the body of ultrafast studies on electronically excited metal complexes,73375 electronic3

vibrational relaxation proceeds at extremely fast time scales of a few tens of fs, to reach the lowest 

electronically excited state, in line with the Kasha rule. This also applies to chemical reactions. Indeed, 

the constant photoaquation yield for excitation wavelengths between 310 and 365 nm reflects this 

behaviour (the red most wavelength corresponds to the absorption threshold). It is therefore reasonable 

to assume that the relaxation cascade reaches the lowest triplet state prior to proceeding to dissociation. 

In addition, φaq + φox ≤  0.5 down to 260 nm excitation (Figure 7), which implies that there is a 

substantial recovery of ground state [Fe(CN)6]
43 on an ultrafast time scale. 

Photoexcitation at 320 nm into the 1T1g state is followed by Jahn3Teller distortion, due to the 

degeneracy of the excited state electronic configuration, and ISC into the lower triplet 3T1g state, 

leading to dissociation of the molecule into [Fe(CN)5]
33 and CN3. As explained above, the triplet state is 

characterized by the transfer of one electron from the bonding t2g orbital to the antibonding eg orbital 

(Figure S12), and a significant elongation of some of the Fe3CN bonds (Table S3), which may favor 

dissociation in the solvent.  
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Therefore, given that from the earliest probed times in our experiments, we have formed an 

[Fe(CN)5]
33 species, the subsequent UV, visible and IR spectral changes reflect electronic/structural 

relaxation of this species. The CN3 ion is in a singlet state, and we assume that dissociation proceeds via 

a triplet state producing the nascent [Fe(CN)5]
33 in a triplet state, which can adopt either a trigonal 

bipyramidal (TBP) or a square pyramidal (SP) form. Furthermore, as described above (Table S5), the 

energies of the calculated states follow the order 3TBP < 1SP < 3SP and the 3SP form (52 kJ/mol higher 

than 3TBP) is the most likely to be generated by dissociation and can undergo a further rearrangement 

process. τ2 is reflected in a 3.534 ps rise of the bands at 2090 and 2060 cm31 and the decay of the 2086 

cm31 band (Figure 8 and S8(d)) and corresponds to the production of 3TBP. This process can either be 

associated to the 3SP form undergoing a conformational change to the 3TBP form, or a spin and 

conformational relaxation which would include a passage via the intermediate 1SP form, and both SP 

species are predicted to exhibit two bands. The involvement of a singlet [Fe(CN)5]
33 moiety in the 

kinetic processes on the 4320 ps timescale is very unlikely as similar singlet 163electron intermediates 

have been shown to coordinate to very weakly coordinating solvents on the femtosecond timescale. For 

example, solvation by alkane solvents of Cr(CO)5 formed by photoejection of CO from Cr(CO)6 occurs 

in <1 ps.76 Similar behaviour is observed for many metal carbonyl species in these weakly coordinating 

solvents.16,77 H2O is a much more coordinating solvent to such fragments than alkanes and it is 

expected to react at faster timescales.  

For the 3TBP form, we have seen that the calculations predict two bands separated by ca. 20 cm3

1 with an intensity ratio of ~3:1 between the lower and higher energy bands. This trend is reproduced 

between the 2060 cm31 and ~2090 cm31 bands, which in addition grow and decay on the same time 

scales (Figures S8(c) and S8(f)). This leads us to associate the ~20 ps timescale of τ3 to the decay of the 
3TBP complex. Because this is also the timescale for formation of the aquated species, we consider that 

formation of the latter proceeds from a 3TBP precursor. 

The rise3time (3.534 ps, τ2) and decay (23 ps, τ3) of the 2090 cm31 and 2060 cm31 bands are 

similar to those of the signal in the 330 to 410 nm region and likewise, the decay time corresponds to 
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the rise of the aquated complex. This, along with the fact that the ~4 ps and ~16 ps UV3visible bands 

are clearly correlated (Figure 5) suggests that we are still dealing with the [Fe(CN)5]
33 intermediate, 

consistent with the SP to TBP rearrangement. 

Concomitant with the decay of the final [Fe(CN)5]
33 species, the aquated [Fe(CN)5(H2O)]33 (at 

2049 cm31 in the IR and ca. 440 nm in the UV) grows in ~20 ps. This time scale is not uncommon in 

solutions. For example, photolysis of Fe(CO)5 produces 1Fe(CO)4,
13,26 which rapidly converts to 

3Fe(CO)4 before the subsequent reaction with solvent species occurs, which is very slow and strongly 

dependent on the nature of the solvent (ranging from 43 ps in EtOH21 to 13 ns in heptane23). The 

scenario we propose here is very similar: the reactivity with solvent species is dramatically (typically 

two orders of magnitude) slowed down due to the rapid ISC to the triplet state of the fragment.26,76  

The recovery of [Fe(CN)6]
43 occurs on all the above time constants: at the earliest times (< 1 ps), 

geminate recombination takes places concomitant with the disappearance of the broad IR absorption. 

This early recombination is estimated to ~40 % of the initially bleached molecules and given its short 

time scale, it can only be due to geminate recombination (GR). The 334 ps time constant of the parent 

bleach recovery reflects further recombination of CN3 fragments with the SP form, however it is much 

less efficient as it is non3geminate due to its time scale. Indeed, since further recombination occurs over 

~20 ps resulting in an overall recombination fraction of ~75 %, the 334 ps time constant would barely 

represent 20% of the latter contribution. The ~20 ps time scale is similar to that for photoaquation and 

therefore we conclude that the latter is the rate3determining step for the non3GR of [Fe(CN)5]
33 and CN3 

species (there are more water molecules than CN3 fragments in the environment of the pentacoordinated 

species).  

Based on the above, we propose the following scenario for the photoaquation process, as 

summarized in Scheme 1: (i) Photoexcitation at 320 nm into the 1T1g state generates a triplet state of 

[Fe(CN)6]
43 within the time3resolution of our experiments, yielding a significant lengthening of the Fe3

C axial bonds (Table S3); (ii) This favors or leads to dissociation of the molecule and to the appearance 

of the [Fe(CN)5]
33 fragment in the triplet SP form; (iii) Immediately after dissociation, partial geminate 
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recombination of CN3 takes place with the SP [Fe(CN)5]
33 species (τ1); (iv) the remaining 

pentacoordinated fragments undergo structural rearrangement to the more stable 3TBP form in 334 ps. 

We propose that at this stage, water molecules start to move in and compete with the remaining CN3 

fragments for bond formation (see Table 1 and Figure S8(b)) (τ2); (v) The process of aquation (~20 ps, 

τ2) is slowed down by the spin state and/or the steric constraints imposed by the TBP geometry of the 

intermediate and its reorganisation.  

 
Scheme 1 : The proposed steps involved in the photoaquation of [Fe(CN)6]

43 after 320 nm absorption in H2O. 

 

While it seems intuitive that the system dissociates in a SP form, which does not impose steric 

constraints to the uptake of a water molecule, the binding of the latter by the TBP complex is less trivial 

as it supposes some rearrangement back to the square pyramidal form in order to accommodate the 

water molecule. Surely the participation of the water molecule is needed in order to make this 

rearrangement possible. Molecular dynamics simulations are needed to further elucidate these details. 

This being said, the present observations invalidate the mechanism of dissociative interchange between 

[Fe(CN)6]
43 and H2O proposed by Finston and Drickamer.53 Despite indications from 2D IR39,54 and x3
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ray studies40,78 of a specific interaction of [Fe(CN)6]
43 with water molecules, the solvent does not seem 

to play an essential role in the photochemistry of the molecule, except to allow the process of geminate 

recombination by caging the fragments within the first ps. The lack of an isotope effect on the kinetics 

of photoaquation is also in line with the relatively long time scales of the reported processes, which are 

governed by the barrier for conversion of 3[Fe(CN)5]
33 into 1[Fe(CN)5(H2O)]33.  

Other examples of photoaquation reactions of metal cyanides include [Co(CN)6]
33, which presents 

an interesting target of investigation as it is isoelectronic to [Fe(CN)6]
43. [Co(CN)6]

33 has so far not been 

investigated by ultrafast methods but earlier studies, based on ligand exchange reactions,38 and 

pressure3dependent quantum yield measurements,79 have pointed to a dissociative interchange 

mechanism for the formation of [Co(CN)5(H2O)]23. This difference to the ferrocyanide case may be 

indicative of an increased dissociation energy of the Co3CN bond. 

Finally, the increased photoionization yield with increasing energy points to a non3Kasha 

behaviour for this channel, which is logical since electron dynamics are much faster than the nuclear 

dynamics associated with intramolecular relaxation. This is also reflected in the decrease of the 

photoaquation quantum yield upon excitation of the CTTS states and consistent with the lack of an 

ultrafast CTTS fluorescence.47  

The body of work on ultrafast intramolecular relaxation of complex molecular systems in 

solution show that the Kasha Rule is largely verified and exceptions are rare.75,80 Intramolecular energy 

redistribution occurs at extremely short time scales, reaching values even shorter than the high 

frequency vibrational time scales,73,81 while ISC events also occur at very short time scales.74 It is 

therefore expected that the Kasha Rule will also be verified for photochemical reactions, i.e. the 

significant chemistry involves only the lowest states. The only reaction channel that competes in any 

significant way with intramolecular energy redistribution are photooxidation events, as the release of an 

electron must occur at significantly shorter time scales than the vibrational ones. This is valid for CTTS 

dynamics, as in the present case, or interfacial electron injection of a molecular adsorbate on a 

semiconductor substrate.82385  
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Conclusions 

We have carried out a detailed investigation of the excitation energy3dependent ultrafast 

photochemistry of aqueous [Fe(CN)6]
43. Combining advanced ultrafast spectroscopic tools: 23

dimensional UV spectroscopy, visible and infrared transient absorption spectroscopy, along with 

quantum chemical calculations, we have elucidated the photoaquation mechanism of [Fe(CN)6]
43 in 

water. The initial events are an ultrafast intramolecular relaxation to the lowest triplet state and 

dissociation of the molecule with release of a CN3 fragment. Part of the fragments recombine 

geminately within the solvent cage. All these events (intramolecular energy redistribution, dissociation, 

geminate recombination) occur in <0.5 ps. The subsequent observed dynamics is all due to the 

[Fe(CN)5]
33 fragment, which is initially formed in the square pyramidal configuration in the triplet state. 

It then undergoes conformational changes in 334 ps to the lower lying triplet state of the trigonal 

pyramidal form. Binding of water molecules takes place in ~20 ps and shows no isotope effect. This 

relatively long time scale must reflect a rearrangement of the pentacoordinated trigonal bipyramidal 

complex to a geometry favoring uptake of a water molecule. Molecular dynamics simulations will be 

needed to further support this scenario. In addition, ultrafast x3ray spectroscopy provides ideal tools to 

detect both the nuclear, electronic and spin structure of the intermediate pentacoordinated form86 and 

studies are on3going at x3ray free electron lasers to this purpose. 
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Data acquisition and treatment, determination of quantum yields, global analysis, density functional 

calculations, TRIR spectra, time3integrated UV and visible transient absorption spectra, 2D UV 

DADAS, kinetic traces of the IR signals, statistical analysis of the UV, visible and IR data. 
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 Frequency 

cm31 

τrise (ps) τdecay (ps) Wavelength  

range (nm) 

τrise (ps) τdecay (ps)  

2038 (bleach) <0.5 

(<0.5)≈τIRF,IR 

τ1<1 (<1), 

τ2=4±2 (3±1), 

τ3=23±4 (24±5), 

stable 

2803320 (bleach) <0.15=τIRF,UV τ3=16±3, 

stable 

[Fe(CN)6]
43 

205032090 <0.5 (<0.5) ≈ 

τIRF,IR 

τ1< 1 (<1)    CN3 radical in the 

IR 

2086 <1 (<1) 26±4a, (22±4)a 2803340 

 

4103470  

<0.15= τIRF,UV 

 

<0.7= τIRF,Vis 

 

τ1=0.5, 

τ2=4±2 

τ1<0.7= τIRF,Vis 

τ2=4±2 

[Fe(CN)5]
33 SP 

2090 

2060 

τ2=4±2 (3±2) 

τ2=4±2 (3±2) 

τ3=23±4 (22±4) 

τ3=23±4 (19±7) 

3403410 τ2=4±2 τ3=16±3 [Fe(CN)5]
33 TBP 

2026b, 2049, 

2088  

 

τ3=19±4c, (23±5) 

Stable 3503470 

Max. at 450  

τ3=16±3 τ4>7200  [Fe(CN)5(H2O)]33 

2117 <0.5≈ τIRF,IR Stable Broad UV3Vis 

spectrum 

<0.15= τIRF,UV τ4>7200 [Fe(CN)6]
33 

 

aAn additional <1 ps contribution is observed, which can be attributed to overlap with the CN3 band (see Figures 7 and S8). 

The timescale is affected by overlap with the 2090 cm31 band of the 3TBP species.  bIt is difficult to resolve the experimental 

band at 2026 cm31 due to overlap with the parent bleach. The assignment is done on the basis of band3fitting, DFT 

calculations (Table S2) and previous work.65 cAn additional 4 ps transient is observed.  
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