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Abstract

Background: We have shown previously that near-infrared light (NIr) treatment or photobiomodulation

neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl

-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson’s disease. The

present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In

addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested

for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility.

Results: Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline

and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the

mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and

the number of TH+ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results

showed higher numbers of TH+ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with

the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For

Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group.

Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in

the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr

penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the

pigmented C57BL/6, compared to the albino Balb/c mice.

Conclusions: In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian

insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of NIr

through skin and fur, provides a clearer model of protection than the C57BL/6 strain.
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Background

Parkinson’s disease is a major movement disorder

characterised by the distinct signs of resting tremor, akin-

esia and/or lead pipe rigidity [1,2]. These arise after a sub-

stantial loss of dopaminergic cells, mainly within the

substantia nigra pars compacta (SNc) of the midbrain [3,4].

The factors that generate this cell loss are not entirely clear,

but there is evidence for mitochondrial dysfunction as a

result of exposure to an environmental toxin (eg MPTP (1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine)) [5] and/or the

presence of a defective gene [6].

Many previous studies have shown that some sub-

stances, such as anti-oxidants like CoQ10 (coenzyme

Q10) [7] and melatonin [8], help neuroprotect dopamin-

ergic cells in the SNc against degeneration in animal

models of Parkinson’s disease. These substances are

thought to reduce mitochondrial dysfunction by lessen-

ing the oxidative stress caused by free radicals generated

by defective mitochondria present in Parkinson’s disease.
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In addition to these substances, recent studies have

reported on the neuroprotective properties of low inten-

sity light therapy, known also as photobiomodulation or

near infra-red light (NIr) treatment, after parkinsonian

insult. For example, NIr treatment protects neural cells

in vitro against parkinsonian toxins such as MPTP and

rotenone [9,10]. Further, we have shown that NIr treat-

ment offers in vivo protection for dopaminergic cells in

the SNc in an acute [11] and chronic [12] MPTP mouse

(Balb/c) model. There is also a brief report indicating

that NIr treatment improves the locomotor activity of

mice after MPTP insult [13]. Although the mechanism

of neuroprotection by NIr is not entirely clear, work on

other systems indicate that NIr improves mitochondrial

function and ATP synthesis in the damaged cells by in-

creasing electron transfer in the respiratory chain and

activating photoacceptors, such as cytochrome oxidase,

within the mitochondria. Further, NIr has been shown to

reduce the production of reactive oxygen species that

are harmful to cells [14,15].

In this study, we sought to extend our earlier anatom-

ical [11,12] and functional [16] studies by exploring the

changes in locomotive behaviour of MPTP-treated mice

after NIr treatment. Hitherto, this feature has not been

reported extensively [13]. We undertook this behav-

ioural analysis, together with a stereological account of

SNc cell number, in two strains of mice, Balb/c (albino)

and C57BL/6 (pigmented). This was done because there

are reports that MPTP has differential effects on behav-

iour and dopamine levels in the basal ganglia in differ-

ent strains of mice [17,18], as well as rats [19]. We

wanted to determine whether there were mouse strain

differences in the effect of NIr treatment after MPTP

insult.

Methods

Subjects

Male BALB/c (albino; n=40) and C57BL/6 mice (pigmented;

n=40) mice were housed on a 12 hr light/dark cycle

with unlimited access to food and water. Animals were

8–10 weeks old. All experiments were approved by the

Animal Ethics Committee of the University of Sydney

and COMETH (Grenoble).

Experimental design

We set up four experimental groups (see Figure 1). Mice

received intraperitoneal injections of either MPTP or sa-

line, combined with simultaneous NIr treatments or not.

The different groups were; (1) Saline: saline injections

with no NIr (2) Saline-NIr: saline injections with NIr (3)

MPTP: MPTP injections with no NIr (4) MPTP-NIr:

MPTP injections with NIr. Each experimental group

comprised ten mice of each strain.

Following our previous work, we used an acute MPTP

mouse model [11,16]. The acute model is a well-accepted

model of the disease [20,21] and has revealed many as-

pects of the mechanisms of Parkinson’s disease over the

years. Although it does not provide information on the

chronic progressive nature of the disease, it does generate

mitochondrial dysfunction, dopaminergic cell death and a

reduction in locomotive activity [20,21]. The latter two is-

sues were central in this study, making the acute model

most appropriate for our use. Briefly, we made two MPTP

(25 mg/kg injections; total of 50 mg/kg per mouse) or sa-

line injections over a 24 hour period. Following each injec-

tion, mice in the MPTP-NIr and Saline-NIr groups were

treated to one cycle of NIr (670 nm) of 90 seconds from a

light-emitting device (LED; Quantum Devices WARP 10).

This treatment equated to ~0.5 Joule/cm2 to the brain

[11]. Approximately 6 hours after each injection and first

NIr treatment, mice in these groups received a second NIr

treatment, but no MPTP or saline injection. Hence, each

mouse in these groups received four NIr treatments,

equalling ~2 joules/cm2 reaching the brain. This NIr treat-

ment regime was similar to that used by previous studies,

in particular, those reporting changes after trans-cranial ir-

radiation [11,12,14-16]. For each treatment, the mouse

was restrained by hand and the LED was held 1–2 cm

above the head [11,12,16]. The LED generated no heat

and reliable delivery of the radiation was achieved. For the

Saline and MPTP groups, mice were held under the LED

as described above, but the device was not turned on.

After the last treatment, mice were allowed to survive for

six days (Figure 1). This MPTP/NIr dose regime and sur-

vival period has been shown to furnish TH+ cell loss by

MPTP and neuroprotection by NIr [8,11,16]. We also

made some measurements of NIr penetration across the

skin and fur of the two mouse strains. Skin was excised

from the back of each mouse and positioned over a foil-

coated vessel, with a calibrated light sensor at the bottom.

NIr from the WARP-LED was then shone onto the skin

and the penetration was recorded by the sensor (distance

from WARP-LED to skin was ~4 cm and distance from

skin to sensor was ~3 cm). For each strain, we compared

the NIr penetration in cases where the fur was shaved

from the skin to those that were unshaved. Each of the

values obtained were compared to (and expressed as a

percentage of) the values we recorded of NIr through the

air, with no intervening skin.

Our experimental paradigm of simultaneous adminis-

tration of parkinsonian insult and therapeutic applica-

tion was similar to that of previous studies on animal

models of Parkinson’s disease [8,11,12,16,22-24]. This

paradigm is unlike the clinical reality where there is cell

loss prior to therapeutic intervention. However, in our

experimental study we hoped to determine the max-

imum effect of NIr neuroprotection.
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Immunocytochemistry and cell analysis

Following the survival period, mice were anaesthetised

with an intraperitoneal injection of chloral hydrate (4%;

1 ml/100 g). They were then perfused transcardially with

4% buffered paraformaldehyde. The brains were re-

moved and post-fixed overnight in the same solution.

Next, brains were placed in phosphate-buffered saline

(PBS) with the addition of 30% sucrose until the block

sank. The midbrain was then sectioned coronally and

serially (at 50 μm) using a freezing microtome. All sec-

tions were collected in PBS and then immersed in a so-

lution of 1% Triton (Sigma) and 10% normal goat serum

(Sigma) at room temperature for ~1 hour. Sections were

then incubated in anti-tyrosine hydroxylase (Sigma; 1:1000)

for 48 hours (at 4°C), followed by biotinylated anti-rabbit

IgG (Bioscientific; 1:200) for three hours (at room

temperature) and then streptavidin-peroxidase complex

(Bioscientific; 1:200) for two hours (at room temperature).

To visualise the bound antibody, sections were reacted in a

3,30- diaminobenzidine tetrahydrochloride (Sigma) - PBS

solution. Sections were mounted onto gelatinised slides, air

dried overnight, dehydrated in ascending alcohols, cleared

in Histoclear and coverslipped using DPX. Most of our

immunostained sections were counterstained lightly with

neutral red as well. In order to test the specificity of the pri-

mary antibody, some sections were processed as described

above, except that there was no primary antibody used.

These control sections were immunonegative.

In this study, we used TH immunocytochemistry to

describe patterns of cell death and protection. As with

many previous studies, we interpreted a change in TH+

cell number after experimental manipulation as an index

of cell survival [8,11,12,22,23,25]. If cells lose TH expres-

sion, then they are likely to undergo death subsequently

[25], which then leads to a reduction in Nissl-stained

(and TH+) cell number [8,23]. Notwithstanding a small

number of cells that may have transient loss of TH ex-

pression [26], a key aspect of our study was whether NIr

treatment saved TH expression during a period when

MPTP treatment alone would have abolished it [11,12].

Figure 1 Outline of the different experimental groups used in this study, namely Saline, Saline-NIr, MPTP, MPTP-NIr. The experimental

time-line and behaviour time-points are shown. For the experimental time-line, there were two injections (saline or MPTP) and they occurred in

the first 24 hrs. There were four NIr treatments (or not) and these occurred immediately after each injection and about 6 hrs later on the same.

After the last NIr (and fourth) treatment, mice were allowed to survive for 6 days thereafter. There were four behavioural time-points; (T1) after

first injection and NIr (or no) treatment; (T2) after second NIr (or no) treatment; (T3) after second MPTP or saline injection and third NIr (or no)

treatment; (T4) after fourth NIr (or no) treatment.
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In terms of analysis, the number of TH+ cells within the

SNc was estimated using the optical fractionator method

(StereoInvestigator, MBF Science), as outlined previously

[8,11,12,23]. Briefly, systematic random sampling of

sites - with an unbiased counting frame (100×100 μm) -

within defined boundaries of SNc was undertaken.

Counts were made from every second section, and for

consistency, the right hand side of the brain was counted

in all cases. All cells (nucleated only) that came into

focus within the frame were counted and at least five

sites were sampled per section.

Digital images were constructed using Adobe Photoshop

(brightness and contrast levels were adjusted on individ-

ual images in order to achieve consistency (eg, illumin-

ation) across the entire plate) and Microsoft PowerPoint

programmes.

Behavioural analysis

During the experimental period, we performed a stand-

ard open-field test [17]. Mice were placed in white boxes

(~20×20×20 cm) for C57BL/6 mice and black boxes for

the Balb/c mice (this was important for software detec-

tion of contrast changes). Behavioural activity was mea-

sured and videotaped using a high definition camera

(25000 images/sec) that detected changes in contrast

and hence movement of mice. Mice were not acclimatised

to the boxes prior to testing and boxes were cleaned thor-

oughly to avoid olfactory clues. Animal detection was

made comparing a reference image that contained no

subject with the live image containing the subject; the

differences between the two were identified as subject

pixel. Subject pixels changes were computed (Noldus,

Ethovision, XT 8.5 version) to obtain different parame-

ters of locomotor activity, for example velocity and mo-

bility. Velocity was the mean speed of the mouse during

trials (cm/sec) measured from the centre of gravity of

the animal. To avoid “jittering”, a threshold of minimal

distance moved of 0.3 cm was established. Mobility calcu-

lates the duration (in sec) during which the complete area

detected as animal is changing even if the centre of gravity

remains the same. High mobility refers to 10% or more of

changes in percentage of body area detected between two

samples, and immobility refers to less than 2% of changes.

Each animal was tested at four time points (Figure 1);

(T1) after first MPTP or saline injection and NIr (or no)

treatment; (T2) after second NIr (or no) treatment; (T3)

after second MPTP or saline injection and third NIr (or

no) treatment; (T4) after fourth NIr (or no) treatment.

Mice were tested for ~20 minutes at each time point. We

tested locomotive activity at these points, particularly T1

and T3, because we wanted to explore the effects of NIr

during a time when the MPTP was most effective (eg, im-

mediately after injections), when the mice were most

immobile and “sick” [17].

For comparisons between groups in the cell analysis, a

one-way ANOVA test was performed, in conjunction

with a Tukey-Kramer post-hoc multiple comparison

test. For the behavioural analysis, groups were com-

pared for time (T1,T2,T3,T4), drug (MPTP or not) and

light (NIr or not) conditions using a three-way ANOVA

test with a Bonferroni post-hoc test (using GraphPad

Prism programme).

Results

The results that follow will consider the cell and behav-

ioural analyses for each strain separately.

Cell analysis

Figure 2 shows the estimated number of TH+ cells in

the SNc of the four groups in the Balb/c and C57BL/6

mice. Overall, the variations in number were significant

for both Balb/c (ANOVA: F=4.9; p<0.001) and C57BL/6

(ANOVA: F=3.8; p<0.01) mice. For the Saline and

Saline-NIr groups of both strains, the number of TH+

cells was similar; no significant differences were evident

between these groups (Tukey test: p>0.05). For the MPTP

groups, TH+ cell number was reduced compared to the

saline control groups in both strains (~30%). These reduc-

tions were significant (Tukey test: p<0.05). In the MPTP-

NIr groups, TH+ cell number was higher than in the

MPTP groups of both strains, but more so in the Balb/c

(~30%) compared to the C57BL/6 (~20%) mice. This in-

crease reached statistical significance for the Balb/c group

(Tukey test: p<0.05) but not the C57BL/6 group. Unlike

Figure 2 Graph showing TH+ cell number in the SNc in the four

experimental groups, in either the Balb/c (grey columns) or

C57BL/6 (black columns) mice. Columns show the mean ±

standard error of the total number (of one side) in each group.

There were ten animals per group. The symbols in the MPTP groups

represent levels of significant difference in number from the Saline

groups in each series, while symbols in the MPTP-NIr groups represent

those from the MPTP groups; † represents p<0.001, ^ represents

p<0.01 and * represents p<0.05.
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the MPTP groups, the number of TH+ cells in the MPTP-

NIr groups of both strains was not significantly different

to the saline groups (Tukey test: p>0.05).

These patterns are illustrated further in Figure 3 for

both Balb/c (Figure 3A,C,E,G) and C57BL/6 (Figure 3B,

D,F,H) in each of the Saline (Figure 3A,B), Saline-NIr

(Figure 3C,D), MPTP (Figure 3E,F) and MPTP-NIr

(Figure 3G,H) groups. Similar patterns of immunostain-

ing were seen in both strains. Although there were

fewer TH+ somata in the MPTP group (Figure 3E,F),

those remaining were similar in overall appearance to

those seen in the Saline (Figure 3A,B), Saline-NIr

(Figure 3C,D) and MPTP-NIr (Figure 3G,H) groups.

They had round or oval-shaped somata with one to two

labelled dendrites.

Behavioural analysis

Figure 4 shows recorded values of locomotor activity in

Balb/c (Figure 4A,B,C) and C57BL/6 (Figure 4A’,B’,C’)

mice, in terms of velocity (Figure 4A,A’), high mobility

(Figure 4B,B’) and immobility (Figure 4C,C’). Overall,

there were significant interactions for time and drug

conditions for velocity, high mobility and immobility in

both Balb/c (ANOVA: F range=7.5-13.6; p<0.05) and

C57BL/6 (ANOVA: F range=16.8-40.5; p<0.05) mice,

while significant interactions for time, drug and light

conditions were evident for these locomotive activities in

Balb/c (ANOVA: F range=11.7-24.2; p<0.05), but not in

C57BL/6 (ANOVA: F range=0.4-0.8; p>0.05) mice.

The patterns of locomotor activity in the Saline and

Saline-NIr groups were similar in both strains of mice.

Figure 3 Photomicrographs of TH+ cells in the SNc of Balb/c (A,C,E,G) and C57BL/6 (B,D,F,H) in each of the Saline (A,B), Saline-NIr (C,D),

MPTP (E,F) and MPTP-NIr (G,H) groups. Similar patterns of immunostaining were seen in both strains. There were fewer TH+ somata in the

MPTP group (E,F) compared to other groups. All figures are of coronal sections; dorsal to top and lateral to right. The region depicted shows the

lateral region of the SNc, corresponding approximately to plate 57 in the mouse atlas [27]. Scale bar = 100 μm.
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There was no significant effect of the light in the differ-

ent time conditions (T1-T4) in the saline-treated cases

(Bonferroni test: p>0.05). Hence, for clarity, the values of

these groups were pooled and are represented as a dot-

ted line across each of the graphs. By contrast, distinct

changes in locomotor activity were evident between the

MPTP and MPTP-NIr groups; their values are hence

represented as individual columns at each time point

(Figure 4). The results for each locomotor activity in the

two strains will be considered separately below.

For Balb/c mice, at T1 (after first MPTP injection and

NIr treatment) and T2 (after second NIr treatment) the

locomotor activities in the MPTP and MPTP-NIr groups

were similar. There were no significant effects of the

light in these two time conditions in the MPTP-treated

cases (Bonferroni test: p>0.05; Figure 4A,B,C). The ef-

fects of MPTP were immediate; compared to the saline

control groups, both groups showed less velocity

(Figure 4A) and high mobility (Figure 4B) and greater

immobility (Figure 4C) at T1. By T2, there was consider-

able recovery of each locomotor activity in both MPTP

and MPTP-NIr groups, with their values returning to con-

trol levels (Figure 4A,B,C). At T3 (after second MPTP in-

jection and third NIr treatment) and T4 (after fourth NIr

treatment), unlike at T1 and T2, there were significant ef-

fects of the light in the MPTP-treated cases (Bonferroni

test: p<0.05; Figure 4A,B,C). At T3 and T4, the MPTP-

NIr group had greater velocity (Figure 4A) and high mo-

bility (Figure 4B) and less immobility (Figure 4C) than the

MPTP group. Compared to the saline control groups, the

Figure 4 Graphs showing the results of behavioural analysis of Balb/c (A,B,C) or C57BL/6 (A’,B’,C’) mice. The behavioural analysis included

the locomotor activities of velocity (A,A’), high mobility (B,B’) and immobility (C,C’). Columns show the mean ± standard error of each group;

black columns show results for MPTP groups, while grey columns show results for MPTP-NIr groups. There were ten animals per group. The

asterisks (*) within the MPTP-NIr columns (A,B,C) represent p<0.05 level of significant difference in number from the MPTP group. The locomotor

activity in the Saline and Saline-NIr groups were very similar in both strains; their values were pooled and represented as a dotted line across

each of the graphs. Each animal was tested at four time points; (T1) after first MPTP or saline injection and NIr (or no) treatment; (T2) after second

NIr (or no) treatment; (T3) after second MPTP or saline injection and third NIr (or no) treatment; (T4) after fourth NIr (or no) treatment.
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MPTP-NIr group had similar locomotor activities at T3

and in particular, at T4 (Figure 4A,B,C). By contrast, the

MPTP group at both T3 and T4, still had considerably less

velocity (Figure 4A) and high mobility (Figure 4B) and

greater immobility (Figure 4C) than the saline controls.

For C57BL/6 mice, there were distinct differences in

locomotor activity compared to Balb/c mice. First, in

C57BL/6 mice, there were no significant effects of the

light at all time conditions (T1-T4) in the MPTP-treated

cases (Bonferroni test: p>0.05; Figure 4A’,B’,C’); for Balb/c

mice, there was no effect of the light in the MPTP-

treated cases at T1 and T2 only (Figure 4A,B,C). Second,

the MPTP and MPTP-NIr groups had considerably less

velocity (Figure 4A’) and high mobility (Figure 4B’) and

greater immobility (Figure 4C’) than the saline controls

at the majority of the time points. In contrast to Balb/c

mice, there was no evidence of NIr-specific recovery of

function at T3 and T4; instead MPTP-treated mice

appeared to have some recovery after the second MPTP

injection (T4; Figure 4A’,B’,C’) irrespective of whether or

not they received NIr treatment. Finally, control C57BL/

6 mice showed lower baseline velocity (Figure 4A’) and

high mobility (Figure 4B’), but also less immobility

(Figure 4C’), than Balb/c mice.

In order to explore whether these behavioural (and

cellular) differences between the two strains was due to

pigmentation, we compared the degree of NIr penetra-

tion across the skin and fur in the different strains. In

the Balb/c mice, we found that NIr penetration in the

unshaved cases was 16% while in the shaved cases, it

was 28%. In the C57BL/6 mice, NIr penetration was less,

being 19% in the shaved cases and, quite remarkably,

only 0.2% in the unshaved cases. Hence, these measure-

ments indicated that the pigmented fur of the C57BL/6

mice absorbed almost all the NIr, hence limiting severely

its penetration through to the brain.

Discussion

We have two main findings. First, the MPTP-NIr group

of Balb/c mice had greater locomotor activity and, as

shown previously (Shaw et al. 2010), more surviving

dopaminergic cells than the MPTP group. Second, these

differences in cell survival and locomotor activity be-

tween the two groups were not as clear in C57BL/6

mice. Overall, our results indicated that Balb/c mice

were a better model for exploring the neuroprotective

effects of NIr after MPTP treatment than C57BL/6 mice.

Comparison with previous studies

This study offers the first detailed description of changes

in locomotor activity in MPTP-treated mice after NIr

treatment. Whelan and colleagues [13] described briefly

that NIr pre-treatment, but not post-treatment, improved

locomotor activity in an acute MPTP mouse model (strain

was not mentioned in that report). Our results in Balb/c

mice confirms, at least in part, the results of that study.

There have been several previous reports on the behav-

ioural and cellular changes in Balb/c and C57BL/6 mice

after MPTP insult [17,18]. We confirm the findings of

these reports in that there were fewer TH+ cells in the

SNc of C57BL/6 mice than Balb/c mice (eg, saline con-

trols) and that MPTP had a greater effect on locomotor

activity in C57BL/6 than in Balb/c mice; further that Balb/

c mice had some NIr-induced recovery of activity while

C57BL/6 mice did not. Our results offered some differ-

ences to the previous studies, however. In particular,

previous studies using non-stereological methods have

reported a greater MPTP-induced cell loss in C57BL/6

compared to Balb/c mice [17,18]; our stereological ana-

lysis, by contrast, revealed a comparable loss in the two

strains (~30%). The reason for these differences is not

clear but they may reflect, for example, differences in our

MPTP regimes (eg 50 mg/kg over 24 hrs vs. 60 mg/kg

over 8 hrs) [17], methods of MPTP delivery (eg, intraperi-

toneal vs. intraventricular) [18] and methods of cell ana-

lysis (stereological vs. non-stereological) [17,18]. Finally,

our control Balb/c mice had slightly better locomotor ac-

tivity at baseline than the C57BL/6 mice, while Sedelis and

colleagues [17] have reported the opposite. This discrep-

ancy may reflect differences in the behavioural tests used

and our measures of locomotor activity. For example, we

measured velocity, high mobility and immobility using

contrast changes, while the previous study recorded dis-

tance travelled with laser beam technology. Despite these

differences in our studies, the key issue is that our MPTP

regime was effective in generating TH+ cell loss and be-

havioural changes in the two strains, thereby allowing an

assessment of neuroprotection by NIr treatment.

It should be noted that in this study, we did not

undertake an analysis of the density of TH+ terminals in

the striatum, nor of the locomotive activity of the mice

after six days, the end of the experimental period. Previ-

ous studies have shown a complete recovery of TH+

terminal density in the striatum [18] and locomotive ac-

tivity after six days in Balb/c mice using an acute model

[19]; in C57BL/6 mice, although there are fewer TH+

terminals in the striatum of MPTP-treated animals com-

pared to controls at this stage [18], the locomotive activ-

ity has been shown to return to control levels [19].

Hence, from these data, there would have been no point

for us to explore these issues, mainly because any impact

of NIr treatment - the central issue considered in the

present study - would not have been elucidated.

NIr treatment improved locomotor activity after MPTP

insult in Balb/c mice

Our results showed that NIr treatment improved loco-

motor activity after MPTP insult in Balb/c mice, hence
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confirming the histological findings that there were

more dopaminergic cells in MPTP-NIr than in MPTP

groups [11,12]. The beneficial effect of NIr treatment

was not immediate. It was only after the second MPTP

injection (and subsequent NIr treatments; T3 and T4)

that a clear difference in locomotor activity was recorded

between the MPTP-NIr and MPTP groups. Before then

(T1 and T2), no differences were evident between these

two groups (with the MPTP effect being similar and im-

mediate in both groups). Hence, it appears that it takes

several doses of NIr treatment to elicit a beneficial out-

come. The mitochondria of the dopaminergic cells, after

the third and fourth NIr treatment, may have been stim-

ulated further to increase ATP synthesis and reduce the

production of reactive oxygen species [14,15], thereby

being better prepared to protect against the second

MPTP insult. It is noteworthy that Whelan and col-

leagues [13] reported improvement of locomotor activity

in MPTP-treated mice after several NIr pre-treatments,

but not after a single post-treatment. Indeed, previous

studies reporting beneficial results in the majority of sys-

tems have used multiple NIr treatments of ~4 J/cm2

[14,15]. There may well be a therapeutic window for NIr

treatment and this may vary for different animals and

systems [15].

Strain differences in the effectiveness of NIr treatment

after MPTP insult

Somewhat surprisingly, the beneficial effects of NIr

treatment after MPTP insult were not as clear in the

C57BL/6 mice. When compared to the Balb/c mice, the

C57BL/6 mice had a smaller increase in dopaminergic

cell number (20% vs 30%) and no clear improvement in

locomotor activity in the MPTP-NIr compared to the

MPTP group, at least over the later part of the survival

period used in this study. Future studies may explore if

there is a linear correlation between cell pathology and

behavioural decline (and recovery) [28] in different

strains of MPTP-treated mice after NIr treatment in the

long-term; further, it would be of interest to examine if

the finer details of motor disturbances in mice after

MPTP treatment are improved after NIr treatment in

the different mouse strains [29].

The reason for this strain difference was likely to be

due to the pigmented fur of the C57BL/6 mice absorbing

the majority of the NIr, preventing penetration into the

brain. Our measurements indicated that in unshaved

C57BL/6 mice, unlike in the shaved C57BL/6 and Balb/c

(shaved and unshaved), there was very little NIr penetra-

tion (>1%). Melanin is certainly capable of absorbing the

670 nm wavelength [30] and that seemed sufficient to

limit neuroprotection in the C57BL/6 mice. It is of

course possible that, in addition to these penetration is-

sues, the albino and pigmented strains have distinct

cellular enzyme differences also, responsible for the dif-

ferent responses to NIr-induced metabolic (and there-

fore therapeutic) changes.

Conclusions

In summary, although our results are in an animal

model of the disease, a key point is that NIr appeared to

have neuroprotective effects on structures deep in the

brain. Our findings that NIr treatment reduced MPTP-

induced degeneration among midbrain dopaminergic

cells and improved locomotor activity in Balb/c mice,

due to greater NIr penetration through skin and fur,

form templates for future endeavour. It remains to be

determined if NIr, when applied from an external device,

is able to penetrate the thicker skull and meningeal

layers, together with the greater mass of brain paren-

chyma to reach the SNc of humans.
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