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Abstract

TiO2 coated surfaces are increasingly studied for their ability to inactivate microorganisms. 

The activity of glass coated with thin films of TiO2, CuO and hybrid CuO/TiO2 prepared by 

atmospheric Chemical Vapour Deposition (Ap-CVD) and TiO2 prepared by a sol-gel 

process was investigated using the inactivation of bacteriophage T4 as a model for 

inactivation of viruses. The chemical oxidising activity was also determined by measuring 

stearic acid oxidation. The results showed that the rate of inactivation of bacteriophage T4 

increased with increasing chemical oxidising activity with the maximum rate obtained on 

highly active sol-gel preparations. However these were delicate and easily damaged unlike 

the Ap-CVD coatings. Inactivation rates were highest on CuO and CuO/TiO2 which had the 

lowest chemical oxidising activities. The inactivation of T4 was higher than that of 

Escherichia coli on low activity surfaces. The combination of photocatalysis and toxicity of 

copper acted synergistically to inactivate bacteriophage T4 and retained some self-

cleaning activity. The presence of phosphate ions slowed inactivation but NaCl had no 

effect. The results show that TiO2/CuO coated surfaces are highly antiviral and may have 

applications in the food and healthcare industries.
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INTRODUCTION

The photocatalytic properties of TiO2 were first reported by Fujushima and Honda (1972) 

and have subsequently been the subject of much research, especially for the 

photochemical oxidation of pollutants.  The photochemistry has been reviewed by Mills 

and Le Hunte (1997) and Hashimoto et al. (2005). The irradiation of TiO2 with ultra-violet 

light promotes electrons from the valence band to the conduction band leaving a positively 

charged hole. The electrons and holes migrate and, at the surface, react to give reactive 

oxygen species such as ·OH and O2
-. These in solution can react to give H2O2. The use of 

UVA activated TiO2 for disinfection was first proposed by Matsunaga and co-workers 

(Matsunaga et al., 1985). There have since been reports of the use of photocatalysis for 

the destruction of bacteria, fungi and algae. Most of the early work used suspensions of 

TiO2 and planktonic organisms (Reviewed by Blake et al., 1999). There have been 

relatively few reports on the antiviral activity of TiO2 coated surfaces. The photocatalytic 

killing of Escherichia coli bacteriophage ms2 was demonstrated by Sjogren and Sierka, 

1994. They were able to reduce the pfu count of a suspension of ms2 phage by a factor of 

10 with TiO2 and 103 with TiO2 in the presence of Fe3(SO4)2 with a 10 min irradiation at 2 

mW m2 in a continuously stirred batch reactor. The increased activity in the presence of 

Fe3(SO4)2 was reported to be due to increased production of free radicals via the Fenton 

reaction. Phage ms2 was killed more slowly in suspension than E. coli (Cho, 2005). 

Poliovirus 1 was inactivated by a suspension of TiO2 in treated wastewater and a 2 log 

inactivation occurred in 30 min starting with 3000 pfu ml-1 although the intensity of UV was 

not quoted (Watts et al., 1995). The inactivation of Lactobacillus phage PL1 was reported 

by Kakita et al., 1997 using a ceramic preparation coated with a mixture of oxides 

including TiO2 and AgO. The photocatalytic inactivation of coliphage Qβ in a flow through 

reactor over immobilised TiO2 (3 log reduction after 3 h) was slower than with suspended 
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TiO2 (4 log reduction after 30 min) and broth introduced with the phage was shown to have 

an inhibitory effect (Lee et al., 1997, Otaki et al., 2000). Belhacova et al. (1999) used a 

similar system to study the inactivation of coliphage λ and a 4 log reduction was seen in 3 

h but the phage was also sensitive to the UV used with a 4 log reduction after 4 h. A 6 log 

inactivation of phage ms2 and a 4 log reduction in an unspecified Bacteroides fragilis

phage was seen in 60 min with an irradiation intensity of 5 mW m-2 in suspension (Armon 

et al., 1998). Intermittent irradiation gave a faster rate of inactivation than continuous 

irradiation (Laot et al., 1999). Although the latter authors used immobilised TiO2, the 

inactivation experiments were studied in suspension. 

More recently, research has examined the biocidal activity of thin films of titania anchored 

to solid surfaces (Kikuchi et al., 1997, Sunada et al., 1998, Kuhn et al., 2003, Yu et al., 

2003) with a view to producing self-disinfecting surfaces. Viruses can be transmitted from 

hands to inanimate surfaces and vice versa (Ansari et al., 1988, 1991) and contaminated 

surfaces are implicated in the transmission of e.g. noroviruses (Widdowson et al., 2005). 

Thus the ability to eliminate viruses on photocatalytic self-cleaning /self sterilising surfaces 

may provide a useful additional mechanism of control of transmission of viral diseases 

along with conventional disinfection methods. A 2.2 log reduction in a suspension of E. coli

phage Qβ was obtained after 1 h irradiation with near UV black light at an intensity of 

3.6x10-3  W/cm2 on TiO2 immobilized on ceramic tiles (Lee et al., 1997). Kakita et al. (2000) 

showed killing of Lactobacillus phage PL1 by thin films of TiO2 suspended in liquid and the 

mechanism of killing was reported to be via initial damage to protein of the capsid by ·OH, 

followed by damage to the phage DNA inside the particles (Kashiga et al., 2001).

Copper is well characterised for its antiviral activity (Sagripanti., 1992, Sagripanti et al 

1993, Sagripanti and Lightfoote, 1996, Sagripanti et al 1997). In this report we 

demonstrate the antiviral activity in thin films on glass surfaces coated with TiO2, CuO and 

TiO2/CuO using bacteriophage T4 as a model and describe the relative killing efficiencies 
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of different TiO2 coated surfaces compared to killing of E. coli on TiO2. The photocatalytic 

activity of the various films to ‘self-clean’ were also assessed using stearic acid as a model 

pollutant.

MATERIALS AND METHODS

Microorganisms and culture conditions

Escherichia coli B NCIMB 9482, E. coli ATCC 10536 and bacteriophage T4 were obtained 

from the National Collection of Industrial and Marine Bacteria, Aberdeen UK. E. coli strains 

were sub-cultured onto Nutrient Agar (Oxoid, Basingstoke, UK) and incubated at 37˚ C for 

24h. Cultures were resuspended in Nutrient Broth (Oxoid) and kept on Microban® beads 

(TCS Ltd Merseyside, UK) at –70˚C. Prior to use, one bead was sub-cultured onto Nutrient 

Agar and incubated at 37º C for 24h. Broth cultures (100 ml Nutrient Broth in 250 ml 

Erlenmeyer flasks) were inoculated and incubated at 200 rpm and 37˚C for 16 h in a New 

Brunswick G24 orbital incubator (New Brunswick Scientific, St Albans, UK).

Stock bacteriophage suspension was produced by addition of bacteriophage T4 to a 24 h 

culture of E. coli B (NCIMB 9482) and incubation at 37˚C for a further 24 h. Remaining 

cells and cell debris were removed by centrifugation at 5000 x g for 10 min. Bacteriophage 

were centrifuged by centrifugation for 30 min at 20,000 x g in a Sorvall RC6 centrifuge. 

The pellet was washed 3x by centrifugation and resuspension, plaque count determined 

and diluted appropriately and stored at -20˚C. 

Plaque assay

Phage was assayed by the double agar layer method (Gratia, 1936). Phage suspension 

(0.1 ml) was mixed with 0.2 ml overnight E. coli culture in nutrient broth (approx 2 x 108 cfu 
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ml-1) and 5 ml molten soft agar (Nutrient broth + 6g l-1 agar; Oxoid, UK) and poured on to 

surface of a nutrient agar plate. When set the plates were incubated at 37˚C for 24 h and 

plaques counted.

TiO2 coated glass

Samples of two commercially available CVD coated glasses were obtained from two 

different manufacturers.  Both samples had a 15 nm thick TiO2 layer and were cut into 20 

mm squares. Preparation of CuO and CuO -TiO2 dual layer coated glass was via 

atmospheric pressure chemical vapour deposition (Ap-CVD) as previously described 

(Yates et al., 2007). Sample cleaning was performed either by ultra-sonication for 40 min 

in 40 ml of 100% methanol in an ultrasonic bath (Beckton-Dickinson, NJ, USA) or by gently 

shaking in methanol. Samples were removed aseptically and placed in UVA transparent 

disposable plastic Petri dishes (Sterilin), film side uppermost. The coated samples were 

then pre-irradiated by placing them under a 40 W UVA bulb with a 2.24x10-3 W cm2 output 

for 24 h. For some control experiments samples of the TiO2 coated glass were inactivated 

by autoclaving at 121˚C for 30 min, otherwise float glass was used as a control.

Samples of glass coated with a 400 nm layer of Degussa P-25 TiO2 by a sol-gel process 

(Mills et al., 2003) were obtained from Professor Andrew Mills, Strathclyde University, UK.

UVA inactivation

Inactivation of bacteriophage

Bacteriophage suspension was diluted to give approximately 2 x 108 pfu ml-1. Fifty µl was 

added to the test samples and spread out using the edge of a flame sterilized microscope 

cover slip. Two ml sterile distilled water was added to the dishes to prevent desiccation. 

Four samples were exposed to UVA using UVA lamps at 2.24x10-3   W cm-2. A sample was 

removed immediately and remaining samples removed at intervals. Four samples exposed 
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to UVA but covered with a polylaminar UVA protection film (Anglia Window Films, UK) to 

block UVA but not infra-red, acted as controls. 

The samples were then immersed in 20 ml of sterile de-ionised water and vortexed for 60 

sec to resuspend the bacteriophage. A viability count was performed by serial dilution and 

plaque assay.

Inactivation of bacteria

A frozen bead of Escherichia coli ATCC 10536 was thawed and subcultured onto nutrient 

agar (Oxoid) and incubated at 37˚C for 24 h and stored at 5°C. A 50 µl loopful was 

inoculated in to 20ml Iso-sensitest broth (Oxoid) and incubated for 24 h at 37° C. Cultures 

were centrifuged at 5000 x g for 10 min in a bench centrifuge and the cells were washed in 

de-ionised water three times by centrifugation and re-suspension. Cultures were re-

suspended in water and adjusted to OD 0.5 at 600 nm in a spectrophotometer (Camspec, 

M330, Cambridge, UK) to give approx. 2x108 colony forming units (cfu) ml-1. Fifty µl were 

inoculated on to each test sample and spread out and irradiated and resuspended as 

before. A viability count was performed by serial dilution and plating onto nutrient agar in 

triplicate and incubation at 37°C for 48 h.

Photocatalytic oxidation of stearic acid

Stearic acid provides a good model for typical organic surface contamination and as such 

was used to monitor the extent of photocatalytic activity in the various films.  The

degradation of stearic acid was followed by FTIR (Bruker, Vector 22: Yates et al., 2006).  

Stearic acid (100 µl of 10 mmol l-1 in methanol) was spun coated onto the sample. After 

drying in an oven the sample was exposed to UVA (365 nm) with an intensity of 3 x 10-3W 

cm-2.  The activity of the film was measured by the rate of reduction in selected stearic acid 

peaks in the IR region (3000 – 2800 cm-1) in cm-1 min-1. 
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Reproducibility

Each experiment was performed in triplicate and mean, standard deviations and T-tests 

performed using Micosoft Excel.

RESULTS

The sol-gel sample had the highest photocatalytic activity on stearic acid (0.3875 

cm-1min-1), followed by commercial sample 2 (0.0185 cm-1min-1). Commercial sample 1 

had the lowest activity of the plain TiO2 samples (0.0101 cm-1min-1). The CuO-TiO2 dual 

layer and CuO samples both had similar and relatively low activities (0.0015 and 0.0017 

cm-1min-1 respectively).  

In order to show to show the effects of UVA irradiation alone on the microbial coated 

samples, heat generated from the lamps, infra-red irradiation from the lamps, desiccation 

or of suspension of in deionised water during the timescale of the experiments on 

bacteriophage T4, inactivated TiO2 coated glass was used as a control. The effects of 

UVA irradiation on phage viability are shown in Figure 1a. There was a one log reduction 

after 4 h which was a greater reduction than in the controls (with UVA blocked) which 

showed that there was some killing effect of the UVA alone. However, UVA did not 

completely kill the phage within the time of the experiments. 

The inactivation of bacteriophage T4 on commercial sample 1 is also shown in Figure 1a. 

There was a 2.5 log reduction after 4 h in the UVA irradiated samples whereas there was 

only a slight reduction in viability on the controls (less than 1 log). The experiments were 

relatively reproducible and this reduction was statistically significant when compared to the 

controls (p<0.05). The rate of killing on commercial glass 2 was higher and a >6 log 

reduction was obtained after 3 h (Figure 1a). Again this was significantly different from the 

controls (P<0.05).
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However, when sol-gel coated P25 glass was used, the results were less reproducible and 

lower rate of killing was obtained in some experiments with a 6 log killing observed in 2-4 h 

on different samples (Figure 1b). Data for separate runs are given to show the variation 

between samples. Casual observation of the slides after the experiment showed some 

signs of damage to the coatings. The slides were examined by SEM there was clear 

evidence of damage to the surfaces with pits and grooves, some 10-100 µm wide, through 

the TiO2 layer. The commercial samples had thinner layers of TiO2 (15 nm) and showed no 

apparent damage during the assay process (not shown).  The commercial samples were 

produced by CVD, which leads to hard, well adhered coatings.  Sol-gel films by the nature 

of the method of manufacture generally tend to be more fragile and optically opaque (Mills 

2003). Testing of samples cleaned by shaking rather than ultrasonication showed less 

damage and reproducible reductions in phage titre of >105 in 2 h (data not shown).

The killing of E.coli on TiO2 followed a similar pattern to T4.  There was a slight reduction 

on plain glass which was not significantly different from deactivated TiO2 coated glass 

(Figure 1c). On commercial sample 1 there was only a slight and not significant difference 

between test and controls even after 4 h (P>0.05; Figure 1c) whereas a >5 log reduction 

was seen on sample 2 after 3 h (P<0.05; Figure 1c). The sol-gel samples were not tested 

with E. coli because of the damage to the coating.

The effects of resuspension medium on killing are shown in Figure 2.  There was no 

decrease in the controls when water was used to resuspend the phage but there was a 1.5 

log reduction in the controls with both saline and PBS (p<0.05). The test run with saline 

gave a >5 log reduction after 4h and with water and saline there were small numbers of 

survivors giving a >4 log reduction, significantly different from the controls (p<0.05).

Inactivation on CVD CuO coated samples was more rapid with a >6 log reduction after 80 

min with similar rates for both water and saline. The starting plaque count was 100-fold 

higher in these experiments. Killing with PBS was slower but there was no significant 
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difference after 80 min (P>0.05; Figure 3a).  On TiO2 over CuO the rate of killing was 

higher with both water and saline giving a >9 log kill after 80 min (Figure 3b). The rate of 

killing was significantly slower with PBS and there was only a 7 log reduction after 80 min 

(P<0.05). There was a 2 log reduction in the controls but there were no significant 

differences after 80 min (P>0.05).

Discussion

The sol-gel TiO2 samples had the highest photocatalytic activity. This is probably related to 

the thickness of the coating which gives a greater UV absorption and hence increased 

activity (Jung, 2005) and to the increased surface area due to increased surface 

roughness, allowing more efficient exposure of the stearic acid on the TiO2 surface. The 

sol-gel film had a much rougher surface (Ra=25 nm) and hence surface area than that of 

either of the commercial samples (Ra=2.6 nm and Ra=2.9 nm for commercial samples 1 

and 2 respectively (measured using a Dektak 3ST surface profiler). As the commercial 

samples were of similar thickness and roughness, differences in activity are probably 

related to the inherent nature of the films.  These differences could relate to low levels of 

dopants such as Na which are known to de-activate TiO2 (Aubry et al., 2007). CuO and 

TiO2-CuO had 10-fold lower activity than those for TiO2. Previous analysis established 

that, although the dual sample was deposited firstly with CuO and then TiO2, the final 

result was of a surface of mainly Cu2O and CuO on the surface with only a small amount 

of TiO2 (Yates et al. unpublished data). 

The TiO2 coated surfaces were capable of inactivating bacteriophage T4 in thin surface 

films. Both commercially available CVD coated glasses showed killing of bacteriophage T4 

and E. coli and sample 2 was able to achieve total killing after 3 h. These samples were 

more robust than the sol-gel coated samples tested which, although having a much higher 

chemical oxidising activity, had unreproducible killing times of 2-4 h. This was probably 
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due to damage to the coating during testing, the uneven surface resulting in uneven 

spread of liquid might affect reproducibility if surface defects are spread across the surface 

in an unreproducible and uncharacterised manner.

Previous work has suggested that the killing mechanisms of UV activated TiO2 may be 

different for bacteria and viruses, at least in suspension. Sogren and Sierka (1994) 

showed that E. coli was killed more rapidly than ms2 and Cho et al., (2005) showed that 

free ·OH in suspension were more active at killing ms2 whereas surface bound radicals, 

superoxide and H2O2 were implicated in killing of E. coli as well as free ·OH . Inactivation 

of Lactobacillus phage PL-1 occurred via initial damage to coat proteins followed by attack 

on the DNA (Kashiga et al., 2001). Inactivation of bacteria is probably due to membrane 

damage via lipid peroxidation (Kiwi and Nadtochenko, 2005). In the present study, the 

rates of killing of bacteriophage T4 and E. coli were similar on sample 2 but T4 was more 

sensitive than E. coli on sample 1. This may have been because the killing mechanisms 

were different. Studies on phage inactivation in suspension suggest that most phage 

particles are killed when bound to TiO2 particles. (Koizumi and Tyer, 2002). For the 

inactivation of bacteria in suspension free radicals are probably only involved when 

particles of TiO2 are attached to the surface of the bacteria (Horie et al., 1998a, b). H2O2

production may be required for killing of bacteria in suspension. On thin films, as in the 

present experiments, most organisms will be in contact with the surface, especially at low 

cell densities. The effects of use of different resuspension media showed that saline and 

water had similar kill rates but that PBS slowed the rate of killing, particularly on surfaces 

with TiO2 and dual layers, possibly by inhibiting contact between the phage and the 

surface. The inhibition of photocatalytic killing of bacteriophage ms2 in suspension by 

phosphate has been attributed to inhibition of binding of phage to the TiO2 particles by the 

phosphate ions (Koizumi and Taya, 2002). Phosphate has also been shown to reduce the 
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rate of photocatalytic killing of bacteria in suspension (Arana et al., 2002) by inhibiting 

contact between the bacteria and TiO2 particles (Gogoniat et al., 2006).

Comparison of the photocatalytic decomposition rates for stearic acid with the microbial 

killing rates showed no overall trend between chemically different samples.  The CuO and 

dual CuO-TiO2, although of comparatively low photoactivity, showed faster microbial killing 

rates than for the TiO2 samples.  Enhanced killing was probably due to a combination of 

copper oxides giving toxic Cu+/Cu2+ in solution and photocatalysis. However, considering 

just the three TiO2 samples, it can be seen that the photocatalytic and biocidal activity 

increase in the same sample order.  Possibly the greater self-clean ability of the sol-gel 

film (when not mechanically damaged) is clearing the dead cells off faster, which may 

otherwise mask the surface and hence letting the more UV light reach the surface.  Also, 

this effect may be a small contributory part in reducing the cell killing time for the CuO-TiO2

sample over that of the CuO.

The results suggest that the inactivation of coliphage T4 may be a more sensitive method 

to detect photocatalytic killing than using bacteria as we were able to distinguish between 

the two commercial samples more clearly. The assay was easy to use and gave 

reproducible results. The use of bacteriophage is much safer than using pathogenic 

viruses. As far as the authors are aware, this is the first description of the killing of viruses 

on thin films of TiO2 and shows that such surfaces can be self-disinfecting. The results 

show that thin films of TiO2 are antiviral and inclusion of copper increases the rate of 

inactivation. The surfaces may have applications in infection control.

Acknowledgements

This work was supported by an EEC grant GRD1-2001-40791 “Advanced materials and 

manufacturing technologies for photocatalytically active surfaces”. We are grateful to Mr 

Page 12 of 23Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Alan Robinson and Dr Mark Nolan for stearic acid oxidation data and to Professor Andrew 

Mills, University of Strathclyde for providing the sol-gel coated samples and M. Faulkner 

from University of Manchester Materials Science Centre for the scanning electron 

microscopy.

References

Aubry, E., Ghazzal, M. N., Demange, V., Chaoui, N., Robert, D., Billard, A.,  Poisoning 

prevention of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of 

SiNx diffusion barriers. Surface & Coatings Technology 201 (2007) 7706-7712.

Ansari, S.A., Sattar, S. A., Springthorpe, S., Wells, G. A., Tostowaryk, W. Rotavirus 

survival on human hands and transfer to animate and non-porous inanimate surfaces. 

Journal of Clinical Microbiology 26: 1988; 1513-1518.

Ansari, S.A., Springthorpe, S., Sattar, S. A., Rivard, S., Rahman, M. Potential role of 

hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 

and rhinovirus 14. Journal of Clinical Microbiology 29: 1991:2115-2119

Araña J., Herrera Melián J.A., Doña Rodriguez J.M., González Diaz O., Viera A., Pérez 

Peña J., Marrero Sosa P.M., Espino Jiménez V. TiO2-photocatalysis as a tertiary treatment 

of naturally treated wastewater. Catalysis Today 76 (2002) 279–289.

Armon R., Laot N., Narkis N.and Neeman I. Photocatalytic inactivation of different bacteria 

and bacteriophages in drinking water at different TiO2 concentration with or without 

exposure to O2. Journal of Advanced Oxidation Technology, 3, 1998, 145-150.

Belhacova, L. Krysa, J Geryk, J and Jirkovsky J. Inactivation of microorganisms in a flow 

through photoreactor with an immobilised TiO2 layer. Journal of Chemical Technology and 

Biotechnology 74 (1999) 149-154.

Page 13 of 23 Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Blake D M, Maness P-C, Huang Z, Wolfrum E J, Jacoby W A, Huang J. Application of the 

photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. 

Sep Purif Meth. 1999; 28:1–50.

Cho,M., Chung,H Choi, W  Yoon, J. Different inactivation behaviours of ms-2 phage and 

Escherichia coli in TiO2 photocatalytic disinfection. Applied and Environmental icrobiology, 

71: 2005, 270–275.

Fujishima, A. and Honda, K (1972). Electrochemical photolysis of water at a 

semiconductor electrode. Nature 238, 37 - 38 (07 July 1972); doi:10.1038/238037a0

Gogniat G., Thyssen M., Denis M., Pulgarin C., Dukan S. The bactericidal effect of TiO2

photocatalysis involves adsorption onto catalyst and the loss of membrane integrity (2006) 

FEMS Microbiology Letters, 258 (1), pp. 18-24.

Gratia A. Des relations numeriques entre bacteries lysogenes et particules de 

bacteriophage. Annales de l’Institut Pasteur 57 (1936) 652-676.

Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: A historical overview and future 

prospects. Japanese Journal of Applied Physics. 44, 2005, 8269-8285.

Horie, Y, Taya, M and Tone, S (1998a). Effect of cell adsorption on photosterilization of 

Escherichia coli over titanium-dioxide-activated charcoal granules. J Chem Eng Japan 31, 

922-929.

Horie, Y, Taya, M and Tone, S (1998b) Evaluation of photocatalytic sterilisation rates of 

Escherichia coli in titanium dioxide slurry irradiated with various light sources. J Chem Eng 

Japan 31, 577-584.

Jung, S.-C, Kim, B.-J., Imaishi, N, Cho, Y.-I., Characterisation of a TiO2 photocatalyst film 

deposited by CVD and its photocatalytic activity, Chem.Vap. Deposition 11 (2005) 137-

141.

Page 14 of 23Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Kakita Y, Kashige N. Miake F, Watanabe K. Photocatalysis-dependent inactivation of 

Lactobacillus phage PL-1 by a ceramics preparation. Bioscience Biotechnology and 

Biochemistry 61: 1997;1947-1948.

Kakita Y, Obuchi, E, Nakano, K, Murata, K, Kuriowa, A, Miake F, Watanabe K. 

Photocatalytic inactivation of Lactobacillus PL-1 phages by a thin film of titania. Biocontrol 

Science, 5:2000;73-79.

Kashige N, Kakita Y, Nakashima Y, Miake F, Watanabe K. Mechanism of the 

photocatalytic inactivation of Lactobacillus casei phage PL-1 by titania thin film. Curr 

Microbiol. 2001;42:184-9.

Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., Fujishima, A. Photocatalytic bactericidal 

effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the 

effect. J Photochem Photobiol A Chem 106 (1997) 51-56.

Kiwi, J and Nadtochenko, V. Evidence for the mechanism of photocatalytic degradation of 

the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic 

spectroscopy. Langmuir 2005;21:4631-4641.

Koizumi, Y and Taya, M (2002). Photocatalytic inactivation rate of phage ms2 in titanium 

dioxide suspensions containing various ionic species. Biotechnology Letters 24; 459-462.

Kuhn K P., Chaberny I F, Massholder K, Stickler M, Benz V W, Sonntag H-G, Erdinger L. 

Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light 

Chemosphere 53 (2003) 71–77.

Laot, N. Narkis, N. Neeman, I. Vilanovic, D., Armon, R. TiO2 Photocatalytic Inactivation of 

Selected microorganisms under various conditions: sunlight, intermittent and variable 

irradiation intensity, CdS augmentation and entrapment of TiO2 into sol gel. J. Adv.Oxid. 

Technol. 4 (1999) 97.

Page 15 of 23 Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&itool=PubMed_Abstract&term=%22Watanabe+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&itool=PubMed_Abstract&term=%22Miake+F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&itool=PubMed_Abstract&term=%22Nakashima+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&itool=PubMed_Abstract&term=%22Kakita+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&itool=PubMed_Abstract&term=%22Kashige+N%22%5BAuthor%5D
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Watanabe+K&curr_doc=1/1&Form=FullRecordPage&doc=1/1
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Miake+F&curr_doc=1/1&Form=FullRecordPage&doc=1/1
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Kakita+Y&curr_doc=1/1&Form=FullRecordPage&doc=1/1
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Watanabe+K&curr_doc=1/1&Form=FullRecordPage&doc=1/1
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Miake+F&curr_doc=1/1&Form=FullRecordPage&doc=1/1
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Kashige+N&curr_doc=1/1&Form=FullRecordPage&doc=1/1
http://wos.isiknowledge.com/CIW.cgi?SID=C2eDHeGG1NLiaaNjHF4&Func=OneClickSearch&field=AU&val=Kakita+Y&curr_doc=1/1&Form=FullRecordPage&doc=1/1


F
o
r P

eer R
eview

Lee S., Nishida K., Otaki M. and Ohgaki S. Photocatalytic inactivation of phage Qβ by 

immobilized titanium dioxide mediated photocatalyst. Water Science and Technology 

35;1997; 101–106.

Mills, A., Le Hunte S. An overview of semiconductor photocatalysis. Journal of 

Photochemistry and Photobiology A: Chemistry 108 (1997) 1-35.

Mills A., Elliott N., Hill,G. Fallis, D. Durrant J R.. Willis, R. L. Preparation and 

characterisation of novel thick sol–gel titania film photocatalysts Photochem. Photobiol. 

Sci., 2003, 2, 591–596.

Mills A, Hill G, Bhopal, S., Parkin I.P., O’Neill, S.A., Thick titanium dioxide films for 

semiconductor photocatalysis, Photochem. PhotobiolA., 160 (2003) 185–194.

Otaki, M Hirata, T and Oghaki, S. Aqueous microorganisms inactivation by photocatalytic 

reaction. Water Science and Technology 42 (2000) 103-108.

Sagripanti, J.-L. 1992. Metal based formulations with high microbicidal activity. Appl. 

Environ. Microbiol. 58:3157–3162.

Sagripanti, J.-L., L. B. Routson, and C. D. Lytle. 1993. Virus inactivation by copper or iron 

ions alone and in the presence of peroxide. Appl. Environ. Microbiol. 59:4374–4376.

Sagripanti, J.-L., and M. M. Lightfoote. 1996. Cupric and ferric ions inactivate HIV. AIDS 

Res. Hum. Retroviruses 12:333–336.

Sagripanti, J.-L., L. B. Routson, Bonifacino, A.C, and C. D. Lytle (1997) Mechanism of 

Copper-Mediated Inactivation of Herpes Simplex Virus Antimicrob Agent Chemother, 41: 

812–817

Sunada K, Watanabe T, Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin 

film under weak UV light illumination. Environ Sci Technol. 2003 37:4785-9.

Watts, R J, Kong, S., Orr, M., Miller, G.C., Henry, B. E. Photocatalytic inactivation of 

coliform bacteria and viruses in secondary wastewater effluent. Water Research 29:1995; 

95-100.

Page 16 of 23Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Widdowson, M-A, Glass, R, Monroe, S, Beard, S, Bateman, JW, Lurie, P, Johnson, C. 

Probable transmission of norovirus on an airplane. JAMA 15:2005; 1859-1860.

Yates, H.M. Nolan, M.G. Sheel, D.W. Pemble, M.E. J. Photochem. Photobiol.A, 179 

(2006) 213.

Yu JC, Ho W, Lin J, Yip H, Wong PK. Photocatalytic activity, antibacterial effect, and 

photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci 

Technol. 2003; 37, 296-301.

Legends to Figures

Figure 1 Photocatalytic inactivation of bacteriophage T4 and Escherichia coli on 

TiO2 coated glass

Bacteriophage T4 suspension (50µl, 2 x 107pfu ml-1) was spread over the surface of 

cleaned and pre-activated 2 x 2 cm TiO2 coated glass squares in plastic Petri dishes and 

irradiated (365nm, 2.24 x 10-3 W cm-2). Glass squares were removed after different times 

and phage resuspended in water and viability determined by plaque assay after suitable 

dilution. Controls were covered with a UVA absorbing plastic film. Inactivated coated glass 

was also used as a control to study any loss of viability during the experiment. 

(a) Commercially available glass � inactivated glass test, � inactivated glass control, �

commercial sample 1 test, � commercial sample 1 control, � commercial sample 2 test, 

� commercial sample 2 control. 

(b) Photocatalytic inactivation of bacteriophage T4 on sol-gel TiO2 coated glass

� control, �  run 1 �, run 2 � , run 3 �.

(c) Escherichia coli suspension (50µl, 2 x 107cfu ml-1) was spread over the surface of 

cleaned and pre-activated 2 x 2 cm TiO2 coated glass squares in plastic Petri dishes and 

irradiated (365nm, 2.24 x 10-3 W cm-2). Glass squares were removed after different times 

and resuspended in water and viability determined by plate count after suitable dilution.
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Figure 2 Effects of resuspension medium on photocatalytic inactivation of 

bacteriophage T4 on commercial TiO2 coated glass. 

Phage was resuspended in water, saline or PBS and inactivated on commercial sample 2. 

�  water test, � water control, � saline test, � saline control,� PBS test, � PBS control.

Other details as for figure 1.

Figure 3 Effects of resuspension medium on inactivation of bacteriophage T4 on CVD 

CuO and hybrid CuO/TiO2 coated glass.

(a) CuO, (b) CuO - TiO2 hybrid

Other details as for figure 1. 

 

Page 18 of 23Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Page 19 of 23 Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Page 20 of 23Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Page 21 of 23 Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Page 22 of 23Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

Page 23 of 23 Applied Microbiology and Biotechnology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60


