Supplementary Infromation

Photochemical Behavior of Antibiotics Impacted by Complexation Effects of Concomitant Metals: A Case for Ciprofloxacin and Cu(II)[†]

Xiaoxuan Wei,^a Jingwen Chen,^{*a} Qing Xie,^a Siyu Zhang,^{ab} Yingjie Li,^a Yifei Zhang,^a and

Hongbin Xie^a

^a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of

Environmental Science and Technology, Dalian University of Technology, Dalian 116024,

China

^b Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied

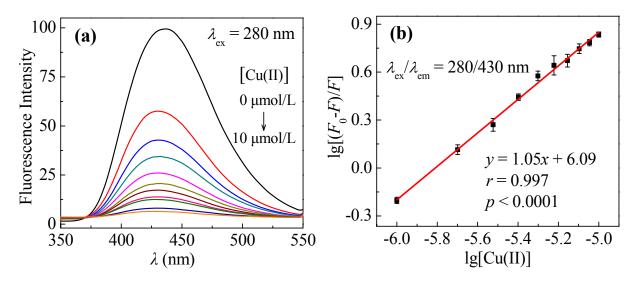
Ecology, Chinese Academy of Science, Shenyang 110016, China

(11 Pages, 3 Texts, 11 Figures, 4 Tables)

Text S1 Determining K_{f} for complexation of ciprofloxacin with Cu(II)

The fluorescence spectra of ciprofloxacin (CIP) with different concentrations of concomitant Cu(II) are shown in Fig. S1(a). The fluorescence intensity at $\lambda = 430$ nm was used to calculate the complex ratio (*n*) and the conditional stability constant (*K*_f'):

$$\lg\left[\frac{(F_{0}-F)}{F}\right] = n \lg[\operatorname{Cu}(\operatorname{II})] + \lg K_{\mathrm{f}}'$$
(S1)


where F_0 and F are the fluorescence intensities of CIP and the Cu(II)-CIP mixture, respectively. As shown in Fig. S1(b), n = 1.05 and $\lg K_f' = 6.09$, indicating that Cu(II) and CIP can form 1:1 complex with a conditional stability constant $K'_{f,Cu(CIP)} = 1.23 \times 10^6$ in the pH = 7.5 solutions.

[†] Electronic Supplementary Information (ESI) available: details of the total ion chromatograms and mass spectra of the identified products, the product yields, and the formation and degradation rate constants.

^{*} Correspondence to: Jingwen Chen, e-mail: jwchen@dlut.edu.cn; Phone: +86-411-8470 6269

^a Dalian University of Technology

^b Institute of Applied Ecology, Chinese Academy of Science

Fig. S1 Effects of Cu(II) on fluorescence intensity of CIP in pH = 7.5 solutions ([CIP] = 0.5μ mol/L, the error bars represent the 95% confidence interval, n = 3)

Text S2 Preparation of Cu(II)-CIP complex

CuCl₂ (2.5 mol/L, 20.0 μ L) was added to a solution of 1.0 mmol/L CIP (50 mL) with continuous stirring. pH of the mixed solution was adjusted to 7.5. The formed blue crystals of the complex were filtered, washed and dried to constant weight. Subsequently, the solid samples were analyzed by IR, and the results are shown in Fig. S3.

Text S3 DFT calculations of defluorination reactions

The structures of reactants (R), transition states (TS) and products (P) for the C–F bond cleavage of H₂CIP⁺ at the excited triplet state (T) and $[Cu(H_2CIP)(H_2O)_4]^{3+}$ at the excited tripquartet state (⁴T, where the quartet superscript refers to the total spin of the complex, T refers to the local multiplicity of H₂CIP⁺) are shown in Fig. S7. Results show that for H₂CIP⁺, the distance of C₁₂–F was elongated from 1.35 Å in R to 1.48 Å in the TS, and to 3.86 Å in the P, indicating the rupture of the C–F bond. $[Cu(H_2CIP)(H_2O)_4]^{3+}$ underwent a similar C–F bond cleavage process. The distance of C₁₂–F was elongated from 1.34 Å in the R to 1.93 Å in the TS, and to 3.83 Å in the P. Thus, the Cu(II) complexation has negligible effects on the C–F bond cleavage process of H₂CIP⁺.

For the reactions of H₂CIP⁺ at the T state and $[Cu(H_2CIP)(H_2O)_4]^{3+}$ at the ⁴T state with OH⁻ at its ground state (Fig. S8), two transition states (TS1 and TS2), and one intermediate (IM) were identified, indicating that the OH⁻ addition reactions are stepwise. The reactions are initiated by the formation of reactant complexes (RCs) between the CIP species and OH⁻ with different interactions. For H₂CIP⁺, intermolecular hydrogen bonds are formed between O in

OH⁻ and H₄₂ (connected with N₁₅) in CIP, whereas for $[Cu(H_2CIP)(H_2O)_4]^{3+}$, intermolecular hydrogen bonds are formed between O in OH⁻ and H₄₀ (connected with C₂₀) in CIP. The subsequent reaction processes are similar for the two species, that is, O in OH⁻ gradually approaches C₁₂ and the distances of C₁₂–O in the IM are reduced to 1.39 Å, falling in the range of a C–O single bond length. In the following step, the distances of C₁₂–F bonds are elongated to about 2.00 Å in TS2. Finally, F⁻ and hydroxyl products are formed, with the C₁₂–O bond length being < 1.35 Å and the C₁₂–F bond length being > 3.54 Å. Thus, the Cu(II) complexation can alter the OH⁻ addition reaction channels of H₂CIP⁺.

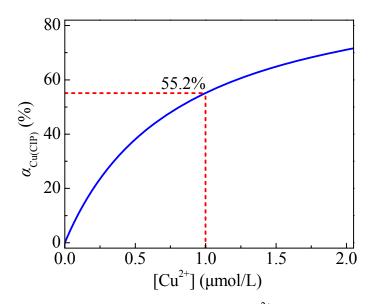


Fig. S2 Effects of equilibrium concentrations of Cu^{2+} on the fraction of Cu(CIP)

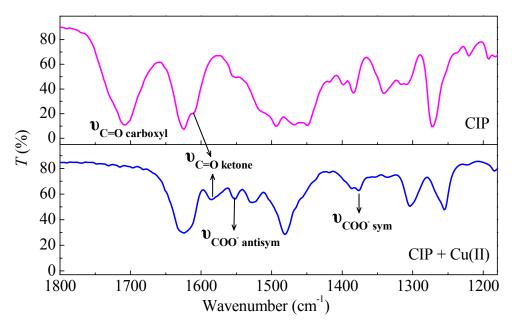
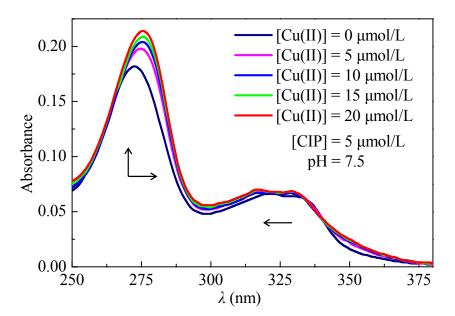
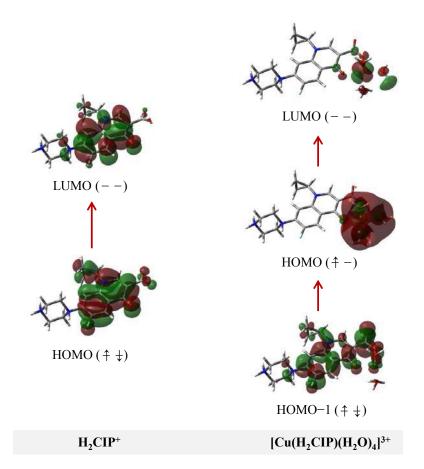
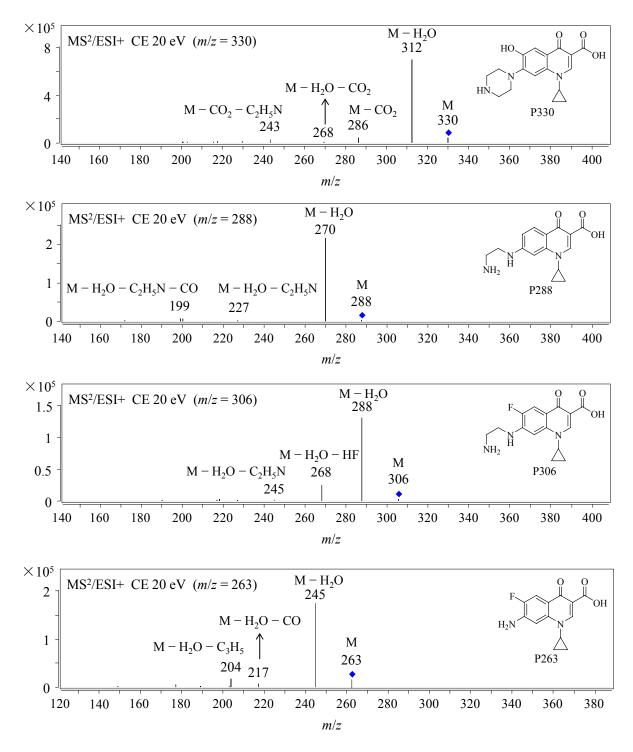
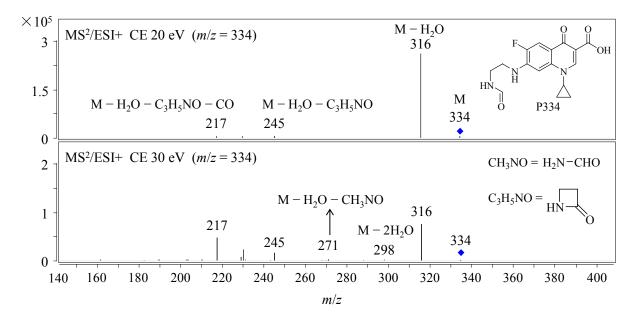
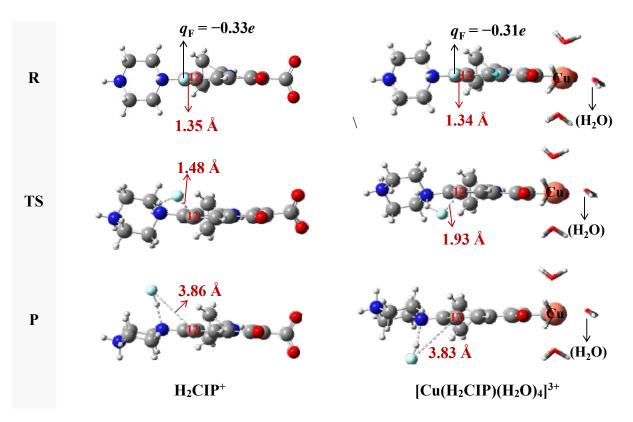
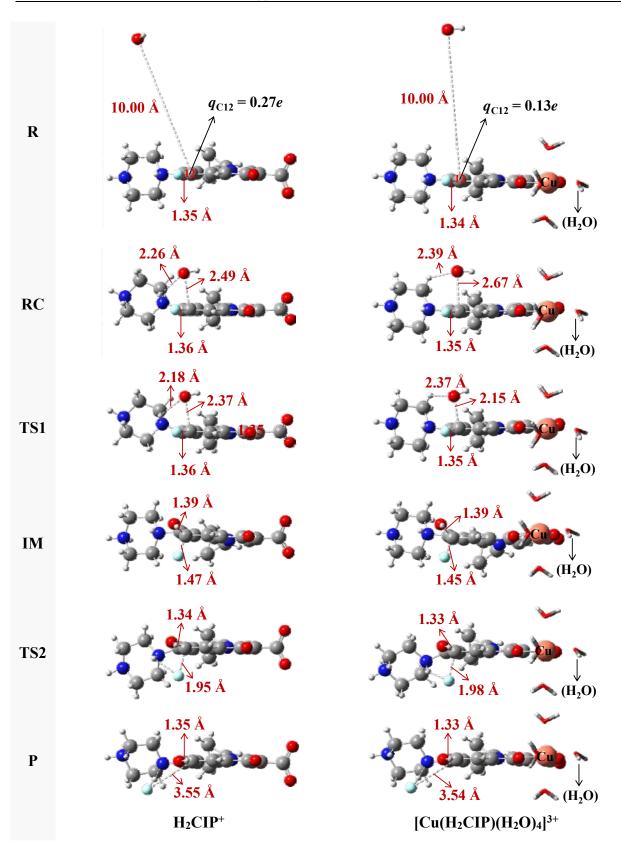


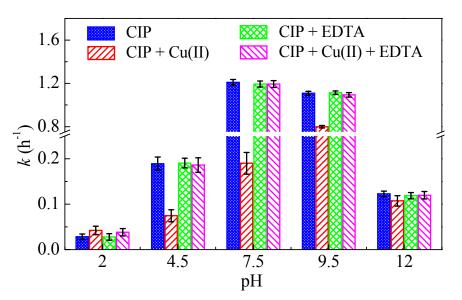
Fig. S3 IR spectra for CIP and mixture of CIP and Cu(II)

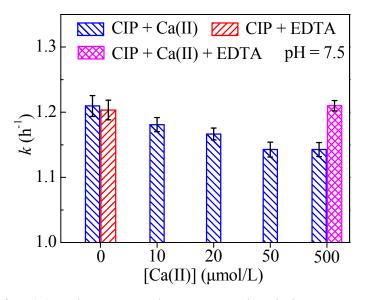





Fig. S4 Variation of UV-vis absorbance spectra of CIP with different [Cu(II)]


Fig. S5 Molecular orbital compositions and structures for the main absorption of H_2CIP^+ and $[Cu(H_2CIP)(H_2O)_4]^{3+}$ (Piperazine ring to the left, carboxylic group and Cu atom to the right of each molecule. HOMO stands for the highest occupied molecular orbital. HOMO-1 is the second highest occupied molecular orbital. LUMO stands for the lowest unoccupied molecular orbital)


Fig. S6 Mass spectral fragmentation patterns determined by triple quadrupole mass spectrometer for CIP and its photoproducts, where CE stands for collision energy


Continued Fig. S6 Mass spectral fragmentation patterns determined by triple quadrupole mass spectrometer for CIP and its photoproducts, where CE stands for collision energy


Fig. S7 Optimal structures of the reactants (R), transition states (TS) and products (P) for the C–F bond cleavage of H₂CIP⁺ at the T state and $[Cu(H_2CIP)(H_2O)_4]^{3+}$ at the ⁴T state (Dark gray: C; Blue: N; Red: O; Light gray: H; Light blue: F; Salmon pink: Cu. *q*_F stands for the atomic charges on atom F)

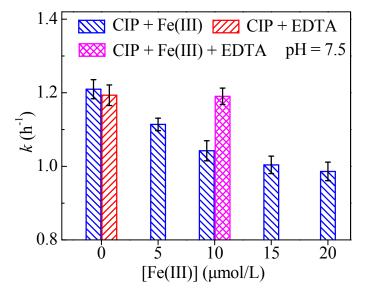

Fig. S8 Optimal structures of the reactants (R), reactant complexes (RC), transition states (TS), intermediates (IM) and products (P) for the reactions of H_2CIP^+ at the T state and $[Cu(H_2CIP)(H_2O)_4]^{3+}$ at the ⁴T state with OH⁻ at its ground state (Dark gray: C; Blue: N; Red: O; Light gray: H; Light blue: F; Salmon pink: Cu. *q*C12 stands for the atomic charges on C12)

Fig. S9 Effects of pH, Cu(II) and EDTA on the apparent photolytic rate constants (*k*) of CIP in aerated solutions, where $[CIP]_0 = 5 \ \mu mol/L$, $[Cu(II)] = 10 \ \mu mol/L$, $[EDTA] = 20 \ \mu mol/L$ and the error bars represent the 95% confidence interval, n = 3

Fig. S10 Effects of Ca(II) and EDTA on the apparent photolytic rate constants (*k*) of CIP in aerated solutions ([CIP]₀ = 5 μ mol/L, [EDTA] = 1 mmol/L. The error bars represent the 95% confidence interval, *n* = 3)

Fig. S11 Effects of Fe(III) and EDTA on the apparent photolytic rate constants (*k*) of CIP in aerated solutions ([CIP]₀ = 5 μ mol/L, [EDTA] = 20 μ mol/L. The error bars represent the 95% confidence interval, *n* = 3)

λ (nm)	Orbital Components*	Oscillator Strengths				
H_2CIP^+						
322.3	$H \rightarrow L (0.59)$	0.118				
273.8	H→L+1 (0.66)	0.158				
$[Cu(H_2CIP)(H_2O)_4]^{3+}$						
315.5	H−1→H (0.69); H→L (0.68)	0.244				
278.6	$H-1 \rightarrow L+1 (0.62); H \rightarrow L+1 (0.63)$	0.106				

Table S1 Main light absorption wavelength (λ , nm), orbital compositions, and oscillator strengths of H₂CIP⁺ and [Cu(H₂CIP)(H₂O)₄]³⁺

*The main orbital components of the absorptions are given relative to the highest occupied (H) and lowest unoccupied (L) molecular orbitals and their respective contributions.

Name	Proposed formula [M + H] ⁺	Experimental mass (m/z)	Calculated mass (m/z)	Error (ppm)	DBE*
CIP	C17H19FN3O3	332.1400	332.1405	1.50	10
P330	$C_{17}H_{20}N_{3}O_{4}$	330.1441	330.1448	2.23	10
P288	C15H18N3O3	288.1335	288.1343	2.67	9
P306	C15H17FN3O3	306.1243	306.1248	1.79	9
P334	C16H17FN3O4	334.1197	334.1198	0.18	10
P263	C13H12FN2O3	263.0825	263.0826	0.56	9

 Table S2 Accurate mass measurements determined by TOF mass spectrometer for CIP and its

 photoproducts

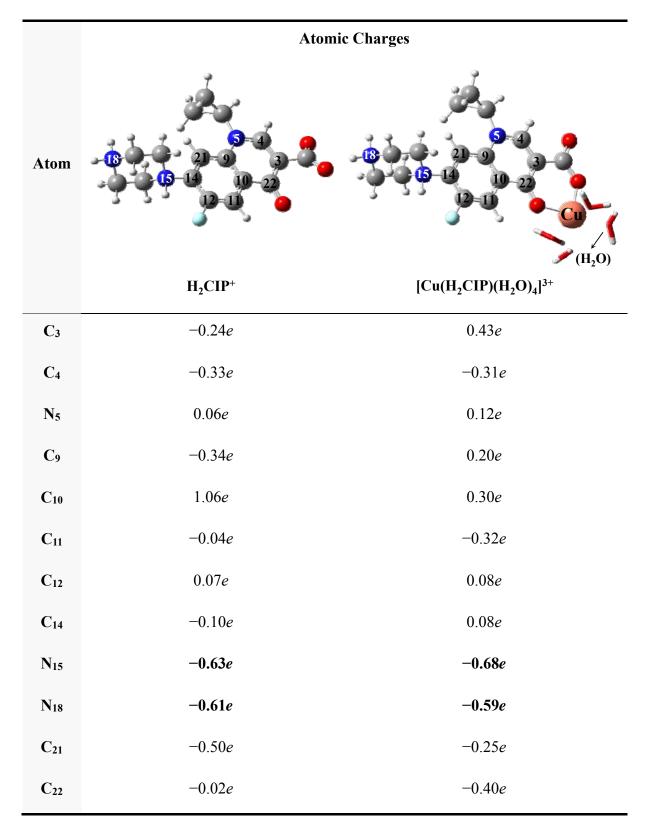

* DBE stands for double bond equivalents.

Table S3 Computed Gibbs free energy changes (ΔG , kcal/mol), enthalpy changes (ΔH , kcal/mol) and activation free energies (ΔG^{\ddagger} , kcal/mol) for the defluorination reactions of H₂CIP⁺ and [Cu(H₂CIP)(H₂O)₄]³⁺

	ΔG (kcal/mol)	ΔH (kcal/mol)	ΔG^{\ddagger} (kcal/mol)			
Cleavage of the C-F Bonds						
H_2CIP^+	-4.8	-2.8	27.3			
$[Cu(H_2CIP)(H_2O)_4]^{3+}$	-1.4	-0.6	32.8			
Defluorination caused by OH ⁻ Addition						
H_2CIP^+	-68.8	-71.9	0.8, 6.0*			
$[Cu(H_2CIP)(H_2O)_4]^{3+}$	-51.0	-52.6	4.5, 10.8*			

* OH⁻ addition reactions are stepwise. The two ΔG^{\ddagger} values correspond to the process of OH⁻ attack and cleavage of C-F bond, respectively. Cleavage of C-F bond is a rate-limiting step.

Table S4 Optimized geometries and Mulliken atomic charges of H_2CIP^+ and $[Cu(H_2CIP)(H_2O)_4]^{3+}$ at ground state (Dark gray: C; Blue: N; Red: O; Light gray: H; Light blue: F; Salmon pink: Cu)

