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Photochemically induced dynamic 
nuclear polarization NMR on 
photosystem II: donor cofactor 
observed in entire plant
Geertje J. Janssen1, Pavlo Bielytskyi  2, Denis G. Artiukhin  3, Johannes Neugebauer  3, 

Huub J. M. de Groot1, Jörg Matysik  2 & A. Alia1,4

The solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect allows for 
increase of signal and sensitivity in magic-angle spinning (MAS) NMR experiments. The effect occurs 
in photosynthetic reaction centers (RC) proteins upon illumination and induction of cyclic electron 

transfer. Here we show that the strength of the effect allows for observation of the cofactors forming 
the spin-correlated radical pair (SCRP) in isolated proteins, in natural photosynthetic membranes as 

well as in entire plants. To this end, we measured entire selectively 13C isotope enriched duckweed 
plants (Spirodela oligorrhiza) directly in the MAS rotor. Comparison of 13C photo-CIDNP MAS NMR 

spectra of photosystem II (PS2) obtained from different levels of RC isolation, from entire plant to 
isolated RC complex, demonstrates the intactness of the photochemical machinery upon isolation. The 

SCRP in PS2 is structurally and functionally very similar in duckweed and spinach (Spinacia oleracea). 

The analysis of the photo-CIDNP MAS NMR spectra reveals a monomeric Chl a donor. There is an 

experimental evidence for matrix involvement, most likely due to the axial donor histidine, in the 

formation of the SCRP. Data do not suggest a chemical modification of C-131 carbonyl position of the 

donor cofactor.

�e photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) NMR 
technique is a unique analytical tool to extract detailed information at the atomic level from photochemically 
active photosynthetic reaction centers (RCs) as well as from another protein undergoing light-induced electron 
transfer1,2. �e solid-state photo-CIDNP e�ect allows for strong signal enhancement by light-induced induction 
of non-Boltzmann nuclear spin polarization. �e photo-CIDNP appears to be an intrinsic property of natural 
RCs occurring in frozen isolated RC samples as well as in liquid membranes. �e spin-chemical origin of the 
e�ect is in the meanwhile understood, in which up to three mechanisms, called three-spin mixing (TSM), di�er-
ential decay (DD) and di�erential relaxation (DR) run in parallel. �e phenomenon has been predicted to occur 
at Earth’s magnetic �eld and recently revised in terms of level crossings and anti-crossings3. While the observed 
chemical shi� refers to the electronic ground state obtained a�er the photocycle, photo-CIDNP intensities are 
related in a non-trivial manner to the local electron spin density in the spin-correlated radical pair (SCRP). As an 
analytical tool1, photo-CIDNP MAS NMR has been applied to various RCs and the strong increase in sensitivity 
and selectivity by the solid-state photo-CIDNP e�ect in combination with selective isotope labeling allowed for 
direct observation of the primary radical pair in entire cells of selectively 13C labeled purple bacteria and cyano-
bacteria Synechocystis. Here we show that even larger biological structures, i.e., entire plants as complete duck-
weed plants including roots, can be studied inside a MAS rotor by NMR.

�e photosynthetic machinery in plants converts photon energy from sunlight into chemical energy by oxi-
dizing water and reducing carbon dioxide while releasing molecular oxygen as a side-product. To achieve this, 
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two large trans-membrane protein complexes, photosystem 2 (PS2) and photosystem 1 (PS1), operate in series 
(for a review, see Blankenship4). In plant cells, both PS2 and PS1 are located in the thylakoid membrane in the 
chloroplasts, pumping protons from the lumen to the stroma site. For structural and functional studies on PS2, 
it is possible to selectively remove PS1 from the membrane to obtain PS2 enriched membranes, so-called BBY 
preparations (Berthold, Babcock and Yocum)5. From these membranes, the PS2 core particles (Fig. 1a) can be iso-
lated by removing peripheral light-harvesting complex 2 (LHC2) using Triton X as detergent as described by van 
Leeuwen et al.6. Further removal of the light-harvesting core antenna proteins CP43 and CP47 leads to the PS2 
RC or D1D2 complex (Fig. 1b) comprising the D1 and D2 polypeptides in which the two branches of cofactors 
are symmetrically arranged (Fig. 1c). �e cofactors consist of two inner chlorophyll a (Chl a) molecules (PD1 and 
PD2), two accessory chlorophylls (Chl aD1 and Chl aD2), two pheophytins (Phe a) and two quinones (Q) arranged 
in two symmetric branches. In addition, the PS2 RC contains two β-carotenes, two peripheral chlorophylls (Chl 
ap1 and Chl ap2) and the water splitting manganese cluster, also known as the oxygen-evolving complex (OEC). 
PS2 has the highest oxidation power known in living nature (+1.2 V), allowing to drive the water splitting. On 
the other hand, PS1 has the strongest reductive power known in living nature, which is required for the CO2 
reduction. How PS2 is able to produce and maintain such oxidative strength within a protein environment and 
without changing the HOMO-LUMO gap (680 nm) is, despite extensive research by optical-kinetic and magnetic 
resonance techniques and the availability of high-resolution (1.9 Å) x-ray data, not yet fully understood.

Figure 1. �e PS2 core complex (a) is embedded inside the thylakoid membrane (not shown). At the heart 
of the core complex, the PS2 reaction center (RC) is found (b) and mainly formed by the central D1 and D2 
polypeptides. �e PS2 RC contains several cofactors (c): two central Chls (PD1 and PD2), two accessory Chls 
(ChlD1 and ChlD2), two pheophytins (PheD1 and PheD2), two quinones (QA and QB), and two peripheral Chls 
(ChlP1 and ChlP2). �ese cofactors are arranged in two symmetrical branches, an active D1 branch (le�) and an 
inactive D2 branch (right). Two β-carotenoids (CarD2 and CarD1) are associated with the PS2 core complex. At 
the PD1 side, a tyrosine residue TyrZ is in between PD1 and the oxygen evolving system (OEC).
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Until now, photo-CIDNP MAS NMR studies on plant PS2 have been restricted to experiments on isolated 
D1D2 RC preparations from spinach (Spinacia oleracea) due to the di�culty to incorporate selective isotope labels 
into plant RCs. Based on the data obtained from natural abundance D1D2, a �rst assignment of the light-induced 
signals was made and the donor was identi�ed to be a single Chl a cofactor7,8. �e intensity pattern provided 
strong evidence for a pronounced asymmetry of the electronic spin-density distribution within the monomeric 
Chl a donor assigned to PD1. While free Chl a in solution has the highest electron-spin density being located at 
pyrrole ring II9, the Chl a donor inside the D1D2 complex shows a shi� of electron-spin density towards rings III 
and IV7,8,10. A possible explanation of the electron-spin density shi� was suggested to be the presence of a local 
electrostatic �eld close to ring III, created for example by the protonation of the keto-group of ring V7. Since it 
appears that the electron-spin density on the oxidized donor is also localized on the axial histidine, a tilting of the 
axial histidine towards pyrrole ring IV causing π-π overlap of both aromatic systems was proposed. In this “hinge 
model”, the charge state of the histidine suggested a negatively charged Chl a-histidine complex becoming a 
neutral radical in the photo-oxidized state8,10 (for review, see Najdanova et al.11). Such electronic structures might 
allow for the remarkable increase in redox potential of PS2 in comparison to bacterial RCs.

To study photosynthetic units larger than D1D2, such as core preparations, BBY membranes or entire plants, 
selective isotope labeling is required. In this work, we present the �rst photo-CIDNP MAS NMR data obtained 
at various levels of PS2 selectively 13C labeled in the Chl a and Phe a cofactors. �e label incorporation succeeded 
in the aquatic plant duckweed (Spirodella oligorrhiza), which has been chosen since it has shown previously to 
successfully incorporate 15N as well as 2H-, 13C- or 17O-labeled tyrosine12.

Results and Discussion
Photo-CIDNP MAS NMR spectra obtained from 13C-labeled BBY, thylakoids and plants. In 
Fig. 2, Spectra a-c, shown in red, are obtained under continuous illumination of selectively 4-ALA 13C-isotope 
labelled BBY (a), thylakoid membranes (b) and from entire plants (c) of the duckweed Spirodella oligorrhiza. �e 
same Figure shows in black Spectra a’ to c’ obtained from the same samples in the dark. �e dark spectra show 
only weak and broad positive signals in the aliphatic region between 0 and 50 ppm and, due to the C-α of the 
amino acids of the protein backbone, between 60 and 80 ppm.

�e 15 signals that are light-induced by the solid-state photo-CIDNP e�ect can be straightforwardly recognized. 
Figure 3 shows an expansion of the spectral region for the light-induced signals in Fig. 2. �e data are presented with 
the tentative assignment (see below) to the labelled carbons in the Chl a donor and Phe a acceptor. For convenience, 
the isotope label patterns of the Chl a donor (green) and Phe a acceptor (purple, numbering in Italics) obtained by 
biosynthetic labeling with 4-ALA are indicated with numbering at the red dots on top of Fig. 3. �e data show that:

Figure 2. 13CMAS NMR spectra of selectively 4-ALA 13C-isotope labeled BBY preparation (a), thylakoid membranes 
(b) and entire plants (c) of the aquatic plant Spirodela oligorrhiza obtained under continuous illumination (red). 
Spectra (a’–c’) (grey) show the corresponding spectra obtained under dark conditions. All spectra were obtained at a 
magnetic �eld of 4.7 T and a temperature of 235 K with a MAS frequency of 8 kHz and a cycle delay of 4 s.
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(i) �e solid-state photo-CIDNP e�ect allows to observe the two cofactors forming the SCRP directly from 
entire plants without any further isolation (Fig. 4). �is implies that 13C photo-CIDNP MAS NMR is able to 
study selectively microscopic structures in the Ångström range within macroscopic units up to the dimension 
of centimeters. �us, we propose that such “in-plant” photo-CIDNP MAS NMR could be considered as a new 
application in a growing �eld of in-cell solid-state NMR13–15.

(ii) �e comparison of the 13C photo-CIDNP MAS NMR spectra of BBY particles (spectrum a), thylakoid mem-
brane (spectrum b) and intact leaves (spectrum c) does not reveal any signi�cant di�erence, neither in the chemical 
shi� nor in the intensity. Minor changes in the relative intensity of the signals might occur at 51.0 and 147.2 ppm, 
although they are in the limits of the noise. Hence, both, the chemical shi� values and the overall intensity pattern are 
highly conserved among spectra obtained from these three levels of isolation. �e consistency observed with the highly 
sensitive NMR spectroscopy provides clear experimental evidence that the electronic states of the cofactors forming 
the SCRP are not a�ected by the preparation procedure. �us, the data obtained from a D1D2 RC preparation7,10  
indeed re�ect the genuine natural state occurring in intact thylakoid membranes and plants.

(iii) �e below discussed assignment of the light-induced signals corroborates the concept of a SCRP formed 
by a single donor Chl a and a single acceptor Phe a. While 13C photo-CIDNP MAS NMR intensities are correlated 

Figure 3. Detailed views of the aromatic and aliphatic regions of the 13C photo-CIDNP MAS NMR spectra (a–c) 
depicted in Fig. 2. �e position of the 13C-isotope labeled carbons in the Chl a donor (green) and the Phe a acceptor 
(purple) are visualized by red dots (top). Assigned centerbands are visualized by dashed lines (Table 1). Signals 
assigned to the Phe a acceptor are denoted in Italics. �e numbering is according to the IUPAC nomenclature.
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to local electron-spin densities16, in case of 13C labelling, the polarizations are equilibrated by spin-di�usion. 
On the other hand, the spread of intensity allows to observe nuclei which are otherwise di�cult to detect17. 
Spin-di�usion allows for example for the detection of the nearby aliphatic signals for the two C-17 carbons from 
the donor and acceptor. While in unlabelled samples, all signals are conveniently assigned to a single Chl a cofac-
tor, i.e. the donor7, upon 4-ALA 13C-labelling also acceptor signals are observed. E�ects of selective 13C isotope 
labelling on the spin-dynamics have also been observed in heliobacterial RCs18 but are not yet theoretically per-
meated. �e donor signals are in general stronger than the acceptor signals, suggesting an additional contribution 
of the DR mechanism19.

Light-induced 13C 
signal (ppm) Assignments Comments

191.0 E,w 190 C-131 Phe

(not observed) 190.6 C-131 Chl

172.2 A 173 C-19 Phe

166.8 A 170.0 C-19 Chl

162.2 A 162.0 C-14 Chl

160.7 A 161 C-16 Phe

157.4 A 154.0 C-16 Chl

156.0 A 155.9 C-1 Chl, 156 C-6 Phe

154.3 A 154.4 C-6 Chl

151.8 A,w (no match)

151.7 A
150.7 C-4 Chl, 150 C-9 Phe, 
151 C-14 Phe

151.6 A 147.2 C-11 Chl

149.2 A 145 C-8 Phe

148.5 A 150.7 C-4 Chl, 150 C-9 Phe

148.3 A,w (no match)

147.7 A 146.2 C-8 Chl

146.0 A 147.2 C-9 Chl

142.5 E (no match) Histidine

141.0 A 142 C-1 Phe

139.8 E (no match) Histidine

138.0 A,S 138 C-11 Phe

137.4 A 138.0 C-3 Chl, 136 C-3 Phe

(not observed) 137 C-4 Phe

136.5 A,b,w 136.1 C-2 Chl, 136 C-7 Phe

133.7 A 133.4 C-7 Chl, 134.0 C-12 Chl

(not observed) 131 C-2 Phe

130.0 A,S 133 C-13 Phe

129.5 A 126.2 C-13 Chl

129.2 E 128 C-12 Phe Histidine?

128.7 E 129 C-31 Phe, 128 C-12 Phe

125.0 A,w 126.2 C-31 Chl

107.7 A,w (no match)

106.9 E 108.2 C-10 Chl, 107 C-15 Phe

104.7 E 102.8 C-15 Chl, 105 C-10 Phe

97.9 E 98.1 C-5 Chl, 97 C-5 Phe

92.2 E 93.3 C-20 Chl, 93 C-20 Phe

51.0 A 52 C-17 Phe (see Fig. 3)

48.9 A 51.4 C-17 Chl (see Fig. 3)

29.3 A,w 32.5 C-171 Chl, 32 C-171 Phe (not shown)

19.6 A,w 20.2 C-81 Chl, 20 C-81 Phe (not shown)

Table 1. Assignment of the light-induced signals observed in 3-, 4-, and 5-ALA-labelled thylakoid preparations 
of duckweed (Fig. 6) to carbon positions of either the Chl a donor or the Phe a acceptor cofactor. �e reference 
chemical shi�s of Chl a are obtained from solid aggregates of Chl a40 and of Phe a from isolated RCs of R. 
sphaeroides R26 carrying Phe a instead of BPhe a41. For details, see Supplementary Information. Abbreviations: 
A = enhanced absorptive; b = broad; Chl = chlorophyll a; E = emissive; Phe = pheophytin a; S = shoulder; 
w = weak.
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No signals from PS1. It is remarkable that the light-induced spectra of BBY on the one hand, and of 
thylakoids and plants on the other hand are very similar, although thylakoid and plant samples contain the full 
photosynthetic machinery, including both PS2 and PS1, while BBY contains PS2 only. �e absence of photo-
chemically active PS1, which shows an entirely emissive light-induced 13C photo-CIDNP MAS NMR, can be 
due to several reasons: (i) �e position of the quinones: while the quinones on PS2 are easily accessible and 
instantaneously reduced upon addition of sodium dithionite, the quinones in PS1 are not expected to be readily 
reduced upon direct freezing and measurement. To successfully reduce PS1, incubation at room temperature a�er 
addition of the reductant and exposure to light at room temperature and during freezing are necessary. (ii) �e 
low pH of the sample environment (~pH 4.5): in vivo, the active site of PS1 is situated at the alkaline (stroma) side 
of the thylakoid membrane (pH 8), while PS2 functions at the acidic lumen side (pH 4) of the membrane. Acidic 
conditions strongly decrease PS1 stability and activity, while both donor and acceptors side of PS2 are known to 
remain intact under strong acidic conditions.

Photo-CIDNP in PS2 preparations containing the OEC. To allow for the solid-state photo-CIDNP 
e�ect, a SCRP on PD1 and Phe a with su�ciently long lifetime, i.e., some 10 s of ns, is required. One might assume 
that such long lifetime cannot sustain in the presence of the OEC20. Our results demonstrate the occurrence of the 
same SCRP in the preparations of larger PS2 complexes (with the OEC present) with su�ciently long lifetime as 
in the D1D2 preparation (where the OEC is lost). �ere are, indeed, arguments for the interruption of the OEC 
activity in the present set of experiments: (i) �e electron transfer from the OEC requires an intact hydrogen 
bonding network around TyrZ, the intermediary electron carrier between the OEC and PD1 Chl a21. �e rate of 
re-reduction of PD1

+ decreases at low pH22. �is e�ect has been suggested to be linked to a distortion or breakage 
of the hydrogen bond between TyrZ and the nearby D1-His190, which has an estimated pKa of 4.5-5.323-25 (for 
review see Styring et al.26). (ii) Below a pH of 5.5, the nanosecond kinetics of electron transfer quickly slows down 
to the microsecond. �e pH dependence provides a natural mechanism for physiological regulation of electron 
transfer from the OEC, allowing for dissipation of excess excitation energy by the RC at high light conditions27. 
In all experiments shown here, a�er reduction with Na2S2O3 in the rotor, a pH below 5.0 has been reached in 
preparations of the larger PS2 complexes, i.e., in plants, BBY and core preparations. Furthermore, acidi�cation 
of the lumen space down to a pH of 5.0 or slightly below occurs in vivo under strong light conditions28. Hence, 
the pH allows for lifetimes of the SCRP su�ciently long to induce the solid-state photo-CIDNP e�ect. (iii) �e 
temperature of the experiment (~235 K) blocks the re-reduction from the OEC. �e reaction cycle of the OEC29 
is strongly inhibited at 230 K30-32. If we assume that the OEC remains blocked in its S2 state, even at pH 6–7.5, the 
re-reduction rate would slow down to 250 ns33. (iv) Also in core preparations, QB is lost while QA remains bound 
to the protein pocket34. In the preparations of larger PS2 complexes, both quinones are, at least initially, present. 
It is possible that QB is lost upon reduction prior to the measurement. In this case, a�er some photocycles, QB will 
be saturated and the light-induced electron transfer becomes cyclic. At high light intensities, also under natural 
conditions, photo-reduction of quinones has been shown to occur leading to double reduction of QA which �nally 
can result in the release of QA as QAH2 (up to 63% in 80 min)35. In core preparations, double reduction of QA can 
be signi�cantly promoted by the addition of a strong reductant and subsequent illumination36,37. In BBY prepa-
rations, illumination under reductive conditions has been demonstrated to cause 100% double reduction of QA

38. 
Hence, the experimental conditions allow for observation of the SCRP of PS2 despite the OEC being present.

13C photo-CIDNP MAS NMR on isolated PS2 RCs from spinach and duckweed. As a next step, 
we will compare PS2 data from spinach and duckweed. �e impossibility to obtain D1D2 RCs from duckweed 
forces us to compare Core particles to D1D2 RC preparations from spinach. In Fig. 5, shown in red, the 13C 
photo-CIDNP MAS NMR Spectra a and b are obtained under continuous illumination of a D1D2 preparation 
from unlabelled spinach (a) and of core particles from unlabelled duckweed (b). Spectra a’ and b’, depicted in 
grey, show the corresponding dark spectra. As expected, the dark spectra show signals in the aliphatic region 
between 0 and 50 ppm as well as a broad signal between 60 and 80 ppm. �e dark signals are due to the C-α of the 
amino acids of the protein backbone and the (glycine) bu�er used for sample preparation. In the photo-CIDNP 
MAS NMR spectra in Fig. 5, absorptive (positive) and emissive (negative) light-induced signals occur in the 
region between 80 and 170 ppm. Although the isolated RC shows stronger light-induced features than the Core 
complex, chemical shi�s and intensity patterns between both light-induced spectra are very similar, proving 
that the PS2 from both organisms function in a similar fashion. �e data provide strong evidence that both 

Figure 4. By combining speci�c 13C isotope labelling with photo-CIDNP MAS NMR, in the plant of Spirodela 
oligorrhiza (duckweed, (a), the red labelled nuclei of the active Chl a and Phe a cofactors (red dots) of the PS2 
RC (b) are directly detected without further isolation.
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the electronic ground-state structure as well as the radical-pair structure of the photochemical machinery of 
PS2 remain unchanged when comparing the two di�erent plant species and upon isolation of D1D2 from the 
Core complex. �is is in line with an optical study using femtosecond transient absorption spectroscopy, which 
revealed a conservation of the e�cient electron transfer rate constants upon isolation of the D1D2 complex from 
PS2 Core39. Also the mechanism of electron transfer, with ChlD1 acting as the primary electron donor and PheD1 
as the primary acceptor, was found to be the same in both systems39. Hence, our data demonstrate that the pho-
tochemical machinery of PS2 is robust against various states of isolation. �e highest level of isolation, the D1D2 
RC, is not disturbed, and essentially functioning in the same way as in full plants. Furthermore, we have shown 
that this machinery is very similar in PS2 of spinach and duckweed.

To compare the spectra of the D1D2 preparation of spinach and that of the Core preparation of duckweed in 
more details, Fig. 6 provides an enlarged view. Spectrum a, originating from the D1D2 preparation of unlabeled 
spinach, is reproducing well data from the literature7,8. Previously, 23 light-induced signals were observed, most 
of them were tentatively assigned to the aromatic ring carbons of the Chl a donor. Absence of signal doubling 
provided a hint for a monomeric donor. �e emissive signals between 90 and 130 ppm were identi�ed as the 
four methine carbons. It has been proposed that the broad emissive response between 140 and 145 ppm and the 
emissive signal at 129.2 ppm originate from the axial histidine of the Chl a donor10. Spectrum b originates from 
the Core preparation from unlabelled duckweed. Despite the overall great similarity of chemical shi�s and other 
spectral features, the emissive signal between 129 and 130 ppm is apparently missing. Also, the broad emissive 
signals at 142.5 and 139.8 ppm might be extinguished. All these emissive features are assigned to the axial histi-
dine8. MAS rotation might lead to orientation e�ects in membrane-based samples, changing the relative intensity 
contribution between π-systems having di�erent orientations10. �erefore, the collective absence of these emissi-
vive features in the membrane sample suggests a common origin and backs the assignment to the axial histidine.

Assignment of 13C photo-CIDNP MAS NMR signals of 5-ALA, 4-ALA and 3-ALA labeled sam-
ples. As shown above, the possibility to introduce 13C isotope labels allows to observe the e�ect in larger 
systems. Furthermore, isotope labelling enables for a more detailed characterization of the SCRP and the identi-
�cation of possible abnormalities. To this end, we will now aim for signal assignment by using selectively 5-ALA, 
4-ALA and 3-ALA labeled samples. Since it allows for e�cient label introduction, we prepared thylakoid sam-
ples from duckweed with various 13C isotope label patterns to study the structure of the SCRP of PS2. In Fig. 6, 
Spectra c to e have been obtained from samples were the Chl a and Phe a molecules were speci�cally 13C labeled 
according to the 5-ALA (c), 4-ALA (d) and 3-ALA (e) labeling patterns (for labeling patterns, see Supplementary 
Fig. S1). By using speci�cally labeled samples, it is possible to selectively highlight eight carbons in each active 

Figure 5. 13C MAS NMR spectra of natural abundance D1D2 particles of spinach (a) and natural abundance 
core complexes of duckweed (b) obtained under continuous illumination (red). Spectra (a’ and b’) show the 
corresponding spectra obtained under dark conditions (grey). All spectra were obtained at a magnetic �eld of 
4.7 T and a temperature of 235 K with a MAS frequency of 8 kHz and a cycle delay of 4 s.
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Chl a or Phe a cofactor and assign them by using literature values obtained from Chl a aggregates40 and plant 
Phe a reconstituted in bacterial RCs41. In Table 1, we aim to reconstruct the spectra of the unlabeled PS2 core 
and D1D2 samples (Fig. 6, Spectra a and b) by using the data obtained from selectively 13C-labeled thylakoid 
membranes (Fig. 6, Spectra c to e). Again, the consistency of many marker lines in labeled and unlabeled samples 
clearly demonstrates the conservation of the electronic structure of the PS2 Chl a donor upon isolation of core 
particles from thylakoid membranes. �e detailed discussion on the assignment can be found in Supplementary 
Information. We can conclude from the assignments:

(1)  While the aromatic system appears largely undisturbed, the absence of the donor C-131 carbonyl carbon and 
the occurrence of the two weak, unassigned so far, absorptive signals at 151.8 and 148.3 ppm in the 3-ALA 
pattern teases for further studies.

(2)  �e emissive signals at 142.5 and 139.8 ppm, assigned to the axial histidine10,11, do indeed not originate from 
the Chl a and Phe a cofactors. �e emissive signal at 129.2 ppm, however, might be caused by the C-12 carbon 
of the acceptor, although we cannot rule out that that acceptor signal is overlaying the histidine signal. �us, 
the matrix is involved into the formation and evolution of the SCRP.

�erefore, below we will test possible chemical modi�cations of the donor by means of chemical-shi� calcu-
lations. Possible chemicals modi�cations7,8,42 are:

(i) Chl a protonated at position 131, positively charged, [Chl-OH]+;
(ii) Chl a protonated at position 131, neutral, [Chl-OH];

(iii) a Schi�-base formation at the C-131 of the Chl a donor, [Chl-NH2]+.

Figure 6. Enlarged view of the 13C photo-CIDNP MAS NMR spectra shown in Fig. 5 obtained from natural 
abundance D1D2 particles of spinach (a) and core complexes of duckweed (b). Furthermore, 13C photo-CIDNP 
MAS NMR spectra are shown obtained from 5-ALA (c, blue), 4-ALA (d, red) and 3-ALA (e, green) 13C-labelled 
thylakoid preparation. �e color code of the dotted lines refers to the selective label patterns. All spectra were 
obtained at a magnetic �eld of 4.7 T and a temperature of 235 K with a MAS frequency of 8 kHz and a cycle delay 
of 4 s.
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Possible chemical modifications of the Chl a donor. �e question remains about the missing donor 
C-131 signal and the possible signals at 151.8 and 148.3 ppm. One might assume that the C-131 signal has been 
signi�cantly shi�ed by a chemical modi�cation at the C-131 position. �is idea is attractive because it might 
explain the unchanged optical properties although the electro-chemical properties of these cofactors, esp. 
the extremely high redox potential, are highly unusual. Possible chemical modi�cations are protonation and 
Schi�-base formation at this carbonyl side (see above). To explore the possibility of such chemical modi�cations, 
theoretical calculations have been applied. �e results of the calculations are listed in Table 2. It can be seen that 
the calculated shi�s are in reasonable agreement with the experimental values for Chl a, with a root-mean-square 
deviation of 5.3 ppm and a maximum absolute deviation of 10.8 ppm. Changes in these shi�s upon chemical 
modi�cation are expected to be of higher accuracy due to the possibility of error cancellation. �is is supported 
by the observation that these changes are much more consistent with the corresponding changes calculated with 
the BP86 functional (given in Supplementary Table S1) than the actual Chl a chemical shi�s.

In all three calculated structures with a chemical modi�cation, the ppm value of carbon C-131 lowered. �e 
lowest value, around 160 ppm, is found for the Schi�-base. �erefore, from a spectroscopic view, we would not 
rule out an assignment of the two possible signals around 150 ppm. However, in the structure43, there is no amino 
acid around the donor Chl a able to form a Schi� base. �e two calculated structures with protonated C-131 
positions are not very likely from the chemical shi� values. Hence, a chemical modi�cation as explanation of the 
absence of the signals of C-131 from the donor is unlikely.

Conclusions
(1) �e solid-state photo-CIDNP e�ect can be observed in entire plants. �e observation of photo-CIDNP by 13C 
MAS NMR directly in plants allows application for exploration of SCRP in systems in which a further isolation 
has not yet been established. (2) �e active photochemical machinery forming the SCRPs of PS2 is conceptually 
the same as for bacterial RCs, provided the hole transfer on the donor side is blocked by lowering the pH. (3) 
�is machinery remains essentially una�ected upon isolation from plant level to the D1D2 preparation. (4) PS2 
RCs in spinach and duckweed show essentially identical 13C photo-CIDNP MAS NMR spectra demonstrating 
structural and functional conservation between these plant species. (5) �e SCRP is formed by a Chl a donor-Phe 
a acceptor pair. In both cofactors, the 13C chemical shi�s of the aromatic π-system are close to standard condi-
tions. (6) Based on the comparison of selectively labeled PS2 with natural abundance PS2, involvement of the 
protein matrix in the formation of SCRP has been demonstrated. It appears that signals not originating from the 
cofactor can be straightforwardly assigned to a histidine. (7) It does not appear likely that the donor cofactor is 
chemically modi�ed at the C-131 position. �erefore, to explain the unusual properties of the donor, we assume 
that conformational e�ects, esp. related to the axial histidine10, electrostatic �elds7 and dielectric properties of the 
protein44 act together.

Methods
Strains and culture conditions. Spirodella oligorrhiza was grown under aseptic conditions on half-strength 
Hunter’s medium under continuous light (20 µEm−2s−1) at 25 °C. �e medium was continuously bubbled with 
sterile air containing 5% CO2. For selective 13C labeling, fully grown plants were exposed to δ-aminolevulinic acid 
(ALA, purchased from Cambridge Isotope Laboratories), isotopically 13C labeled at carbon position 3 (3-ALA), 
4 (4-ALA) or 5 (5-ALA) to a �nal concentration of 1.4 mM in half-strength Hunter’s medium at pH 4.8. A�er 7 
days plants were harvested and used directly for sample preparation or frozen in liquid nitrogen and stored at 
−80 °C until use.

Determination of the 13C-label incorporation. Chl a was extracted from plants grown in 13C-ALA 
supplemented half-strength Hunter’s medium (labeled sample) and from unlabeled plants (reference sample), 
according to the following procedure: Plants were homogenized in half-strength Hunter’s medium and centri-
fuged for 10 min at 16,000 × g. �e supernatant was removed and the residue was dissolved in 1 mL MeOH. �e 
methanolic solution was centrifuged for 5 min at 300 × g. �e green supernatant was separated from the blue 
and white residue and dried under a gentle stream of N2. �e sample was re-suspended in acetone, loaded on a 
cellulose column and pure Chl a fractions were eluted with petroleum ether/acetone (7/3 v/v). �e solvent was 
evaporated under N2 �ow and the pure Chl a was stored at −20 °C under a dry nitrogen atmosphere in the dark.

Liquid chromatography-mass spectrometry (LC-MS). Mass spectra were measured with a LTQ–FT 
hybrid mass spectrometer (�ermo Fisher, Waltham, MA, USA). Spectra were measured in ESI mode, with a 
source temperature of 200 °C, source voltage of 3.8 kV and tube lens voltage 150 V. Chl a was dissolved in 90% 
EtOH and 10% 10 mM ammonium acetate to a �nal concentration of ~1 mg/mL. �e sample was infused with 
a �ow rate of 10 µL min−1. �e biosynthetic route from ALA to Chl a and Phe a is described in Schulten et al.45.  
Two molecules of ALA are asymmetrically condensed to form the pyrrole porphobilinogen. Four molecules 
of porphobilinogen tetramerize, and prior to macrocycle ring closure, the last pyrrole ring is inverted via a 
spiro-intermediate. Upon incorporation of 3-13C, 4-13C or 5-13C-ALA, a maximum of 8 13C-atoms can be incor-
porated into each Chl a or Phe a molecule, resulting into the speci�c labeling patterns shown in Supplementary 
Fig. S1. Based on the LC-MS spectra observed in the region of m/z = 893.5 ([M]•+; C55H72O5N4Mg) to m/z + 8 
(maximum 13C incorporation) the total level of incorporation (Ptot) was determined via an iterative procedure as 
described earlier by Schulten et al.45. Since ALA is a precursor of both Chl a and Phe a, it is assumed that the level 
of label incorporation into Phe a and Chl a is identical. Supplementary Fig. S2 shows a typical mass spectrum 
of Chl a isolated from S. oligorrhiza grown under standard conditions (Fig. S2, A) and in the presence of the 13C 
lableled ALA precursor (Fig. S2, B). An average of 75% 13C isotope enrichment is accomplished.
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Preparation of D1D2 and Core complex. �e natural abundance samples of isolated D1D2 from spin-
ach were prepared as described earlier in Matysik et al.7. �e PS2 core complexes from duckweed were isolated 
according to the procedures described by van Leeuwen et al.6.

Preparation of 13C labeled BBY. Selectively 13C labeled BBY membranes were isolated according to the 
procedure as described by Berthold et al.5 that was adjusted for micro scale preparation using 10 g of 4-ALA 
labeled duckweed plants as a starting material. A�er solubilization in MES bu�er (20 mM MES, 15 mM NaCl2, 
5 mM MgCl2, pH 6.0) starch was removed by 5 minutes slow centrifugation (Sorvall SS34) at 80 × g. �e Chl a 
concentration of the reaction mixture was determined using a Moran Assay and adjusted to 1 mg/mL. Triton-100 
was added to a �nal concentration of 5% (w/v). A�er incubation on ice under constant stirring for 20 minutes 
the sample was centrifuged for 20 minutes at 25,000 × g. �e pellet was resuspended in MES bu�er to remove 
Triton-100 and again centrifuged for 20 minutes at 25,000 × g. �e product (1.5 mL of 1.7 mg/mL Chl a) was 
stored at −80 °C in BTS-200 bu�er (20 mM tricine, 10 mM MgCl2, 5 mM CaCl2, 10 mM MgSO4, 0.2 M sucrose 
and 0.03% (w/v) n-dodecyl-β-D-maltoside, pH 6.5).

Carbon atom 
number Exp. Chl a [Chl a] [Chl-OH]+ [Chl-OH] [Chl-NH2]+

131 190.6 179.8 174.0
(−5.8)

161.9
(−17.9)

157.7
(−22.1)

19 170.0 162.9 172.5
(9.6)

166.2
(3.3)

169.7
(6.8)

14 162.0 156.1 161.1
(5.0)

156.0
(−0.1)

158.5
(2.4)

1 155.9 146.4 155.7
(9.3)

151.4
(5.0)

153.7
(7.3)

6 154.4 146.1 156.6
(10.5)

148.7
(2.6)

154.2
(8.1)

16 154.0 157.4 164.4
(7.0)

159.5
(2.1)

161.0
(3.6)

4 150.7 142.2 151.7
(9.5)

145.4
(3.2)

149.6
(7.4)

11 147.2 146.7 149.6
(2.9)

146.0
(−0.7)

148.0
(1.3)

9 147.2 143.5 150.0
(6.5)

144.1
(0.6)

148.2
(4.7)

8 146.2 141.9 147.9
(6.0)

140.8
(−1.1)

147.3
(5.4)

3 137.0 134.1 139.0
(4.9)

134.4
(0.3)

138.6
(4.5)

2 136.1 131.2 136.3
(5.1)

130.9
(−0.3)

135.7
(4.5)

12 134.0 134.5 127.4
(−7.1)

129.3
(−5.2)

129.3
(−5.2)

7 133.4 132.7 137.7
(5.0)

130.0
(−2.7)

137.2
(4.5)

13 126.2 129.9 122.2
(−7.7)

130.8
(0.9)

121.3
(−8.6)

31 126.2 128.4 125.5
(−2.9)

127.4
(1.0)

126.0
(−2.4)

10 108.2 101.6 104.4
(2.8)

104.3
(2.7)

103.9
(2.3)

15 102.8 104.7 101.1
(−3.6)

114.2
(9.5)

98.6
(6.1)

5 98.1 96.3 99.7
(3.4)

98.2
(1.9)

99.4
(3.1)

20 93.3 91.9 95.9
(4.0)

92.5
(0.6)

95.1
(3.2)

17 51.4 55.5 55.6
(0.1)

53.4
(−2.1)

56.0
(0.5)

171 32.5 38.7 42.3
(3.6)

39.6
(0.9)

41.6
(2.9)

81 20.2 24.7 24.1
(−0.6)

23.6
(−1.1)

24.3
(−0.4)

Table 2. Calculated chemical shi�s of substituted derivatives of Chl a:. [Chl a] – calculated Chl a. [Chl-OH]+ – 
Chl a protonated at position C-131, positively charged. [Chl-OH] – Chl a protonated at position C-131, neutral. 
[Chl-NH2]+ – Chl a as a Schi� base at position C-131, positively charged. �e carbon atom numbers are colored 
according to the labelled pattern: 3, 4 and 5-ALA. All calculations were carried out with KT2/TZP. �e di�erence 
between the chemical shi�s of modi�ed and unmodi�ed Chl a is presented in parentheses.
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NMR sample preparation. D1D2 was directly loaded into an optically transparent 4-mm NMR sapphire 
rotor. All other samples were previously reduced by the addition of sodium dithionite to a �nal concentration 
of 100 mM under oxygen-free atmosphere and low-light conditions and loaded into sapphire rotors. For exper-
iments on BBY, 200 µL of BBY product (Chl a concentration of 1.7 mg/mL) was washed twice with sucrose free 
BTS-200 bu�er (BTS-0) and resuspended in 70 µL of BTS-0 before reduction. For preparation of thylakoid sam-
ples, ~200 mg isotope labeled plants were homogenized in a minimal amount of half-strength Hunter’s medium 
at pH 5.8 under near dark conditions. Starch was removed with slow centrifugation at 60 × g for 3 minutes using 
an Eppendorf 5415D. �e supernatant was collected and centrifuged for 10 min at 16000 × g, and the pellet was 
resuspended in half strength Hunter’s medium. For experiments on entire plants ~100 mg plants were incubated 
in a solution containing 100 mM sodium dithionite for 10 minutes under nitrogen atmosphere in complete dark-
ness. Plants were carefully stacked inside an optically transparent 4-mm NMR sapphire rotor, and half-strength 
Hunter’s medium was added to �ll the rotor. In all cases, the �lled rotor was directly loaded into the NMR probe 
and cooled under slow spinning (800 Hz) to 235 K. Membrane and plant samples were always freshly prepared 
and directly frozen inside the NMR apparatus. �e estimated concentration of PS2 RC present at di�erent levels 
of puri�cation is shown in Supplementary Table S2.

Photo-CIDNP MAS NMR experiments. 13C-MAS NMR experiments were performed on a DMX-200 
NMR spectrometer (Bruker Biospin GmbH, Karlsruhe, Germany). All spectra have been obtained at a sample 
temperature of 235 K and with a spinning frequency of 8 kHz. �e data were collected with a spin echo pulse 
sequence under two-pulse phase modulation carbon-proton decoupling46. Optimized 1H and 13C 90° pulse 
lengths were 5.1 and 3.1 µs, respectively. �e cycle delay of 4 s was used, the acquisition time was 35 ms. About 
7 k and 20 k scans were used to record continuous illumination spectra of 13C-labeled and natural abundance 
samples, respectively. Between 3.5 k and 10 k scans were used to record the respective dark spectra. �e 13C NMR 
spectra were referenced to the COOH response of solid L-tyrosine hydrochloride at 172.1 ppm. Photo-CIDNP 
MAS NMR spectra have been obtained under continuous illumination with a 1000-Watt xenon arc lamp47.

Spectral fitting. �e �tting of the light induced signals obtained by photo-CIDNP MAS NMR has been 
performed using IgorPro version 6.01 (Lake Oswego, Oregon).

Computational details. Structure optimizations of the compounds [Chl a], [Chl-OH]+, [Chl-OH], 
[Chl-NH2]+ were carried out with the program package ADF48 employing the exchange–correlation functional 
KT249 and the triple-zeta TZP basis set50. As a consistency check, also calculations with the BP86 functional51,52 
have been performed. �e corresponding results are given in the Supporting Information (Table S1). Dispersion 
interactions were taken into account using the D3 correction by Grimme et al.53,54 with Becke–Johnson damp-
ing55–57. �e numerical quality for the density �t and grid construction procedures were set to “good”. Tight con-
vergence criteria were applied during the SCF cycles (1.0e−8 a.u. for the norm of the Fock and density matrices) 
as well as in geometry optimization (1.0e−4 and 1.0e−4 a.u. for changes in energy and gradient, respectively). �e 
optimized geometries were veri�ed as minima on the potential energy surfaces with normal mode analyses. �e 
same computational settings were used for the generation of potentials required for calculations of 13C nuclear 
magnetic shieldings with the NMR module58–62. Chemical shi�s were calculated with respect to the tetramethyl-
silane (TMS) shieldings obtained with the same settings as described above.
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