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Introduction:  Infrared spectra from Jupiter exhibit 

numerous emission features due to higher-order hydro-
carbons produced from methane photolysis in the up-
per stratosphere.  Photochemical models to date [e.g., 
1,2,3] have done a poor job of reproducing the ob-
served hydrocarbon abundances, especially if one con-
siders the new high-quality observational constraints 
provided by ISO, the Infrared Space Observatory [see 
4,5,6,7].  Recent advances in our knowledge of the 
stratospheric temperature profile, species abundances, 
and chemical kinetics data have provided important 
new model constraints and input parameters, and up-
dated photochemical models are needed in order to 
explain the observed composition.  We use the obser-
vational constraints provided by ISO to construct new 
one-dimensional steady-state models of Jovian strato-
spheric photochemistry.  The models include coupled 
hydrocarbon and oxygen photochemistry, vertical eddy 
and molecular diffusion, and radiative transport (in-
cluding multiple Rayleigh scattering by H2, He, and 
CH4).  We focus on determining the eddy diffusion 
coefficient profile in the stratosphere, as this informa-
tion is currently poorly constrained or contradictory 
[e.g., 8,9, and Fig. 1].  We also discuss the implications 
with regard to hydrocarbon photochemistry on all the 
giant planets. 

Results:  The upper-stratospheric eddy diffusion 
coefficient derived from observations of Jupiter’s 584 
Å brightness [e.g., 10] is inconsistent with that derived 
from the Voyager ultraviolet stellar occultation ex-
periment [8] or infrared CH4 ν3-band florescence data 
[11].  Therefore, we have created two models (A & B) 
with very different high-altitude diffusion profiles (see 
Fig. 1).  We also test the eddy diffusion profile used by 
[1] (Model C).  The resulting mixing-ratio profiles for 
several observed constituents are shown in Fig. 2.  Our 
main conclusions are as follows: 
(a)  Models A and B both provide a good fit to the ISO 
C2H2, C2H6, CH3C2H, C4H2, and C6H6 data.  The He 
profile from Model B is consistent the 584 Å data, but 
the Model B CH4 profile is inconsistent with the meth-
ane observations of [8,11].  The Model A CH4 profile 
is consistent with [8,11], but the He profile is inconsis-
tent with [10].  A reanalysis of all the above data sets 
[8,10,11], new UV occultation data (i.e., the Cassini 
flyby), and/or a better determination of the upper at-

mospheric temperature profile as a function of latitude 
are needed before this issue can be resolved. 
(b) Model C and the model of [1] are inconsistent with 
the C4H2 upper limit and the C2H6/C2H2 ratio inferred 
from ISO data [4], suggesting that the eddy diffusion 
coefficient adopted in these models is too large at pres-
sures of 1-100 mbar and/or the hydrocarbon chemistry 
from [1] is incorrect or incomplete.   
(c) The large abundance of benzene on Jupiter and the 
other giant planets [e.g., 5] most probably results from 
the long dissociation lifetime of the C6H6 molecule.  
Upon absorption of a UV photon, electronically ex-
cited C6H6 can be collisionally quenched at lower 
stratospheric pressures before it dissociates.   

 
Figure 1.  The eddy diffusion coefficients adopted for 
Model A (solid line), Model B (dashed line), and Glad-
stone et al. [1] and Model C (dotted line) compared  
with various observational constraints (individual data 
points).  
Figure 2 (next page):  Mixing ratio profiles from our 
models compared with various infrared and ultraviolet 
observations (line styles as labeled in Fig. 2a). 
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