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Viking measurements of the Martian upper atmosphere indicate thermospheric temperatures below 
200øK, temperatures much colder than those implied by remote sensing experiments on Mariner 6, 7, and 
9 and Mars 3. The variability in thermospheric temperature may reflect an important dynamical coupling 
of upper and lower regions of the Martian atmosphere. Absorption of extreme ultraviolet solar radiation 
can account for observed features of the ionosphere and provides an important source of fast N and O 
atoms which may escape the planet's gravitational field. Isotopic measurements of oxygen and nitrogen 
impose useful constraints on models for planetary evolution. It appears that the abundance of N= in Mars' 
past atmosphere may have exceeded the abundance of CO= in the present atmosphere and that the planet 
also has copious sources of H=O. The planet acquired its nitrogen atmosphere early in its history. The 
degassing rate for nitrogen in the present epoch must be less than the time-averaged degassing rate by at 
least a factor of 20. - 

1. INTRODUCTION 

The entry science experiments on Viking provide a wealth of 

new information on the structure and composition of Mars' 

upper atmosphere. They may be used, in combination with 
remote sensing data from earlier spacecraft, to develop a rea- 

sonably consistent model for Martian aeronomy. 

It is clear that escape processes have played a major role in 

the evolution of Mars' atmosphere. Recombination of Os + in 

the planetary exosphere provides a significant source for fast 

atoms which can escape the planet's gravitational field. Com- 

positional data inferred from the retarding potential analyzer 

experiment [Nier et al., 1976b; W. B. Hanson, private commu- 

nication, 1977] indicate that O•. + is the major constituent of the 

Martian ionosphere and suggest an average escape rate of 

about 6 X 10 ? oxygen atoms cm -•' s -•. The chemistry of the 

bulk atmosphere is regulated by oxygen escape on a time scale 

of the order of 105 years in such a manner as to ensure an 

escape rate for H atoms of the magnitude of 1.2 X 108 atoms 

cm -•' s -•. Hydrogen molecules are formed in the lower atmo- 

sphere by reaction of H with HO•.. Escaping H atoms are 

released by ionospheric reactions involving H•. and CO•. +. 
Models for the Martian ionosphere are developed in section 

2 and are shown to agree satisfactorily with in situ measure- 

ments by Viking. The upper atmosphere measured by Viking is 
unusually cold. The scale height of CO•. is about 8 km, which 

may be compared with scale heights in the range 15-22 km as 

inferred from the ultraviolet spectrometer experiment on 

Mariner 9 [Stewart et al., 1972]. It is clear that the temperature 
of Mars' upper atmosphere is quite variable, ranging from as 

low as 120øK to perhaps as high as 400øK. This variability 

may be seen also in the topside plasma scale heights as mea- 
sured by Mariner 4 [Kliore et al., 1965], Mariner 6 and 7 

[Kliore et al., 1969; Fjeldbo et al., 1970], and Mariner 9 [Kliore, 

1974]. The general characteristics of the ionosphere may be 

reproduced by a relatively simple photochemical model if 

proper account is taken of the variability of the extreme ul- 

traviolet solar flux. It is unlikely, however, that such a simple 

model can account for the observed variation in atmospheric 

temperature. 

The photochemistry of Mars' atmosphere is discussed in 
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section 3. In accord with earlier models [Parkinson and 

Hunten, 1972; McElroy and Donahue, 1972; Liu and Donahue, 

1976; Kong and McElroy, 1977a, b] we assume that photolysis 
of CO•. is balanced mainly by gas phase reaction of CO with 
OH. Models are constrained to agree with recent measure- 

ments (B. A. Thrush, private communication to R. T. Watson, 
1977) of the rate constant for reaction of OH with HO•. and are 

adjusted to provide a hydrogen escape flux of 1.2 X 108 atoms 
cm -•' s -• in agreement with fluxes measured by Mariner 9 

[Barth et al., 1972]. Results are developed to illustrate possible 
variations in upper atmospheric composition over a Martian 
year. 

Measurements of the isotopic composition of oxygen and 
nitrogen may be used to place important constraints on the 

evolution of Mars' atmosphere. The observed enrichment of 

•SN relative to •4N for Mars' atmosphere as compared to that 
of the earth implies that Mars had•a much lar. ger nitrogen 
atmosphere in the past. In a similar manner the lack of a 
detectable enrichment of the isotopic ratio •80/•60 in Mars' 

atmosphere may be taken to imply significant exchange be- 
tween the atmosphere and an extensive surface or subsurface 
reservoir containing a volatile form of oxygen, most probably 
H•.O. Measurements of noble gases in Mars' atmosphere 

[Owen and Biemann, 1976; Owen et al., 1976] pose additional 

constraints on planetary evolution, and the implications of 
these data are explored in section 4. 

2. IONOSPHERIC CHEMISTRY AND STRUCTURE 

Carbon dioxide is the major constituent of Mars' atmo- 

sphere over the ionospherically important height range 
120-180 km [Nier et al., 1976b; Nier and McElroy, 1976, 1977]. 

Electrons are produced mainly by photo-ionization of CO•.: 

hv + CO•.-• CO•. + + e (1) 

The primary photo-ion, CO•. +, may be removed either by 
dissociative recombination, 

CO•. + +e- CO+ O (2) 

or by reaction with O [Stewart, 1972; McElroy and McConnell, 
1971; Fehsenfeld et al., 1970], 

CO•. + + O -• O•. + + CO (3) 

4379 
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Fig. 1. Number densities for the Martian ionosphere. Results were 
obtained by using densities for neutral species measured by Viking 1 
[Nier and McElroy, 1976, 1977]. Corresponding ionospheric reactions 
are given in Table 1. 

Reaction (3) ensures that 02 + should be the dominant com- 

ponent of Mars' ionosphere at all heights below about 300 kin. 
A model ionosphere derived by using densities for neutral 

species measured by Viking 1 [Nier and McElroy, 1976, 1977] 
is shown in Figure 1. A summary of important reactions and 
relevant rate constants is given in Table 1. Values for the flux 
of sunlight at extreme ultraviolet wavelengths were taken from 
a paper by Hinteregger [1976] and reflect recent measurements 

by the Atmosphere Explorer aeronomy satellites. 
The Viking measurements were taken during a period of 

exceptionally low solar activity. The solar flux at 10.7 cm had a 

value of 69.4 X 10 -22 W m -2 Hz -• at 1 AU on July 20, 1976, 
which may be compared with a flux of 75.7 X 10 -2•' W m -2 

Hz-• at 1 AU on September 3, 1976, during the entry of Viking 
2, and fluxes in the range (110-145) X 10 -22 W m -2 Hz -• for 
the Mariner 9 standard mission (November 14 to December 

23, 1971) or (110-169) X 10 -22 W m -2 Hz -• during the ex- 

TABLE 1. Important Ionospheric Reactions in the Martian 
Ionosphere 

Reaction Rate Coefficient 

CO2+hv-•CO2 + +e 
N2+hv-•N2 + +e 
0 + hv -• 0 + + e 

CO+hv-•CO + +e 

CO2 + +O-•CO+O2 + 
CO2 + +O-•CO2+O + 

N2 + + CO2-• N2 + CO2 + 
O + +CO2-•CO+O2 + 

CO + + CO• -• CO + CO2 + 

CO2 + + NO-• CO2 + NO + 

02 + +NO-•02+NO + 
CO2 + +e•CO+O 

02 + + e -• O + O 
NO + +e-•N+O 

J• = 2.4 X 10 -7 

J2=8.7X 10 -8 

J3= 1.2X 10 -7 

J4=4.4X 10 -7 

k• = 1.6 X 10 -•ø 

k2 = 1.0 X 10 -•ø 

k3 = 9 X 10 -•ø 

k5 = IX 10 -• 

k6 = I X 10 -• 

k7 = 1.2 X 10 -•ø 
k8 = 6.3 X 10 -•ø 

k•=3.8X 10 -7 

k•o = 2.2 X 10-7(300/Te) 
k• = 4.3 X 10-7(300/Te) ø'•7 

Te denotes electron temperature, taken to be equal to the value for 
neutral temperature in the present study. Photodissociation rates (J) 
at the top of the atmosphere are given in reciprocal seconds. Two- 
body reaction rates (k) are in cubic centimeters per second. This 
table is taken from McElroy et al. [1976]. 

tended mission I (May 7 to June 25, 1972). A limited number 
of computations were carried out under conditions appropri- 
ate for Mariner 9. For the extended mission I in 1972 a 

Vikinglike thermal structure was used for the middle and 

lower portions of Mars' atmosphere. For the standard mission 
a considerably warmer atmosphere was assumed (for altitudes 
below 100 km) in order to account for the large amount of 
dust present in the atmosphere at that time [Kliore et al., 1972]. 
If one defines an effective temperature Terr given by 

for the atmosphere below the ionospheric peak Zm, then the 
effective temperature (T err) for the standard mission is about 
20øK warmer than the value assumed for the first extended 
mission. 

An excellent fit to the Mariner data may be obtained if the 
EUV flux is assumed to vary according to the relation 

F•uv O.0222F•uvø(F•o.7- 25)/R •' (4) 

(F•uv ø is the solar EUV flux taken from Hinteregger [1976], 
and R (in astronomical units) denotes the planet's radial dis- 
tance from the sun) and if upper atmospheric temperatures are 
fixed by using plasma scale heights reported by Kliore et al. 
[1973]. Calculated values for peak electron density are com- 
pared with observations in Figure 2. Estimated values for the 

height of the ionospheric maximum are compared with obser- 
vations in Figure 3. The variation of EUV flux with solar 

activity implied by (4) is somewhat larger than the range of 
intensities observed for dayglow emission in the Cameron 
bands of CO [Stewart et al., 1972] and is also larger than 
variations observed by Hinteregger [1970] for the chromo- 
spheric EUV emission lines at 1025, 977, 630, 584, and 304 

The discrepancy may not be serious, however. It may reflect 
the role of high-excitation solar lines (for example, lines from 
Fe XV and Fe XVI) and differences in spectral re•gions impor- 
tant for photo-ionization and excitation of Cameron bands in 

the Martian atmosphere. We may note that the trend with 
zenith angle for both peak electron density and peak iono- 
spheric height during the extended mission I is satisfactorily 
described by the model. Interpretation of the variation of peak 
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Fig. 2. Peak electron density in the Martian ionosphere versus 
solar zenith angle. Shaded regions represent data obtained by the 
Mariner 9 radio occultation experiment during its standard mission 
(47o-57 ø) and extended mission I (>72 ø) [Kliore et al., 1973]. Solid 
curves are densities from theoretical computations as described in the 
text. Solar EUV flux was assumed to vary with F•o.7, and R according 
to (4). 
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altitude with zenith angle during the standard mission is com- 

plicated because of temporal variations in the structure of the 

lower atmosphere which occurred during this period. Mariner 

9 arrived at Mars when the planet was enveloped by a global 

dust storm [Kliore et al., 1972]. The solid curve for the stan- 

dard mission in Figure 3 assumes that the effective temper- 

ature was 20øK warmer than values applicable for the ex- 

tended mission. The trend of peak altitude with zenith angle 
differs significantly from the observed trend. We believe, how- 

ever, that the discrepancy may be attributed to a gradual 

clearing of dust accompanied by steady cooling of the lower 

atmosphere. If we assume that the effective temperature de- 

clined by 8 øK over the first 6 weeks of the Mariner mission, we 

obtain the trend indicated by the dashed line in Figure 3, a 

result evidently consistent with observation [Conrath, 1975]. 

The comparisons shown in Figures 2 and 3 indicate that solar 

EUV radiation may provide the dominant source of ionization 
for Mars. 

It is more difficult to account for the range of values inferred 

for thermospheric temperature. The intensity of the CO Cam- 
eron band emission is nicely correlated with observed varia- 

tions in the 10.7-cm solar flux. In contrast, the scale height of 

the Cameron bands exhibits no such correlation [Stewart et 

al., 1972]. There can be little doubt, however, that the ther- 

mospheric temperature varies considerably with time. Figure 4 

summarizes the available information, including data from 
Mariner 4, 6, 7, and 9 [Kliore et al., 1965, 1969; Fjeldbo et al., 
1970; D. E. Anderson and C. W. Hord, 1971; Kliore, 1974; 

Stewart et al., 1972], Mars 3 [lzakot), 1973], and Viking 1 and 2 

[Nier and McElroy, 1976; McElroy et al., 1976]. The lowest 

temperatures were observed for Viking 1 and 2 and Mariner 4. 

Noting the absence of a correlation of airglow scale height 

with solar activity, at least over short time periods on Mariner 

9, one is tempted to postulate that the temperature of Mars' 
upper atmosphere may be affected to a considerable extent by 

processes originating in the lower atmosphere [Stewart et al., 
1972]. The Viking data indicate that gravity waves excited in 

the lower atmosphere may propagate to high altitudes on 

Mars [McElroy et al., 1976]. These waves may deliver signifi- 

cant amounts of energy to the upper atmosphere and may be 

responsible, at least in part, for the high-altitude mixing de- 

tected by Viking [McElroy et al., 1976; Nier and McElroy, 
1977]. Excitation of these waves should be favored when Mars 

is closest to the sun and may be enhanced further by the 
additional aerosol burden known to be present in the air at 

that time [Gierasch and Goody, 1972]. Further data are clearly 
required in order to resolve this issue. It must be pointed out, 
however, that the data in Figure 4 could also be used to argue 

a gross correlation of thermospheric temperature with solar 

activity. It would be difficult, though, to account for the range 
of temperatures exhibited in Figure 4 if EUV solar radiation 

should be the only important thermospheric heat source [see 
Stewart et al., 1972]. 

3. PHOTOCHEMISTRY 

The chemistry of the bulk Martian atmosphere should be 

relatively insensitive to short-period changes in the temper- 

ature of the upper atmosphere. Carbon monoxide, formed by 

photodissociation of CO2, has a time constant of about 3 

years, and a somewhat longer time constant applies for 02, 

formed mainly by 

O + OH--,O2 + H (5) 
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Fig. 3. Altitude of the ionospheric maximum (above a 3-mbar 
pressure level) versus solar zenith angle. Notation and conditions are 
the same as those in Figure 2. The solid curve for the standard mission 
assumes that the effective temperature Terr was 20øK warmer than the 
value applicable for the extended mission. The dashed curve assumes 
that the effective temperature declined by 8øK over the first 6 weeks of 
the Mariner 9 mission. 

Molecular hydrogen, produced by 

H + HO2-' H2 + O2 (6) 

has a time constant of approximately 10 3 years. We shall 

assume that the chemistry of the bulk atmosphere may be 

adequately described by using the average model given in 
Figure 5. 

'Reactions important for a carbon-hydrogen-oxygen atmo- 

sphere are summarized in Table 2. Odd hydrogen compounds 
are supplied by photochemical decomposition of H,O, either 
by photolysis, 

hv + H20-•OH + H (7) 

or by reaction with O(•D), 

O(1D) + H20-, OH + OH (8) 

R(A.U) 
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Fig. 4. Temperature of Mars' upper atmosphere obtained during 
the missions of Mariner 4, 6, 7, and 9, Mars 3 and 5, and Viking 1 and 
2. Data (each uncertainty being indicated by an error bar) are plotted 
against the planetocentric solar longitude of Mars, LB, and the radial 
distance from the sun, R, during the period of each mission. Shaded 
regions represent temperatures derived from topside plasma scale 
heights obtained by the Mariner 9 radio occultation experiment 
[Kliore et al., 1973]. Dashed curve indicates a possible seasonal varia- 
tion for temperature in the Martian upper atmosphere. 
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Fig. 5. Time-averaged model for the Martian atmosphere. 

Water may be reformed by 

OH + HO2 • H20 + O2 (9) 

There is, however, a small net sink for H20 at low altitudes 

associated with formation of H2 by reaction (6). Hydrogen is 

transported upward and escapes mainly in atomic form, atoms 

being released by reaction of CO2 + with H2: 

CO2 + + H2 • CO2H + + H (10) 

followed by 

CO2H + + e•CO2 + H (11) 

Hydrogen escape is limited by the supply of H2 from below. 

Production of H2 is determined by (6) and is limited by the 

abundance of tropospheric H atoms. The abundance of tropo- 

spheric H is set by balance between 

CO + OH -• CO2 + H (12) 

and 

H + O2 + CO2 • HO2 + CO2 (13) 

and is therefore sensitive to the net oxidation state of the 

atmosphere. The oxidation state of the atmosphere is deter- 

mined by the relative magnitude of H and O escape rates. The 

escape rates are regulated at the present epoch [McElroy, 1972; 

McElroy and Donahue, 1972; McElroy and Kong, 1976] to 

ensure a relatively steady oxidation state, H atoms being trans- 

ported upward as H2 and O atoms being supplied to the 

exosphere mainly as components of upward flowing CO2. The 

hydrogen escape rate is set ultimately by the rate at which 

oxygen escapes. The escape rate for O is set by the rate at 

which CO2 is photo-ionized in the exosphere and should main- 

tain a relatively steady value over large intervals of geologic 

time. At the present epoch, water evaporates from the surface, 

is processed photochemically by the atmosphere, and escapes 

to space at a steady rate of 6 X 107 molecules cm -2 s -1. If this 

rate had applied over the past 4.5 X 109 years, Mars would 

have lost to space an amount of H20 sufficient to coat the 

surface of the planet with ice to an average depth of about 2.5 

m. It should be emphasized, however, that the net quantity of 

H20 processed by the planet could significantly exceed this 

figure if heterogeneous reactions at the planetary surface might 

be shown to represent a sink for O of a magnitude comparable 

to or larger than that due to escape [e.g., Huguenin, 1973a, b, 
1974, 1976]. 

Densities for H, O H, HO2, H202, O, and O3 as calculated for 

Mars' atmosphere are given in Figure 6. Computational de- 

tails are described by Kong and McElroy [1977a]. Rates for 

TABLE 2. Chemical Reactions in the Neutral Martian Atmosphere 

Reaction 

No. Reaction Rate Expression 

(1) hv + CO2-• CO + O 

(2) CO + O(sP) + CO2 -• CO2 + CO2 
(3) CO + OH -• CO2 + H 
(4) H + O2 + CO2-• HO2 + CO2 

(5) O + HO2-• OH + O2 
(6) O + O + CO2-• O2 + CO2 
(7) HO2 + HO2-• H202 + O2 
(8) hv + H202-• OH + OH 
(9) O + OH-• O2 + H 
(10) hv + H20--• OH + H 
(11) O('D) + H,O • OH + OH 
(12) O('D) + H2--, OH + H 
(13a) hv + Os • O2('As) + O('D) 
(I 3b) he + Os-• O2 + O(sP) 
(14) OH + HO2 -• H20 + O2 
(15) H + HO2-• H2 + O2 
(16) he + O2-• O + O 
(17) O + O2 + CO2-• Os + CO2 
(18) O + Os-• O2 + O2 
(19) H + Os--• OH + O2 

(20) O('D) + CO2-• o(ae) + CO2 
(21) O2('A,)--• O2(S2;, -) + hv 

(22) o2(•a,) + co2-• o2(szg -) + co2 

2 X 10 -s7 

9 X 1 O- ,s exp (- 500/T) 
2 X 10-S'(T/273) -'.s 
7 X 10-" 

3 x '10-SS(T/300)-z9 
5.5 X 10 -'2 

5 X 10-" 

3X 10 -'ø 

1.9 X 10 -'ø 

8.24 X 10-" exp (- 150/T) 
9 X 10 -'2 exp (-333/T) 

1.4 X 10-SS(T/300) -z5 
1.32 X 10 -•' exp (-2140/T) 
2.6 X 10 -• 

1.8 X 10 -'ø 

2.6 X 10 -4 

4 X 10 -'8 } <8 X 10 -2ø 

< 1.5 X 10 -2ø 

Units for rate constants are s -• for unimolecular reactions, cm s s -• for bimolecular reactions, and cm • 
s -' for termolecular reactions. Photodissociation rates (s -•) are calculated from solar flux and relevant 
cross-section data. Rate for reaction (14) is taken from the recent measurement by Thrush [1977], and 
the references for the rest of the reactions are given by Kong and McElroy [1977a]. 
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Fig. 6. Density distributions of H, OH, HO•., H•.O•., O, and O3 in 
the Mars atmosphere. Results were obtained by using the averaged 
model atmosphere given in Figure 5. Surface was assumed to be inert, 
and mean water vapor abundance in the atmosphere was taken to be 
10 precipitable •m. 

reactions contributing to the budget of odd hydrogen are 

illustrated as functions of altitude in Figure 7. Sources and 

sinks for CO•. and O•. are summarized in Figures 8 and 9, and 

the variation of upper atmospheric H and H•. with exospheric 

temperature is illustrated by Figure 10. 

It may be of interest to consider the response of the atmo- 
sphere to a large transient source for H•.O, which might arise, 
for example, during periods of active volcanism. An injection 
of H•.O at high altitudes could lead to a significant source for 
H•., formed directly by photodissociation at wavelengths near 
Lyman a. The source strength could be as large as 5 X 10 •ø 
molecules cm -•' s -•. Hydrogen formed in this manner could 
escape readily to space, leaving oxygen in the atmosphere in 
concentrations sufficient perhaps even to perturb the total 

atmospheric pressure. Mars could acquire a relatively long 
lived transient atmosphere with O•. as a major constituent. 

This atmosphere would relax by escape. The associated relaxa- 
tion time could be relatively long, however, since the O escape 
rate cannot exceed the value noted earlier, 6 X 10 ? atoms cm -2 

S-1 

The chemistry of a nitrogen-hydrogen-oxygen-carbon sys- 

tem was investigated recently by Yung et el. [1977]. Nitric 

oxide is formed in the upper atmosphere by reaction of N(2D) 
with CO•, 

7O 
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Fig. 8. Production and loss rates for CO in the Martian atmosphere 
(conditions are the same as those in Figure 6). 

N(2D) + CO•.-• NO + CO (14) 

and is removed mainly by 

NOS) + NO-• N•. + O (15) 

Odd nitrogen atoms are released by ionospheric reactions and 

by electron impact dissociation of N•.. A relatively simple 
model gives results in satisfactory accord with measurements 

of upper atmospheric NO reported by Nier et el. [1976e]. 
Results are shown in Figure 11, which includes several theoret- 

ical curves which differ mainly in assumptions made with 

regard to the yield of N(•'D) in electron impact dissociation of 

N•. [McElroy et el., 1976]. Densities for major forms of odd 

nitrogen in the lower atmosphere are shown [after Yung et el., 
1977] in Figure 12. Densities computed for the lower atmo- 

sphere are sensitive to assumptions made with regard to the 
role of surface chemistry. We assumed that HNO•. and HNO3 

could be incorporated in surface minerals at rates (molecules 
cm -•' s -1) given by -ynt;, where 3' denotes an activity coefficient, 
n indicates the density (cm -3) of HNO•. + HNOa, and t; is an 

appropriate thermal velocity (cm s-•). The results in Figure 12 
were derived with 3` set equal to 10 -•'. 

4. MODELS FOR PLANETARY EVOLUTION 

Measurements of isotopic composition may be used to im- 

pose important constraints on the range of permissible models 

I •...>•co•+ H• I 

- - I 

, ' 
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q 20- • [[ 

.... I .... I , ,,,I ,•, 
0 -z 10-' 10 ø 101 10 z 10 a 10 • 10 • 

PRODUCTION AND LOSS RATES FOR ODD H (c•3sec -}) 

Fig. ?. Production and loss rates for odd H in the lower Martian 
atmosphere (conditions are the same as those in Figure 6). 
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Fig. 9. Production and loss rates for O•. in the Martian atmosphere 
(conditions are the same as those in Figure 6). 
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Fig. 10. Densit), variations of H and H2 at critical level versus 
exospheric temperature. Ionospheric structure was assumed to be 
fixed in the present model. 

for planetary evolution. Mars has lost significant amounts of 
oxygen and nitrogen over geologic time. Oxygen escape pro- 

ceeds by production of fast atoms in the exosphere, atoms 

being formed primarily by the sequence, reaction (3), or 

O + + CO•.-• O•. + + CO (16) 

(17) 

followed by 

O•. + +e-•O+ O 

Nitrogen atoms with sufficient velocity for escape may be 
formed by 

e+ N•. -•e+ N + N (18) 

and 

e + N,. + --, N + N (19) 

and we may note that these reactions are sufficiently energetic 
that they should proceed with equal efficiency for all oxygen 

o VIKING 1 

DAT/• 

NO 

105 10 6 10 ? 
NO Number Densify (cm -:•) 

i i 1 

lOs 

Fig. 11. Comparison of computed and measured number densities 
of NO in the upper atmosphere of Mars. Curve a is obtained by using 
cross sections for electron impact dissociation of N2 as measured by 
Winters with a quantum yield for N(2D) set equal to 50%. Curves b 
and c allow for uncertainties in Winters' cross sections at low energy 
and in the quantum yield for N(2D), as described in more detail by 
McElroy et al. [1976]. 
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Fig. 12. Number densities of N, NO, NO2, NOs, N205, HNO2, 
HNO•, and N20 in the lower atmosphere of Mars. The surface reac- 
tivity coefficient -y for HNO2 and HNO• equals 1 X 10 -2. Dissociation 
of N2 is assumed to proceed through e + N2 -• e + N(2D) + NOS). 
The model atmosphere used is described by Yung et al. [1977]. 

and nitrogen isotopes present in Mars' exosphere. Carbon 

atoms may also escape. Fast atoms in this case could be 

formed by 

or 

e +CO-•e+C +O (20) 

e+ CO=-•e +C+ O= 

(21) 
-•e+C+O+O 

e + CO•. + --} C + 02 (22) 

e + CO +-•c + O (23) 

Diffusive separation in the Martian thermosphere will result 

in a preferential supply of light isotopes to the exosphere. The 

deficiency of the heavier isotopes at the critical level may be 

characterized by a parameter R defined by the relation [McEI- 
roy and Yung, 1976] 

R = fc/fo (24) 

where f,, denotes the abundance of the heavy relative to the 
light isotopes at the critical level and f0 denotes the analogous 
quantity for the bulk atmosphere. The deficiency parameters R 

may be readily derived as a function of the eddy diffusion 

coefficient K, taken to model effects of mixing near the turbo- 

pause. Values for R as functions of K are shown in Figure 13. 

Curve A gives the values of R for •80 relative to •60; curve B 

gives similar information for •SN/•4N and •aC/•'C. Analysis of 

the Viking data [McElroy et al., 1976; Nierand McElroy, 1977] 

suggests a value for K of about 108 cm •' s -• 
Consider a reservoir which contains an initial concentration 

of gas b(0) atoms cm -•', of known isotopic composition f0(0). 
The concentration of gas in the reservoir at time t, b(t), will 

vary with time according to the equation 

db/dt = -(O, + O=) (25) 

where 4• denotes the rate at which gas escapes to space (cm -•' 

s-l), an isotopically dependent quantity as was noted above; 4•. 
defines the loss rate (cm -•' s -•) for all isotopically insensitive 

removal processes. The time evolution of the bulk isotopic 

composition is given then by 

b dfo/at = ( 1 - R)½•fo (26) 
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Consider the application of this simple model to study the 

time evolution of '60 and '80. The escape rate for O has a 

magnitude of 6 X 107 atoms cm-: s-', as discussed above. The 

additional flux ½: may be used to model loss of O due to 
oxidation of surface rocks. We shall assume that '80/'60 is 

enriched in the present Martian atmosphere by less than 5% 

[Nier and McElroy, 1977] with respect to initial conditions. 

The manner in which the enrichment of '•O should vary with 

respect to the initial reservoir size is illustrated in Figure 14. It 

is clear that Mars' atmosphere must be in contact with a 

reservoir containing a source of oxygen at least as large as 4.5 

X 10:5 atoms cm-:. It is probable that this reservoir reflects the 
presence of a relatively large concentration of atmospherically 

exchangeable subsurface H:O [McElroy and Yung, 1976]. 

Viking's measurement of isotopically enriched 'SN may be 

used in a similar manner to place a lower bound on the initial 

concentration of volatile nitrogen. An enrichment of 1.62 

[Nier and McElroy, 1977] requires an initial N: concentration 

of no less than 7.8 X 10:: molecules cm-:, equivalent to a 

partial pressure of 1.3 mbar. The time evolution of Martian 

nitrogen will be sensitive to surface reactions involving HNO: 
and HNOa as described earlier. The enrichment as predicted 
for 'SN will depend on assumptions made with regard to the 

magnitude of the initial source of volatile N and its isotopic 

composition, surface reactivity, and escape efficiency. Two 

possible models are illustrated in Figure 15. The surface reac- 

tivity 7 (for HNO: and HNOa) was taken to be 3 X 10-: (case 

A) and 1 X 10-: (case B). More detailed discussion of the 

possible range of values for 7 is given by Yung et al. [1977]. 

The present calculations imply an initial N: abundance of 

about 1.7 X 10:4 molecules cm-:, equivalent to a partial pres- 

sure of 30 mbar. Considerable uncertainty is attached to this 

value, arising in part from our assumption that the eddy 

diffusion coefficient K is constant in time and in part from the 

lack of precision in our estimate for the escape efficiency of N. 

Our analysis nonetheless provides a reasonable estimate (fac- 

tor of 3) for the initial nitrogen abundance. One might argue 

that K is set mainly by dynamical processes controlled by 

insolation and topography. Uncertainties in the escape rate 
(and consequently in 7) may be removed by suitable labora- 

tory experimentation. 

The observed enrichment of 'SN may be used to place limits 

.6} I I t IIIII] I I I IIII1[ I I I I III1[ I I I I IIII] I I I I IIII 06 10 ? ]08 109 10 iO 
EDDY DIFFUSION COEFFICIENT K(cm2s -I) 

Fig. 13. Values of R, the deficiency parameter for the heavier 
isotope in the exosphere, as a function of the eddy diffu. sion coefficient 
K. Curve A is appropriate for '80/'eO. Curve B applies to 'SN/"N and 
'3C/"C. 
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Fig. 14. Total oxygen reservoir at t = 0 as a function of the 
enrichment factor fo(t)/fo(O) at t = 4.5 b.y. for 4•. = 1.2 X 10 e, 3 X 107, 
and 0 atoms cm -•' s -•, respectively. 

on the rate at which the atmosphere may gain nitrogen because 
of slow, steady degassing from the interior. Here, as before, we 

denote the initial atmospheric abundance of nitrogen by a 
quantity b(0) atoms cm -2. The time independent steady source 

loo 

1 - 

A 

A : 'r/=.16 

7': .03 

B : 'r/: .08 

y: .01 

o 1 2 3 4 

TIME (b.y.) 

Fig. 15. Abundance of N•. (in millibars) as a function of time (in 
units of 109 years). The enrichment factor at t = 4.5 b.y. is 1.62 for 
both curves, in accord with measurements. For case A the escape 
efficiency rt for the reaction e + N•. -• e + N + N to produce an 
escaping atom is 0.16; the surface reactivity coefficient 3• (for HNO•. 
and HNO3) is 0.03. The corresponding values for r/and 3 • in case B are 
0.08 and 0.01, respectively. The eddy diffusion coefficient K used in 
these calculations equals 1 X 108 cm •' s -•. This figure is adapted from 
McElroy et al. [1976]. 
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Fig. 16. Abundance of N• as a function of time. Enrichment at t = 
4.5 b.y. is 1.62; escape efficiency r• = 0.16 for both curves. Case A 
assumes '7 = 0 and S = 3.6 X 105 atoms cm -• s -•. Case B assumes '7 = 
0.01 and S = 2.8 X 105 atoms cm -• s -• 

of nitrogen is defined by a quantity S atoms cm -•' s -i, and the 
abundance of atmospheric nitrogen at time t, b(t), satisfies the 
relation 

db/dt = -(ckl + ck•.) + S (27) 

where the various symbols have the significance discussed 
earlier. The time evolution of the isotopic composition is given 
now by 

b dfo/dt = (1 - R)Olfo - (fo - fo*)S (28) 

where fo* defines the enrichment associated with the source S, 

assumed to be equal to fo(0). Results for several combinations 
of the parameters ½, and S are shown in Figure 16. It is clear 
that S cannot exceed about 4 X 105 atoms cm -•' s -1, which may 
be compared with the escape rate in the present atmosphere, 

estimated at 106 atoms cm -•' s -1. The escape rate in the past 

depends on the instantaneous abundance of N•. and was calcu- 
lated as described above. It follows that Mars must have 

acquired its nitrogen atmosphere early in the evolutionary 

history of the planet. The degassing rate for nitrogen at the 

present epoch must be less than the average degassing rate 

over the planet's history by a factor of at least 20. One might 

suppose that a similar conversion should hold for other vol- 

atiles with the exception of radiogenic gases such as 4øAr. 

It may be of interest now to examine the possibility of a 

common origin for the volatile budgets of Mars and earth. A 

number of papers have appeared in the recent literature attrib- 

uting planetary volatiles to different classes of chondrites [Tu- 
rekian and Clark, 1975; Owen et al., 1976; Rasool and Le 

Sergeant, 1977]. Information for earth is summarized in Table 

3. An acceptable model for Mars requires either selective 
degassing of nitrogen relative to noble gases or a volatile 

composition for Mars significantly different from that in- 
dicated for earth in Table 3. 

Suppose that the initial volatile compositions of earth and 

Mars were similar. A difference in the formation temperatures 
of the two planets could lead to differential rates for release of 

H•.O, CO•., N•., a6Ar, Kr, and Xe. Laboratory experiments 

[Zahringer, 1962; Heymann, 1971 ] suggest that noble gases in 

meteorites are released at relatively elevated temperatures, 

above about 900øK for a6Ar, Kr, and Xe. Suppose that nitro- 

gen were present in more volatile forms, either as interstitial 

atoms or molecules or as components of the organic com- 

plexes identified in carbonaceous chondrites [Moore, 1971]. In 

this case, Mars could have acquired an early atmosphere rich 
in H•.O, CO•., and N•.. Thermal constraints would have limited 

the gas phase concentrations of H•.O and CO•.. Molecular 

nitrogen might have accumulated as the major constituent of 

the atmosphere, while H•.O and CO•. would have been stored in 

condensed form in near-surface regions of the planet. An 
illustrative model for this situation, case A, is included in 

Table 3. We assume here that most of the noble gases remain 

trapped by the bulk planet. 4øAr is released at a rate (g/g s -1) 

less than that appropriate for earth by a factor of 20. The 

smaller source for 4øAr may reflect either a smaller concentra- 
tion of crustal 4øK on Mars or a slower degassing rate or both. 

Note that with this model the atmosphere acquires its argon 

and nitrogen at quite distinct phases of planetary evolution. 

TABLE 3. Models for the Evolution of Martian Volatiles 

H•O C N Ne a6Ar iøAr Kr Xe 

Earth* 2.8 X l0 -4 1.7 X 10 -5 

Martian atmosphere, --•2.2 X 10 -• 1.1 X 10 -s 
present'[' 

Martian atmosphere and 
crusts 

Case A 

Initial 3.0 X 10 -5 2.9 X 10 -6 

Present 2.9 X 10 -5 2.9 X l0 -6 

Case B 

Initial 3.0 X 10 -5 2.9 X 10 -6 

Intermediate 3.0 X 10 -5 2.9 X 10 -6 

Present 2.9 X 10 -5 2.9 X 10 -6 

CaseC 

Initial 3.0 X 10 -5 2.9 X 10 -6 

Present 2.9 X 10 -5 2.9 X 10 -6 

7.7 X 10 -7 1.1 X 10 -ll 3.5 X 10 -ll 

6.2 X 10 -•ø <1.8 X 10 -13 1.9 X 10 13 

1.3 • 10 -7 small small 

2.4 X 10 -s 6.0 X l0 -14 1.9 X 10 -13 

small 6.0 X 10 -•l 5.9 X 10 -• 

1.3 X 10 -* small small 

2.4 X 10 -s 6.0X 10 -14 1.9 X 10 

1.1 X 10 -8 2.6 X 10 -l• 3.6 X 10 -13 

5.7 X 10 -iø 2.2 X 10 -14 3.5 X 10 -15 

small small small 

5.7 X 10 -lø 2.7 X 10 -14 3.5 X 10 -15 

small 2.9 X 10- 

small small 

5.7X 10 -lø 2.7 X 10 

1.7 X 10 -la 

small 

3.5 X 10 -15 

1.3 X 10 -7 6.0 X 10 -14 1.9 X 10 -•3 small 2.7 X l0 -14 3.5 X 10 

2.4 X 10 -8 6.0 X l0 -li 1.9 X 10 -13 5.7 X l0 -1ø 2.7 X 10 -14 3.5 X 10 -15 

Units are grams of volatile per gram of total planetary material. 
*From McElroy [1976] and Turekian and Clark [1975]. 
]'From Nier and McElroy [1977] and Owen et al. [1976]. 
•:Discussed in this paper. 
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The nitrogen concentration included in the table reflects our 

best estimate based on studies of escape as constrained to 

satisfy the Viking •SN observation. The H•.O and CO•. concen- 

trations are defined by scaling the terrestrial abundances listed 

in the first row of the table. An H•.O concentration of magni- 

tude 4.7 X 10 -5 g/g would require a planet-wide ice layer of 
thickness 200 m. Alternatively, it could be accommodated by a 

crustal material containing 3% H•.O if this crust had an average 

thickness of 3 km. If one were to adopt the lower bound as 

discussed earlier for the initial nitrogen concentration, the 

abundances of H•.O, CO•., and N•. could be reduced by a factor 
of 15. 

Case B considers a rather different model in which we as- 

sume that nitrogen in the early Martian system may in fact 
have been less volatile than 36Ar, Kr, and Xe. This situation 

could have arisen if nitrogen had been present mainly in stable 
compounds such as sinoite (Si•.N•.O) or osbornite (TIN), as 

appears to be the case for enstatite chondrites and achondrites 

[C. A. Anderson et al., 1964; K. Keil and C. A. Anderson, 1965; 

Bannister, 1941]. Then devolatilization of the early planet 

might have favored release of H•.O, CO•., and noble gases, 
nitrogen being released subsequently during the period when 

the planet underwent major differentiation. The concentra- 

tions of H•.O and CO•. in the primitive atmosphere would be 

limited for case B, as for case A, by thermal constraints, and 

the planet would have developed an initial atmosphere rich in 
36Ar, Kr, and Xe. Noble gases in this system would be exposed 
directly to the solar wind. Under present solar wind conditions 

a magnetic field of •20 'y would be required to shield the 

upper atmosphere of Mars from such an interaction. It is clear 

that Mars does not possess a magnetic field of this magnitude 

today, nor is it likely that it ever did. The number of particles 

that can be swept away by the solar wind is limited by the rate 

of photo-ionization and by mass loading of the solar wind 

itself. It may be shown [Michel, 1971] that the latter factor 
determines the maximum escape rate. Michel [1971] gives a 

largely model independent formula for the mass loss rate, 

dM/dt = 0.86(T/lOa)(40/m) g/s (29) 

where dM/dt denotes the total mass loss rate expressed in 

grams per second, T denotes the temperature of the exosphere 

in degrees Kelvin, and m denotes the molecular weight of the 

escaping gas. Applying Michel's simple formula, we can show 

that the time required for about 1 X 10 •'ø atoms cm -•' ofa6Ar to 

escape is less than 0.5 b.y., and similarly short times would be 

associated with the removal of Kr and Xe. Light noble gases 

would be stripped first, followed by the heavier components. 
There would be an associated loss of CO•. and H•.O, whose 

extent would depend fairly critically on the duration of this 

hypothetical early evolutionary phase. The time interval asso- 

ciated with this phase would be relatively brief if the early sun 

were more active than is assumed here. Properties of case B are 
summarized in Table 3. 

Case C in Table 3 summarizes a model in which we relax the 

requirement that volatiles on Mars and earth should have 

similar compositions. We assume here that all volatile com- 

pounds may be released with equal efficiency. The nitrogen 

model requires that the planet undergo a period of rapid initial 

degassing. The early atmosphere should be rich in N•. and 

noble gases and would be protected from the scavenging ef- 
fects of the solar wind. Thus we must assume that Mars was 

assembled from material rich in N•. relative to noble gases, and 
the various parameters in the table reflect this view. As was 
noted earlier, the H•.O concentration for all models must ex- 

ceed 5 X 10 -6 g/g. The concentrations for CO•. and H•.O in 

case C were obtained by scaling from N•. by using terrestrial 
ratios for H•.O: CO•.: N•.. 

Model C seems the most plausible. It avoids the ad hoc 

assumption of time differential degassing for N•. and noble 

gases implicit in models A and B. Differences between Mars 

and earth might be attributed to relatively more extensive 

degassing in the latter case, degassing extending to greater 
depths where the material may be deficient in low-temperature 

condensates. It is interesting to note in this context that the 

nitrogen to noble gas ratios inferred here for the primitive 
Mars are similar to values found for a wide class of meteorites 

[Gibson, 1969; Eugster et al., 1969; Mazor et al., 1970; Hey- 

mann, 1971; Van Schmus, 1974]. It suggests that scaling of 

noble gas abundances from earth to other planets may be 

hazardous. Measurements of noble gas abundances in the 

atmosphere of Venus, scheduled for the upcoming Pioneer 

probe, should provide additional insights. Major uncertainties 
remain in the interim. 

5. SUMMARY 

Viking results, in combination with earlier data from Mari- 

ner 4, 6, 7, and 9, have been used to develop a relatively 

comprehensive model of Martian aeronomy. Escape of H, O, 

and N played an important role in the evolution of Mars' 

atmosphere. It is not possible, however, to identify a unique 

combination of parameters to define the initial inventory of 

Martian volatiles, though the planet appears to have under- 

gone a period of rapid early degassing, at least for N•.. Mea- 

surements of noble gases in the present Martian environment 

are especially puzzling. The possibility that the composition of 

Mars' atmosphere may 'have been influenced by interactions 

with the solar wind over the early stages of planetary evolution 

should not be ignored. The absence of a significant Martian 
magnetic field may have contribute d to differences in the evo- 
lutionary paths of Mars and earth, a possibility which could be 

illuminated further by mass spectrometric measurements on 
the scheduled Pioneer mission to Venus. 
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