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Abstract 
 
Xanthene derivatives are organic dyes, some of which are routinely used in different chemical 
and biological applications, including human medicine. In this work, we investigated the 
photochemistry of some of the most common ones, fluorescein, eosin Y, and rose bengal, and 
major products of their photodegradation using optical spectroscopy, NMR, chromatography 
and mass spectroscopy techniques. These substances, usually considered (photo)chemically 
stable, were found to liberate carbon monoxide (CO) in 40–80% chemical yields upon extensive 
irradiation with visible light in aqueous solutions during their multistep concomitant 
degradation processes. In addition, a number of low-mass secondary photoproducts, such as 
phthalic and formic acids, were identified in the irradiated mixtures. We demonstrate that these 
common fluorescent dyes can also be considered as visible-light activatable carbon monoxide 
(CO)-releasing molecules (photoCORMs) under specific conditions with potential biological 
implications.  
 
Introduction 
 
One of the main prerequisites for the chemical and biological applications of organic dyes, for 
example, as fluorescent tags,1,2 laser dyes,3 or pH indicators,4,5 is their thermal and 
photochemical stability. Fluorescein (1), eosin Y (2), and rose bengal (3, Figure 1) are such 
frequently used xanthene chromophore-based dyes that it is often not considered important in 
their applications that the substances could undergo chemical or photochemical degradation. 
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Figure 1. Structures of a) fluorescein (1), b) eosin Y (2), and c) rose bengal (3) in an aqueous 
solution at pH = 7.4. 
 
 
Early studies of the chemical behavior of excited xanthene derivatives were focused on the 
initial chemical steps.6 Time-resolved spectroscopic techniques allowed us to understand the 
photophysics of, for example, eosin7,8 and fluorescein,9 but to the best of our knowledge, stable 
products formed from 1–3 upon irradiation have never been identified or isolated. Lindquist 
detected several different early intermediates in his thorough study,9 and Imamura showed that 
the photodegradation of fluorescein is irreversible.10 Low-mass products are often released 
upon extensive photochemical degradation of organic molecules. Conventional analytical 
techniques easily overlook these, sometimes gaseous, molecules or fragments.  
Photochemical production of carbon monoxide (CO) has been reported for many different 
compounds.11–13 It has already been demonstrated that the photochemistry of some xanthene 
derivatives can result in CO liberation.14,15 
Carbon monoxide (CO) is an essential biogenic gasotransmitter16 that interacts with 
metalloproteins.17,18 CO in mammalian organisms is avidly bound to hemoglobin (~80%),19 
whereas it has various regulatory and protective functions, such as protection during hypoxia,20 
vasodilatation,21 bactericidal22 and anti-inflammatory effects,23–25 promotion of wound 
healing,26 reducing tumor growth,27–29 in the remaining part of plasma under physiological 
concentrations. CO has also emerged as a promising therapeutic agent for acute kidney injury, 
a previously unmet medical need.30 However, at higher blood concentrations,20 it is a deadly 
poisonous agent inhibiting the binding of oxygen to hemoglobin, thus causing hypoxia31,32 and 
dysregulation in redox pathways.33  
Direct CO inhalation is the simplest delivery mode to mammalian organisms,34 followed by the 
instant formation of COHb in blood and slow non-enzymatic release, which does not allow 
precise control over its dosing and release kinetics. Current efforts to develop more stable and 
reliable CO-delivery methods, using small molecules that release CO upon activation (CO-
releasing molecules; CORMs), allow for a more precise temporal and spatial control over its 
release.11,35 
Since then, numerous strategies for the controlled CO release have been developed.36,37 Light 
can trigger CO liberation from various molecules, such as carbonyl complexes38,39 or metal-
free molecules.11,14 Rational design of such photoactivatable CORMs (photoCORMs), based 
on, for example, xanthene14 or BODIPY moieties,40 allowed for fine-tuning of their optical and 
chemical properties. The bathochromic shift of absorption spectra toward the visible and near-
infrared region (i.e., a phototherapeutic window),41–43 is especially important for 
bioapplications.  
The potential therapeutic use of photoCORMs depends on the same legal and economic 
considerations as for other drugs. In general, the most economically demanding part of this 
process are the appropriate clinical trials as a requirement for approval of a substance for 
medical use.  
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The standard clinical trials involve toxicity testing of potential drug candidates and their 
metabolites and impurities. The potential phototoxicity of chemicals used in human medicine 
is much less explored.44 Mechanisms of phototoxicity involve, for example, 
photosensitization45 or degradation to a toxic product.46 Photochemically induced adverse 
effects of drugs are often unreported or misdiagnosed.47,48 Some compounds, such as diagnostic 
dyes, are used in conjunction with optical irradiation. For example, rose bengal (3) can be used 
in photodynamic antimicrobial therapy49 and photochemical tissue bonding.50,51 
In this work, we decided to study photochemical properties of three common visible light-
absorbing xanthene dyes: fluorescein (1, the prototypical fluorophore),52 eosin Y (2, a widely 
used photocatalyst)53,54 and rose bengal (3, a common triplet and singlet oxygen sensitizer)55,56 
(Figure 1). Fluorescein is approved by EMA, FDA, and other regulatory agencies for its use in 
human medicine, for example, for diagnostic purposes (in ophthalmology,57 urology58 and 
neurosurgery).59 It is also featured on a WHO List of Essential Medicines as an ophthalmic 
diagnostic agent.60,61 Eosin Y is used for staining of histological fixatives,62 and rose bengal 
can be utilized in ophthalmology.63 We studied the photochemistry of these dyes with optical 
spectroscopy, NMR, chromatography and mass spectroscopy techniques. We show that the 
compounds are photolyzed to produce CO and other low-mass photoproducts upon extensive 
irradiation. Biological aspects of the CO photoproduction from fluorescein are discussed in a 
currently submitted article.64 
 
Results and Discussion 
 
Photophysical Properties. Absorption and emission spectra of fluorescein (1), eosin Y (2), 
and rose bengal (3) in an aqueous buffer (phosphate-buffered saline; (1×) PBS, pH = 7.4, I = 
0.1 mol dm–3) solution are shown in Figures 2 and S23–S25, and an overview of the basic 
spectroscopic data is given in Table 1. 
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Figure 2. Absorption spectra of fluorescein (1; black), eosin Y (2; red) and rose bengal (3; blue) 
in PBS (c(dye) ~ 1 × 10–5 mol dm–3). 
 
Dyes 1–3 have their major absorption bands centered in the green region with λmax(abs) in the 
range of 490–550 nm (Figure 2, Table 1). The shape of the bands and the positions of maxima 
exhibit only relatively small solvatochromic shifts.65–68 The compounds are fluorescent with 
fluorescence quantum yields (Φf) spanning from 0.02 for 3 to 0.93 for 1 in an aqueous solution 
at pH ~≥ 7.4. Fluorescence represents the major deactivation for excited fluorescein. The 
compounds exhibit only small Stokes shifts (15–25 cm–1), which is a typical feature of xanthene 
dyes.5,69 The excitation spectra closely match the absorption spectra (Figures S23–S25). 
 
Table 1. Photophysical Properties of 1–3 in Aqueous Solutions.a 
Compd λmax(abs)/nm ε/dm3 mol–1 cm–1 Φf 

b major deactivation pathways  
1 490 (490)70 7.69 × 104 (0.1 mol 

dm–3 NaOH)70 
0.9370 fluorescence 

2 517 (517)71 9.9 × 104 72 0.4373 
0.2067 

fluorescence, iscc (Φisc (pH 9) 
= 0.7 ± 0.1;74 Φisc (H2O) = 0.4 
± 0.03)75 

3 549 (549)65 9.5 × 104 (H2O)65,67 <0.0265 iscc (Φisc = 0.98)76 
a In aqueous solutions at 20 °C: PBS buffer (see Supporting Information), unless stated 
otherwise. The values from the literature are given in parentheses. b Quantum yield of 
fluorescence. c Intersystem crossing to the triplet excited state. 
 
All dyes 1–3 can exist in four acid–base forms in aqueous solutions (Scheme 1), and their 
populations are pH dependent. At physiologically relevant pH (6–8), only anionic forms X-H– 
and X2– (X = 1–3) are detected (e.g., pKa(1-H2) = 4.31 and pKa(1-H–) = 6.43),70 thus, the dianion 
is the major or sole form of 1 at pH = 7.4. In contrast, X-H2 as a neutral species is the major 
form in non-polar media. The X-H3

+ and XH2 forms are weakly absorbing species in an aqueous 
environment.70 
 

 
Scheme 1. Acid and base forms of 1 in aqueous media. Both anion 1-H– and neutral form 1-H2 
could be present as more than one tautomer70 (omitted for clarity). 
 
Photochemistry and Reactions with Singlet Oxygen. Solutions of 1–3 (c ~ 1.3–1.5 × 10–5 
mol dm–3, V = 3 mL) in PBS buffer or methanol at 21 °C in a quartz cuvette were irradiated 
with LED sources (λirr = 400–700 nm; Table S6), and the absorption spectra were recorded in 
the corresponding time intervals until no starting material was observed. The first-order 
degradation rate constants were obtained from the single-exponential fit of the dye’s decay 
monitored at its absorption maximum (Table S1). Comparison of the observed rate constants 
(corrected to the amount of light absorbed; Table S1), calculated from a decrease of the 
absorption signals of the starting material (no other major peaks appeared in the absorption 
spectrum during irradiation), allowed us to calculate relative quantum yields of degradation 
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(Table S2). We found that both 2 and 3 undegro degradation with similar quantum yields, which 
are about 5-fold lower in comparison with degradation of 1. 
To test the reactivity of the dyes with singlet oxygen, thermostated solutions (T = 40 °C) of 1–
3 in methanol containing 1,4-dimethyl-1,4-dihydro-1,4-epidioxynaphthalene77 (4, c = 5.3 × 10–

3 mol dm–3) as a singlet oxygen-generating molecule78 were monitored using UV-vis absorption 
spectroscopy during 20 h (Supporting Information). The estimated amount of 1O2 released from 
the endoperoxide corresponded to ~30 equivalents (conservative estimate, ~100 eq of 4 was 
used). Because we observed only an insignificant decrease in the concentrations (<7%) of all 
dyes (evaluated at λabs(max); Figure S5), we conclude that singlet oxygen plays a minor role 
during the photolysis of 1–3. The dyes in identical aerated aqueous and methanol solutions were 
completely degraded upon irradiation within the same time frame, although they are known to 
act as oxygen sensitizers (with ΦΔ = 0.03 for 1 to 0.76 for 3; Table 1).79 Because 1O2 has been 
reported to accelerate dyes’ degradation such as 3,65 its role as an oxidant is presumably 
important only in later degradation steps. 
Gaseous Photoproducts. Solutions of 1–3 (c ~ 1–3 × 10–5 mol dm–3, V = 0.5 L) in an aqueous 
triethylammonium acetate (TEAA) buffer solution (c(TEAA) = 0.1 mol dm–3, pH = 7.0, I = 0.1 
mol dm–3) in a custom-made glass reactor (Vtot = 1.05 L; Figure S79) were irradiated with white-
light LED reflectors (λirr = 400–700 nm, 3 × 100 W, Figure S81) for 48 h under ambient 
atmosphere. The reaction progress was monitored spectrophotometrically. The headspace 
above the reaction mixture was transferred into a gas-IR cuvette, and the IR spectra were 
recorded (Figures 3, S27 and 28; see SI for further details). A well-resolved absorption band 
with a fine structure was found in the region of 2,220–2,060 cm–1. The spectral features of this 
band match those of the CO standard (a 10-ppm mixture in dry N2(g)) measured independently 
under the same conditions (Figure S26). The remaining signals in the IR spectrum were 
attributed to gases of ambient air (carbon dioxide, water vapor, etc.) or vapors of the buffer 
constituents. No other gaseous photoproducts in significant amounts were produced from the 
irradiated solutions. We also tried to estimate the quantity of released CO by IR spectroscopy. 
Unfortunately, because of a large (>100%) measurement error, we could not determine the CO 
yield, and the method was used only for the qualitative analysis. 
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Figure 3. IR spectrum of headspace collected above the reaction mixture after 48 h irradiation 
of 3 (c = 2 × 10–5 mol dm–3) in an aerated aqueous solution (TEAA buffer, c(TEAA) = 0.1 mol 
dm–3, pH = 7.0, I = 0.1 mol dm–3; λirr = 400–700 nm; Figure S81). Inset: the full spectrum 
(arrow, as a visual guide, points at the center of the CO signal at ~2143 cm–1). 
 
To quantify the CO amounts, solutions of 1–3 (c ~ 1.5 × 10–5 mol dm–3) in PBS were irradiated 
by white light (λirr = 400–700 nm, 3 W LED, Figure S82) in headspace vials (V = 1.5 mL) for 
16 h (until no starting material was observed spectrophotometrically). The amount of CO 
released into the vial headspace was measured by GC equipped with a reducing gas analyzer 
(RGA). The molar amounts n(CO) were calculated from the calibration curves (constructed 
with a standard 10-ppm CO mixture in N2) and compared to the starting molar amounts of a 
xanthene dye in the sample (Table 2). 
 
Table 2. Yields of released CO (g) determined by gas chromatography. a 
Compound [CO] / eq 
1 0.41 ± 0.11b (0.39±0.13 c; 0.11 ± 0.04 d) 
2 1.04 ± 0.16 b (0.52 ± 0.07 c) 
3 0.81 ± 0.16 b (0.43 ± 0.06 c) 

a The aliquots were taken from the headspace after no starting material was observed 
spectrophotometrically (UV/vis absorption; see Supporting Information). All reaction mixtures 
were kept under aerated conditions unless stated otherwise. Each experiment was run in 
triplicate or more replications, and the averaged values are shown. b Irradiation of diluted (c ~ 
1.5 × 10–5 mol dm–3) solutions; the detection by a reducing gas analyzer (RGA). Irradiation of 
more concentrated (c ~ 1–3 × 10–4 mol dm–3) c aerated and d argon-bubbled solutions; the 
detection was done by a mass spectrometer (MS). 
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We also investigated the effect of the initial dye concentration on the CO release yields. More 
concentrated aerated PBS solutions of 1–3 (c ~ 1 × 10–4 mol dm–3; V = 0.5 mL) were irradiated 
with white-light LED reflectors (λirr = 400–700 nm, 3×100 W reflector; Figure S81), until no 
starting material was observed. The headspace was analyzed by GC-MS (Table 2; see 
Supporting Information). While the chemical yields of released CO from 1 were found 
independent of the dye concentration in the range from 1 × 10–5 to 1 × 10–4 mol dm–3, we found 
that the yields from irradiated compounds 2 and 3 decreased in more concentrated solutions by 
a factor of ~2. Indeed, rose bengal photochemistry has been demonstrated to be a concentration-
dependent process.65 We hypothesized that this effect is connected to competitive bimolecular 
(nonproductive) processes that are more efficient at higher concentrations than the CO 
liberation, especially for triplet-excited compounds. Dyes with high intersystem quantum 
efficiency, such as 3 (Φisc = 0.98 in PBS),80 readily transfer excitation energy to oxygen in the 
solution to produce singlet oxygen, which may significantly contribute to its decomposition 
(bleaching).65 
We found that oxygen (O2) plays an indispensable role in the complex photochemistry of dyes 
1–3. CO release was about 2.5-fold lower in samples of 1 deoxygenated by argon purging 
(Table 2), suggesting that the absence of oxygen does not completely stop the CO production. 
Oxygen was found to play only a minor role in the photochemical transformations of dyes with 
a small quantum yield of intersystem crossing, such as in 1 (Φisc ~ 0.03–0.06).79,81 Upon 
prolonged irradiation of 1 in an oxygen-free environment, no10 or only very small9 irreversible 
changes have been observed. However, the photodecomposition of fluorescein was observed in 
the presence of oxygen9 or other oxidizing agents. 
We attempted to find out which carbon atom of fluorescein is primarily responsible for CO 
formation. We prepared fluorescein 1 labeled with a 13C isotope (see SI for details on the 
synthesis). A solution of 13C2-1 (containing ~50% of 13C in the carboxylic group and ~50% of 
13C in the C-9 atom, Figure 5) was irradiated under the same conditions as described above and 
analyzed by GC-MS. The formation of the labeled 13CO was indeed observed, although only in 
the total ~5% amount (Figure S83). We conclude that the origin of this isotope in CO from 
decarbonylation of the carboxylate group or oxidation of the C-9 atom is associated with minor 
pathways only (the upper limit of this enrichment is below 10%). 
Non-gaseous Photoproducts. We used various analytical techniques to analyze photolyzed 
mixtures at different reaction conversions to identify other products of the photochemical 
degradation of 1–3. Solutions of 1, 13C2-1, 2, or 3 (c ~ 6 × 10–3 mol dm–3) in D2O-based PBS 
were irradiated with white-light LED (λirr = 400–700 nm, 3×100 W, Figure S81) until no starting 
material was observed, and the reaction mixtures were analyzed by NMR. Upon irradiation of 
1, 13C2-1 or 2, we observed a relatively simple set of signals in both aromatic and aliphatic 
regions of 1H NMR, with a distinct multiplet in the δ = 7.5–7.7 ppm region and a singlet at δ 
~8.4 ppm (Figures S37, S39 and S41). However, 13C{1H} NMR revealed only one major signal 
at δ 169.2 ppm, which we assigned to phthalic acid (Figure S32). This indicated that if other 
compounds possessing the 13C carbon atom are present, their concentrations must be very low. 
Further NMR (including 2D) experiments and MS analyses (Figures S36) allowed us to identify 
that the major signal belongs to phthalic acid formed in ~95% yield at the ~30% conversion of 
2 (Figure 4). The singlet at δ ~8.4 ppm was attributed to formic acid using an authentic sample. 
A rather complicated set of signals, especially in the aromatic region, with a broad cluster of 
signals at δ = 7.5–8.0 ppm (Figures S30, S31, S38 and S39) was observed. However, no other 
photoproducts have been identified. Upon exhaustive irradiation of 1 and 13C2-1 in CD3OD, we 
found a similar product distribution, that is, formic acid (Figure S34) and phthalic acid (and 
also from 13C2-1; singlet at δ = 173.7 ppm in 13C{1H} NMR; Figure S35). For 3 in PBS, we 
observed the corresponding signal at δ ~8.4 ppm, which was also assigned to formic acid 
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(Figure S44). We assumed that analogous tetrachlorophthalic acid could be produced from 3, 
but we found no evidence of its formation under the given conditions. 
The photoproduct distribution was not constant during the photolysis of 1–3 (1H NMR; (Figures 
S37, S41 and S43). Phthalic acid emerged at an early stage of irradiation in high yields (up to 
~95% at ~30% conversion of 2; Figure 4) and slowly degraded upon prolonged irradiation. On 
the other hand, formic acid appeared later in the course of the reaction. We assume that both 
compounds must be products of secondary photochemical processes (Figure 5), as there is no 
elementary step that could lead to their formation. 
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Figure 4. Dependence of the chemical yields of phthalic acid (black squares), formic acid (red 
circles, and CO (blue triangles) on the photodegradation of 2. Concentrations photoproducts 
were determined in independent experiments, and in the case of phthalic and formic acids, they 
were measured by 1H NMR and the concentrations of CO by GC-MS (Supporting Information). 
 
Next, an array of solutions of 1 and 13C2-1 (c ~ 3 × 10–5 mol dm–3, V = 0.5 mL) in aerated and 
degassed PBS were irradiated in parallel (white-light LED reflectors, Figure S81) until no 
starting material was observed by UV-vis spectroscopy (~4 days). The LC-MS analyses 
(Figures S47–S68, for details on this analysis, see Supporting Information) identified phthalic 
acid (Figures S58 and S63) as a photoproduct in accordance with our NMR experiments. 
Several other relatively intense signals appeared, and we attempted to assess the structures 
based on the corresponding MS spectra. We considered several different modes of bonds’ 
disconnections in 1 and suggested potential structures derived from the xanthene tricyclic core 
(for example, Figure S7), such as various diphenylethers, carboxylic acids, phenol derivatives, 
quinones, or polyphenols. None of the observed m/z signals corresponded with the exact 
structures of the proposed products (Supporting Information), but suggests low-mass products 
with very similar structures. In addition, anticipated diphenyletheres and phenols are likely to 
undergo efficient secondary photochemical degradation. For example, phenol can readily be 
oxidized by singlet oxygen to give quinones.82 Such subsequent photochemical reactions 
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hamper their identification. The quantum yield of 1O2 production sensitized by 1 is low (Φisc 
<0.06, see above). 
 
 

 
Figure 5. Photochemistry of 1, 13C2-1 and 2 in PBS. The products were identified by NMR and 
EI-MS. Note: * denotes the 13C label (only one of two positions in 1 is labeled in particular 
molecule). Dashed lines show disconnection leading to a multistep oxidative release of phthalic 
acid. 
 
If 13C2-1 was photolyzed to give labeled phthalic acid but not CO or HCOOH to a more 
significant extent, these compounds must preferentially originate from other parts of the 
molecule than the C9 atom and the carboxylic group. Still, the major degradation pathway 
involves the central 2H-pyran ring opening. Released CO contained only about <5% of 13C 
(Figure S83), which also indicated degradation of the remaining aromatic ring(s). Released 
formic acid also contained <5% of the 13C. The ring opening reactions are most likely oxidative 
processes, involving either singlet oxygen sensitized by the triplet excited dye molecules (but 
at one of the subsequent reaction steps discussed above) or ground-state oxygen that reacts with 
excited or radical species. Nevertheless, a <5% content of 13C in CO suggests that both labeled 
carbons still partially contribute to its formation. 
We also evaluated the photochemical reactivity of fluorescein in the gas phase using 
photodissociation and mass spectroscopies. From all acid-base forms, only a cation (which is 
not present in aqueous media under physiological pH but requires a significantly more acidic 
environment; Scheme 1) was detectable. We found that photodissociation spectra of 1+ feature 
a low-intensity absorption maximum at λobs = 420.8 nm that corresponds to the 0–0 transition 
(Figure S8). A helium-tagging spectrum suggested that the nature of the excited state is most 
likely rather complicated (see Supporting Information for more details). 
Mass spectroscopy data further showed that the excited fluorescein cation 1+ undergoes several 
fragmentations, such as the loss of 46 mass units (Figure S9), which could correspond to the 
dissociation of formic acid from the carboxylate moiety (see Supporting Information for more 
details). However, we were unable to draw more detailed conclusions or establish structures of 
other putative photoproducts. Unfortunately, our experimental setup hindered our attempts to 
examine fluorescein anions, 1-H– and 12– (Scheme 1).  
Finally, we studied the thermal decomposition of 1–3 to rule out possible dark decarbonylation. 
No release of CO was observed upon heating up to 500 °C. We identified only CO2 and H2O 
as the major gaseous products (Figures S45–S56). 
 
Conclusions 
 
In this work, we demonstrate that extensive irradiation of common organic dyes, fluorescein, 
eosin Y, and rose bengal, with green and white visible light leads to the release of carbon 
monoxide in biologically relevant yields.64 The release of CO was evidenced and quantified by 
independent analytical methods, such as optical spectroscopy, chromatography and mass 
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spectroscopy techniques. In addition, 13C isotopic labeling was utilized to identify the origin of 
CO formation. The isotopic distribution of the 13C carbon in CO suggests that there are at least 
two individual processes for its formation. We also found that phthalic and formic acids are 
produced as other non-gaseous photoproducts. We cannot draw a plausible detailed mechanism 
of the observed phototransformations of the studied dyes at the moment, but we conclude that 
the main pathway to the release of CO and the other photoproducts is a complex multistep 
reaction that involves multiple excitation and several oxidative degradation steps. Our data 
suggest that the photochemical degradation and production of CO from these dyes may be of 
biological importance that should be considered in medicinal applications. 
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