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Abstract

We review our recent progress on the fabrication of near-infrared photodetectors based on

intersubband transitions in AlN/GaN superlattice structures. Such devices were first

demonstrated in 2003, and have since then seen a quite substantial development both in terms of

detector responsivity and high speed operation. Nowadays, the most impressive results include

characterization up to 3 GHz using a directly modulated semiconductor laser and up to

13.3 GHz using an ultra-short pulse solid state laser.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Intersubband transitions in semiconductor quantum wells

(QWs) have a long and successful history. After first

experimental evidence in transistor-like structures observed by

Ando, Fowler, and Stern in 1982 [1], it was West and Eglash [2]

who measured in 1985 the first intersubband absorption in

a GaAs QW structure. The first practically useful devices

were photoconductive detectors fabricated from GaAs/AlGaAs

heterostructures by Levine [3] in 1987. Research in the

following years was driven by an improvement of these

photodetectors called quantum well infrared photodetectors

(QWIPs) [4, 5], but also by a very intense activity towards

the demonstration of a quantum cascade laser. This

important step could be realized in 1994 by Faist et al

at Bell Labs [6]. Research on quantum cascade lasers

has without any doubt become the most impressive field

of intersubband optoelectronics, with outstanding results in

terms of continuous-wave operation of mid-infrared lasers

above room temperature and expansion of semiconductor laser

operation towards the terahertz spectral range [7–10].

At the other end of the electromagnetic spectrum, the

extension of intersubband optoelectronics towards the near-

infrared region is interesting for the development of ultra-

fast photonic devices for optical telecommunication networks,

as well as for application in a variety of chemical and

biological sensors (pollution detection, chemical forensics,

chemical and biological warfare, industrial process moni-

toring, medical diagnostics). Material systems with large

enough conduction-band offsets to accommodate intersub-

band transitions at these relatively short wavelengths in-

clude InGaAs/AlAsSb [11], (CdS/ZnSe)/BeTe [12], GaIn-

NAs/AlAs [13], and GaN/Al(Ga, In)N QWs [14–21]. In

the case of III-nitride heterostructures, their conduction-band

offset—around 1.8 eV for the GaN/AlN system [17, 20, 22–24]

—is large enough to develop intersubband devices operating

in the fiber-optics transmission windows at 1.3 and 1.55 µm.

Additionally, thanks to their extremely strong electron-

longitudinal optical phonon scattering effects, III-nitrides

have the potential to outperform existing semiconductor-based

telecommunication devices in terms of speed. That this

statement is actually more than just a hypothesis, has been

confirmed already by several experiments which demonstrated

intersubband scattering times of the order of hundreds of

femtoseconds [25, 26].

However, in comparison to the successful intersubband

activities in the III-arsenide material system, the work on

GaN and its alloys with AlN is still in its very early stage.

0953-8984/09/174208+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/17/174208
http://stacks.iop.org/JPhysCM/21/174208


J. Phys.: Condens. Matter 21 (2009) 174208 D Hofstetter et al

Experimental work on intersubband transitions using III-

nitride alloys was initiated by C F Gmachl at Bell Laboratories

in 1999. In a series of papers, she first demonstrated

intersubband absorption at ‘long’ wavelengths ranging from

1.75 to 4.2 µm [27], followed by absorption down to

1.55 µm [14, 15]; later, she also gave first estimates for

the ultra-short lifetime of excited electrons in AlN/GaN-

based QWs [28, 29]. These early results impelled a

number of activities in this interesting domain. For instance,

Suzuki demonstrated passive optical switching in 2001 [30],

Hofstetter showed intersubband absorption effects in the two-

dimensional electron gas of a high electron mobility field effect

transistor [31], and Julien succeeded in the first demonstration

of intersubband absorption in a quantum dot structure [32].

Although the effort was quite considerable, it was not until

2003 that the first ‘real’ optoelectronic device, namely a

photodetector, could be operated. This device, which was

fabricated by Hofstetter [33], was a photovoltaic detector

working up to 170 K and being most sensitive at 1.85 µm.

However, its absorption characteristics were sufficiently broad

to show an appreciable optical signal also at 1.55 µm. An

additional boost for the III-nitride intersubband activity was

provided by the European project NitWave, which reassembled

the leading groups of Europe within the topic of intersubband

transitions in III-nitrides. In the course of this project, many

important achievements such as a low-loss waveguides [34],

the first quantum dot infrared photodetector at 1.4 µm [35],

the first photoconductive intersubband detector [36], the

first intersubband intensity modulator [37–39], the first

MOVPE-grown intersubband detectors [18, 40], the first

photoconductive intersubband detectors using III-nitrides [41],

the first III-nitride intersubband luminescence [42], 3 GHz

operation of an intersubband photodetector [43–45], and high

frequency modulation up to 10 GHz [46] were realized. At the

same time, the Suzuki group performed a series of experiments

aimed at a better understanding of the modulation properties of

III-nitrides [47–49]. Additionally, there has been an important

research effort on saturable absorbers for ultra-fast all-optical

switching [48, 50–52]. GaN-based all-optical switches with

an extinction ratio larger than 10 dB have been demonstrated

recently [54, 55].

Although overall, substantial progress has been made

in many respects, there are still dark areas which require

additional research effort. As a representative example, it

is still somewhat unclear how to optimize a simple QW

detector structure in terms of operating speed or responsivity.

In any case, one can say that the topic of intersubband

transitions in III-nitrides remains a very interesting one, having

a considerable potential for surprises. This is mainly a

consequence of the (too) fast early success of violet-blue

laser diodes, which prevented a large fraction of the III-

nitride community doing their homework properly: namely

to understand many of the fundamental effects of these

fascinating materials. As a matter of fact, lots of basic material

properties were initially masked by poor material quality. The

classical example is the bandgap of InN which was believed

to be 1.89 eV for more than 20 years [53] until high quality

thin films grown at Cornell University by Hai Lu et al revealed

a much lower value of 0.6 eV [54]. Defects, too high doping

levels, and oxygen contamination of the films had led to the

wrong conclusions published in 1977. The purpose of this

paper is therefore going into two directions. First, the current

status of III-nitride intersubband photodetectors—in particular

those based on QW structures—will be reviewed. But second,

we would also like to point out problems in order to stimulate

further research effort and to improve the general knowledge

of III-nitride semiconductors.

The paper will be organized as follows: in section 2, we

present a short introduction to simulation tools and summarize

the device parameters that provide a better description of our

experimental results. In section 3, we then briefly address some

important issues of material growth and device fabrication.

In section 4, first material and device results are described,

and the following fifth section is devoted to non-linearity

measurements on our devices. Some more detector-specific

high frequency measurements constitute the topic of section 6.

Finally, two examples of differently designed intersubband

detectors in the III-nitrides are presented in section 7. The

paper concludes with a short summary and outlook.

2. Simulations and design

Simulation work in the III-nitride material system is an

extremely challenging task because of the uncertainty in

material parameters, the lattice mismatch between GaN and

AlN, the relaxation particularities of wurtzite nitride materials

which result in a final strain state that depends significantly

on the growth conditions, and strong internal pyro- and piezo-

electric polarization fields [55, 56]. One has to take into

account that a standard GaN/AlN interface accommodates a

fixed charge density that can be higher than 5 × 1013 cm−2

electrons. This huge charge density leads to an internal field

in GaN/AlN nanostructures of the order of 5–10 MV cm−1. In

addition, the required QW thickness for intersubband effects

at 1.55 µm is only 5–6 ML. Whether any standard calculation

method such as the envelope function approach still renders

valid results for such thin QWs is not a priori clear. Therefore,

we will have to be very careful with the interpretation of

any simulation in this material system. In the best case,

the simulations can be used as design guidelines, but not as

any kind of strict rules or valid confirmation of the absolute

position of any energy levels.

Since our work concentrated mostly on the fabrication

of QW-based devices, this paragraph will already be quite

specific for this particular class of structures. All our

band structure simulations were based on self-consistent

Schrödinger–Poisson equation solvers. We worked with two

different programs; the first one was an adapted version of

‘cband’, which is a program developed at Cornell University

for band structure calculations on AlGaN/GaN-based high

electron mobility transistors [57, 58], while the second is

an adapted version of ‘calculeband’, a program developed

by Sirtori and Faist mainly for the simulation of quantum

cascade lasers [59], modified to include the effects of internal

fields in III-nitrides on the bandstructure. ‘Cband’ has the

advantage of taking into account more realistic boundary
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Figure 1. Simulated band structure for a constant GaN:Si QW
thickness of 15 Å and four different AlN: intrinsic barrier thicknesses
(15, 30, 70, and 150 Å).

conditions for the distribution of the charge carriers, leading

to a better approximation of the band structure in terms of

overall band deformations due to the internal piezo- and pyro-

electric fields. On the other hand, ‘calculeband’ has certain

advantages in terms of ‘local exactness’; this is mainly due to a

more sophisticated implementation of non-parabolicity effects.

‘Calculeband’ uses an effective two band model according

to the theory paper of Sirtori and Faist [40]. It places the

simulated band structure into a rectangularly shaped potential

well in order to guarantee bound wave functions for all energy

states. The potential is then discretized by small ‘potential

slices’ and the Schrödinger equation is being solved piecewise

using a transfer matrix method. The non-parabolicity is

taken into account via an energy-dependent effective mass.

In contrast, ‘cband’ is based entirely on matrix formalism

and solves the Schrödinger equation in matrix form and self-

consistently by direct diagonalization of the Hamiltonian. This

results in better convergence for long superlattices, but in a

slightly deteriorated description of the eigenenergies of single

quantized states. Therefore ‘cband’ is especially useful if the

overall band structure is looked for, whereas ‘calculeband’ has

slight advantages if, for instance, the bound levels of a single

or a double QW are needed.

In figure 1, we present a ‘calculeband’ simulation for a

series of samples having a constant QW thickness of 1.5 nm

and barrier thicknesses ranging from 1.5 to 15 nm. For the

simulation, we assumed that the layers would be 100% strained

onto the underlying AlN buffer layer. According to the theory

presented in Ambacher et al [60], the internal pyro- and piezo-

electric polarizations can be treated like this

PAlGaN
sp (x) = −0.090x − 0.034(1 − x) + 0.021x(1 − x) (1)

P
AlGaN/AlN
piezo (x) = 0.026(1 − x) + 0.0248x(1 − x) (2)

P
AlGaN/GaN
piezo (x) = −0.0525x + 0.0282x(1 − x) (3)

where x is the Al concentration of the AlGaN compound,

and PAlGaN
sp (x) is the pyro-electric polarization for AlGaN.

Equation (1) describes the spontaneous polarization of

AlGaN compounds, equation (2) stands for the piezo-electric

polarization, P
AlGaN/AlN
piezo (x), of an AlGaN layer grown fully

strained on AlN, while equation (3) describes the piezo-electric

polarization, P
AlGaN/GaN
piezo (x), for an AlGaN layer on top of

GaN. According to the work of Bernardini and Fiorentini [61],

the internal fields Fint in the superlattice structure are related to

the respective polarizations and layer thicknesses by

FGaN
int =

tAlN(|PGaN
sp | − |PGaN

piezo| − |PAlN
sp | − |PAlN

piezo|)

εAlNtGaN + εGaNtAlN

(4)

FAlN
int =

tGaN(|PAlN
sp | + |PAlN

piezo| − |PGaN
sp | + |PGaN

piezo|)

εAlNtGaN + εGaNtAlN

(5)

where εAlN and εGaN are the dielectric constants for AlN and

GaN, respectively, while tAlN and tGaN are the corresponding

layer thicknesses. Using (1)–(5) allows us then to calculate

the internal polarization fields in a III-nitride superlattice.

The values obtained using these formulae served as input

parameters for the band structures in figure 1. Figure 2 shows a

comparison of measured intersubband transition energies with

those obtained in figure 1 using the simulation. Given the large

number of involved parameters and their large uncertainty, the

agreement is quite good. Keeping in mind that the piezo-

electric polarization depends on the strain in the crystal, it

is obvious that among the different samples, the changing

amount of residual biaxial strain strongly influences the size

of the piezo-electric field; this leads to a changing amount

of quantum confined Stark effect. Extended bond x-ray

Figure 2. Comparison between simulated and experimentally determined intersubband transition energies in a series of QWs with thicknesses
ranging from 15 to 35 Å.
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Figure 3. X-ray diffraction scans of five different samples with
different superlattice periods (QW thickness 15 Å/barrier thicknesses
of 7.5, 15, 30, 70, and 150 Å).

measurements have shown that even in a 10 period superlattice,

the topmost layers will be no longer entirely strained on the

AlN buffer layer. Although this particular feature of AlN/GaN-

superlattices makes the predictive power of such simulations

somewhat questionable, we were nevertheless able to confirm

certain trends seen in the experiments below.

The typical band structure for an infrared QW detector

using III-nitrides and operating at 1.55 µm consists of an

insulating AlN buffer, on top of which a superlattice with

usually 40 periods of 1.5 nm thick GaN:Si QWs and 1.5–

15 nm thick non-intentionally doped AlN barrier layers is

grown. The entire structure is capped with an insulating AlN

layer of 50 nm thickness. Figure 3 shows a series of x-ray

diffraction scans for such samples. According to the different

periods of the five presented samples, we observe a different

number of superlattice reflections. But even for a small period

of 3.0 nm (1.5 nm QW/1.5 nm barrier), these reflections are

visible up to the second order, which is a clear indication

for the high structural quality of the grown material. The

doping level is kept very high, on the order of 5 × 1019 cm−3.

According to a paper published by Monroy et al [62], and

in contrast to earlier reports [63], no detrimental effects of

the high Si doping level on the crystalline quality could be

observed. As a beneficial side effect, heavy doping allows

also a straight-forward characterization of the intersubband

absorption in a multi-pass absorption experiment. Besides the

barrier thickness and the doping level, all other relevant device

parameters such as number of periods, QW thickness, or cap

layer thickness have been varied systematically in search for

optimized performance. We will present some of the results

of these studies in the section about characterization. At this

point, it is nearly impossible to justify the particular choice

of all layer thicknesses and doping levels in an analytic way.

Obviously, the QW thickness has the most directly measurable

influence on the absorption wavelength, but other parameters

Figure 4. (a) Atomic force microscopy surface scan and
(b) transmission electron microscopy image of a superlattice sample
grown by PAMBE.

such as cap layer thickness, barrier thickness, or number of

periods have—at least in the beginning of this work—been

chosen somewhat arbitrarily.

3. Crystal growth and fabrication

GaN/AlN QW structures can be grown either by molecular

beam epitaxy (MBE) or by metal–organic vapor phase epitaxy

(MOVPE). Most of the results to be presented here are based

on material grown by plasma-assisted MBE (PAMBE). The

lower growth temperature of this technique results in sharp

GaN/AlN interfaces, which is a critical requirement to achieve

device operation at 1.55 µm. Details about the growth

procedure can be found in the work of Monroy [64, 65].

For completeness sake, we give nevertheless some general

information concerning the growth procedure. All PAMBE

samples are grown on AlN-on-sapphire growth templates

fabricated by MOVPE. The AlN layer has a thickness of

roughly 1 µm and the orientation of the substrate is C-face.

During the growth of the PAMBE layers, different methods

have been investigated in order to guarantee metal-rich growth

conditions, which in turn result in smooth surfaces. More

particularly, In used as a surfactant, Ga excess, and growth

interruptions along with Ga and Al excess for GaN and AlN

layers, respectively, have been tried out. From a morphological

point of view, the three different methods gave comparable

results, however, the crystalline quality of the Ga excess

samples was highest, so that most layers of the present paper

were grown using this method. A typical characterization of

sample morphology and interface quality using atomic force

microscopy (AFM) and transmission electron microscopy

(TEM) is presented in figures 4(a) and (b), respectively.

The AFM analysis showed a root-mean-square (rms) surface

roughness which remained around 0.6 nm in an area of 2.5 ×

2.5 µm2. From the analysis of the TEM picture, we conclude

that the GaN/AlN interfaces are abrupt at the monolayer scale.

As far as the fabrication process is concerned, most

devices presented here went through a very straight-forward

fabrication procedure. For simplicity reasons, absorption and

photovoltage samples were usually processed in exactly the

same way. Using diamond-containing polishing films, we

4
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Figure 5. Schematic representation of the sample’s geometrical
dimensions including the metal stripes used for contacting.

polished first the back of the wafer (1 µm grit size), and then

two parallel, 45◦ inclined facet mirrors in order to facilitate

optical coupling into the wafer. As schematically shown in

figure 5, the typical dimensions of such a sample are 2 mm

between the two parallel wedged facets and 7 mm in length

(dimensions in figure 5 are not to scale!). We then thermally

evaporated three metal stripes (Ti/Au, 10/500 nm, unannealed)

running from wedge to wedge and having a dimension of

roughly 0.5 × 2 mm2. The central stripe was evaporated

on a thin Si3N4 layer in order to form a Schottky contact.

Measurements could be done either by connection of an

ohmic–ohmic or an ohmic–Schottky contact pair. Mounting

on a copper heatsink and wire bonding of the two contacts

to Au-coated ceramic platelets completed the process. A

photovoltage can then be measured between the illuminated

signal and the dark reference contact of the sample. In the

case of high frequency measurements, both fabrication method

and mounting technique were slightly more sophisticated. The

process involved evaporation of 100 × 100 µm2 small metal

contacts (Ti/Au, 10/500 nm). As figure 6 shows, mounting

was then done directly on top of a BNC connector with a

short bond wire going to the central pin of the connector

and another one connecting to the ground contact of the

connector to reduce the parasitic capacitance and inductance.

It is obvious that this quite crude mounting technology suffers

from parasitic effects which severely limit the high frequency

behavior of our devices. We therefore expect that proper

high frequency mounting using a coplanar strip-line, no wire

bonds, and correct impedance matching will lead to marked

performance improvements ( f3 dB ≈ 50–100 GHz) in terms of

high frequency behavior.

4. Characterization

The main characterization tool for the presented work was

a Fourier transform infrared (FTIR) spectrometer (Bruker

IFS-66). The samples were mounted on the cold finger of

Figure 6. Photograph of a photodetector sample used in a high
frequency experiment. The BNC connector is clearly visible.

a liquid He-flow cryostat, allowing measurements down to

temperatures of 4.2 K. An external parabolic mirror setup

focused the internal white light source of the FTIR onto

the sample. For absorption measurements, the light passed

through the device in a zig-zag mode and was analyzed

via a broadband mercury–cadmium–telluride detector. For

photodetector characterization, devices were connected to a

Stanford Research current amplifier (SR570) whose output fed

the external detector port of the FTIR. Figure 7 shows the

results of a normalized transmission measurement taken on

five different samples. The quantum confinement shift pushes

the main absorption peak from 4800 cm−1 for a 35 Å QW

towards 6000 cm−1 for a 15 Å QW. It is obvious that the

absolute linewidth increases only slightly from 700 cm−1 for

the thickest QW to about 800 cm−1 for the thinnest QW.

Accordingly, the relative linewidth stays roughly constant at

13–15%. From these numbers, it is possible to estimate

the level of interfacial roughness present in these samples;

a conservative estimate results in roughly one monolayer on

each interface. This number agrees well with the TEM picture

analysis shown in figure 4(b). As usually observed with optical

intersubband transitions, the quantum-mechanical polarization

selection rule dictates that absorption be present in transverse

magnetic (TM) polarization only.

In very general terms, the absorbance α of any

intersubband transition can be described by the following

formula

α =
4πq2

ε0nλ

cos2 θ

sin θ
|〈ϕ1(z)|z|ϕ2(z)〉|

2nsnpassnQW (6)

where q is the elementary charge, ε0 the dielectric constant, n

the refractive index, λ the center wavelength of the absorption

peak, θ the angle of incidence from the surface normal, z

the coordinate in the growth direction, ϕ1(z) and ϕ2(z) the

envelopes of the ground- and the excited state wavefunctions,

ns the sheet carrier density, npass the number of passes through

the QW region, and finally, nQW the number of active QWs.

As can be verified by equation (6), the absorption strength

decreases with decreasing QW thickness: this is the result of

the smaller dipole matrix element d12 = 〈ϕ1(z)|z|ϕ2(z)〉 in

5
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Figure 7. Absorption spectra of a series of five samples having different QW thicknesses (15, 20, 25, 30, and 35 Å) and showing the quantum
confinement shift.

Figure 8. Absorption spectra of a series of samples with different
number of active region periods (10, 40, and 100 periods).

smaller QWs. In larger (30 and 35 Å) QWs, we observed—

in addition to the expected intersubband absorption signal—an

absorption feature around 5500 cm−1. The origin of this latter

peak is not entirely clear yet. In any case, it cannot be due to

a higher order intersubband transition such as the E1 → E3

transition. Our calculations have indicated that this transition

occurs at energies ranging from 8000 to 11 000 cm−1. In

addition, the existence of such higher order absorption peaks

at the computed energies was verified experimentally; they are

visible in figure 7 as small bumps. For the time being, the

most probable explanation for the peaks around 5500 cm−1 is

an impurity or defect level which provides additional states for

the electrons to be absorbed into.

As mentioned earlier, we have varied several important

design parameters—such as barrier thickness and number of

periods—in a systematic way. Examples for the resulting

measurements are shown in figures 8 and 9. Figure 8

shows the absorption and relative photovoltage for a series

where the number of periods was varied from 10 via 40

to 100. In principle, it would be possible to put absolute

values for the size of the photovoltage. However, for the

following discussions, only the relative size of the photovoltage

matters. We therefore use absolute units only in those cases

where they are strictly necessary. This measurement series

shows several interesting effects such as asymmetric linewidth

broadening revealing a more and more pronounced high energy

tail at increasing number of periods. This effect is clearly

visible both in absorption and in photovoltage. The tail

could be an indication of an increasing strain relaxation with

increasing number of periods. As mentioned above in the

paragraph on simulation, the changing amount of strain in the

structure would in this case lead to a changing amount of

Stark shift. As a second possibility, monolayer fluctuations

as suggested by Tchernycheva [66] could also contribute to

such an asymmetric broadening of the detection peak. The

measurements show also a pretty good agreement between

the expected and the experimentally observed relative signal

strengths. Finally, an additional unpolarized photovoltaic

signal centered at 20 000 cm−1 can be seen. We attribute

this signal to defect levels corresponding to the yellow defect

band in GaN from which electrons are being excited into the

conduction band and swept towards the metal contacts by the

Schottky junction underneath the non-annealed metal contacts.

Figure 9 shows the absorption measurements of a series

of GaN/AlN QWs where the AlN barrier thickness was varied

from 7.5 to 150 Å, and figure 10, presents the evolution of

photovoltage signals as a function of temperature in the same

sample series. This latter graph reveals clearly that thicker

barrier layers result in a stronger photodetector signal than thin

ones. A likely explanation for this phenomenon is a reduction

in leakage current between single periods of the superlattice,

leading to higher photovoltages. At 150 and 300 K, the

sample with the thickest AlN barrier layer constitutes the best

photodetector of the series. This experiment led us to the

important conclusion that an optically non-linear effect rather

6
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Figure 9. Series of samples with different AlN barrier layer
thicknesses (7.5, 15, 30, 70, and 150 Å). Absorbance curves are
shown.

Figure 10. Photovoltage signal strength of the series of samples
having different AlN barrier layer thicknesses as a function of
temperature. The same sample series as in figure 9 was used.

Figure 11. Photovoltage spectra of a series of four samples having
different QW thicknesses (11, 15, 19, and 23 Å).

than a transport phenomenon, namely optical rectification, is

at the origin of the observed intersubband photo-signal [67].

The functioning of these AlN/GaN-based devices can thus

be explained via a small electron displacement in the growth

direction which occurs thanks to the internal field-induced

asymmetry of the QWs [68]. Since at the same time, the

donor atoms do not move, small dipole moments will be

Figure 12. Energetic peak positions of absorption and photovoltage
for the series shown in figure 11. A clear mismatch between
absorption and photo-signal is visible, especially for thick QWs.

produced for each displaced electron. The sum of all dipole

moments gets larger if the dwell time or the displacement of

the electrons is increased. If ultra-high frequency operation is

sought, one therefore has to find a trade-off between the dwell

time and the desired frequency limit. This mechanism takes

place only underneath the illuminated contact while the dark

contact serves as a reference. An interesting question concerns

the role of the two-dimensional electron gas being present at

the superlattice-cap layer interface. One could imagine that the

illumination-induced polarization of the superlattice would act

like an additional pyro- or piezo-electric field. This could lead

to an amplification of the observed photovoltage.

Figure 12 shows the evolution of the absorption and

photovoltage signals taken from figure 11 as a function of

QW thickness. It becomes obvious that an anticrossing occurs

between the transition from level 1 into an impurity level and

the regular intersubband transition from level 1 to level 2.

This happens at roughly 13 Å QW thickness and manifests

itself as strongly broadened absorption peak (see figure 11).

Fortunately, nothing dramatic happens to the photovoltage

signals at this energy: they neither show any additional

broadening nor unexpected energetic shifts.

We have also made several temperature scans in order to

better understand the behavior and the influence of thermal

activation on our devices. Figure 13 shows the results of

such scans for the sample series from figure 11 with different

QW thickness: it is obvious that all detectors reach their

responsivity maximum between 50 and 120 K. In addition,

they all show a very steep signal decrease above about 200 K.

A rapid change in the lateral conductivity of the AlN cap

layer above 200 K could be responsible for this effect. This

hypothesis was confirmed by I –V -characteristics as a function

of temperature: the curves turn from more Schottky-like to

Ohmic-like at about 220 K, indicating a new, more efficient

leakage current path.

5. Non-linear effects

Our band structure simulations have shown that certain QW

thicknesses can result in a configuration where the E1 →

7
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Figure 13. Responsivity of four detectors having different QW
thicknesses as a function of device temperature. The steep slope at
200 K is clearly visible in every device. This is the same sample
series as in figure 11.

Figure 14. Series of detector signals as a function of laser injection
current. A signal at the double frequency indicates an optical
non-linearity.

E2 transition has the same energy as the E2 → E3 (or

for very thick barrier layers the E2 → E4) transition.

This is an interesting experimental situation because it can

result in the observation of third order non-linear effects such

as two-photon absorption or saturation of the photovoltage

signal under illumination with a strong laser beam. Indeed

both effects have been observed experimentally, and we will

describe them briefly in this paragraph.

Figure 14 shows a series of measurements performed

under illumination with a commercial 1.55 µm laser diode.

The laser current was increased linearly in steps of 5 mA

up to a maximum of 100 mA. One can easily see that two

detection peaks seem to be present in this case: one at

1.55 µm and another one at half this wavelength, namely

at 775 nm. The fact of seeing these two peaks instead of

only one has to do with our measurement setup which is

based on a Fourier spectrometer. Any non-linearity in the

detection leads to a distortion of the measured interferogram,

and will thus automatically infer peaks at higher harmonic

frequencies. As shown in figure 15(a), the intensity of the

second harmonic peak grows quadratically with the intensity

of the first harmonic peak. A further interesting fact in

Figure 15. (a) Quadratic behavior of the second harmonic peak
intensity as a function of the first harmonic peak. (b) Perfect fit of the
measured data points using a sublinear quadratic saturation function
as expected in our experimental configuration.

this experiment is given by the exactly quadratic saturation

behavior of the detector signal at 1550 nm as a function of laser

current and laser intensity. We performed a fit which yields a

perfect matching of all experimentally observed data points, as

reported in figure 15(b). This saturation effect is caused by

the interplay between the three bound QW states which are

in resonance with each other. Figure 16 shows schematically

how the different energy levels are aligned within the QW

and where the centers of gravity of the relevant wavefunctions

are located. The latter point is crucial for the understanding

of the non-linear effects in these detectors. If level E2 loses

electrons into level E3, then the total non-linear dipole between

levels E2 and E3 gets smaller. At the same time, when taking

the center of gravity of level E1 as a reference, the center of

gravity of level E3 is shifted towards negative values whereas

the center of gravity of level E2 shows a positive shift. This

means that the population of level E3 will not only depopulate

level E2 and weaken its dipole, but it will also induce a dipole

between E2 and E3 which goes into the opposite direction of

the dipole between levels E1 and E2. There are therefore two

simultaneous effects which will induce a weakening of the total

photovoltaic signal. Comparing the absorption probabilities of

the different processes results in a quadratic saturation effect,

as experimentally observed.

6. High frequency testing

After having seen that the electronic lifetime in a GaN QW

can be as short as 170 fs, and given the fact that intersubband

transitions are possible down to 1.4 µm, it was very appealing

to investigate the high frequency performance of the detectors.

For this purpose, we used a diode laser beam at 1.55 µm which

8
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Figure 16. Schematic drawing of an AlN/GaN QW with the
wavefunctions of its first three bound states. The different directions
of the displacements for the levels are clearly visible.

Figure 17. Typical detector signal versus measurement frequency
plot for an AlN/GaN-based intersubband detector working at
1.55 µm. A maximum frequency of 3 GHz was achieved in this
experiment.

was modulated via a commercial electro-optical modulator

having an extinction ratio of >10 dB. The laser delivered

20 mW output power. In order to reduce electrical cross-talk

problems, we physically separated the laser with its modulator

equipment from the detector and its amplifier. A 30 m long

single mode fiber connected the laser and detector parts of

the experiment. Amplification of the detector signal was in

this case done with a Sonoma 317 amplifier which reached

its 3 dB point at 2.5 GHz. A typical characterization curve

is shown in figure 17. It shows the amplified detector signal

as a function of measurement frequency up to 3 GHz. The

maximum signal was seen at 40 MHz, while a −20 dB/decade

slope could be observed up to about 2 GHz. From then on,

the slope became twice as steep. This is shown even more

clearly in figure 18, where a different measurement technique

has been used. In this experiment, we took ultra-short pulsed

Figure 18. Testing of the detector’s maximal frequency range using
an ultra-short pulse solid state laser source.

solid state lasers with pulse durations of the order of 200 fs

and a pulse repetition frequency of 30 MHz (Yb-doped fiber

laser, 1550 nm) to 81 MHz (Nd:YAG laser, 780 nm). Looking

at the Fourier transform of the measured pulse shape allowed

us then to directly determine the frequency response of the

detector, at least as long as we stayed sufficiently far from the

inverse of the pulse length. This was always the case since our

measurements did not exceed 15 GHz. As shown in figure 18,

we measured a maximum frequency of 5 GHz for the E1 → E2

transition, and of 13.3 GHz for the E1 → E3 transition [69].

As an interesting detail, we observed the change in steepness

at the same frequency for both measurement wavelengths,

namely at roughly 2.2 GHz. This frequency is therefore a

device- or mounting-intrinsic property and is most likely due

to the relatively long (6.5 mm, diameter 25 µm) bond wire

which connects the detector active surface to the central pin

of the BNC connector. Future experiments should take care to

make this connection as short as possible, as demonstrated in

Hofstetter et al [70, 71].

7. Quantum cascade detectors and quantum dot
infrared photodetectors

The present manuscript would not be complete without a

short description of other types of AlN/GaN-based infrared

detectors. Very recently, a quantum cascade detector (QCD)

was presented by Vardi et al [72]. Like its mid-infrared

counterparts, this device also profits from a photovoltaic mode

of operation. The band structure is engineered in such a

way as to vertically transport excited electrons by means of

a built-in potential ramp. In order to fabricate such a device,

the use of both binary and ternary compounds, namely AlN,

GaN, and AlGaN, was necessary. A schematic band structure

is shown in figure 19, and the photovoltaic response of the

device to near-infrared radiation is presented in figure 20. In

contrast to an AlN/GaN superlattice photodetector based on

an optical rectification process as described above, a QCD can

potentially reach a higher responsivity. In the example shown

9
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Figure 19. Schematic band structure of a near-infrared QCD. The
transport direction is given by the slope of the potential ramp.

Figure 20. Spectral responsivity of the QCD represented
schematically in the previous graph.

in figure 20, a voltage responsivity of 1 kV W−1 was seen

in photovoltaic mode of operation. Using an internal device

resistance of 100 k�, a current responsivity of 10 mA W−1

can be calculated for this first demonstrator. As a comparison,

only 0.1 mA W−1 were demonstrated in the first GaN/AlN-

based QW detector. This difference is mainly due to the

fact that in a QCD, electrons are being physically transported

across the entire structure and not only displaced by a couple

of angstroms. In addition, the QCD also offers a higher

degree of design freedom which will eventually allow broader

wavelength coverage.

As a second example of an alternative III-nitride-based

photodetector, we would like to mention the quantum dot

infrared photodetector (QDIP). Such a device was first

demonstrated in 2006 by Vardi et al [73]. Its wavelength

characteristics are similar to the QW-based devices described

in the present article. Its potential advantage is clearly that

it can absorb not only TM-, but also transverse electrical

(TE)-polarized light, which facilitates optical coupling into

the device. Another interesting property is the fact that this

photodetector works well in photoconductive mode, which

results in photoconductive gain. Indeed, a room temperature

responsivity of the order of 8 mA W−1 has been observed for

this device.

8. Conclusions

In conclusion, we have reviewed recent progress in

growth, fabrication, testing, and theoretical understanding of

AlN/GaN-based intersubband detectors for the mid-infrared

wavelength range. It is now clear that such devices can

work at frequencies up to tens of GHz, show interesting non-

linear effects, and are capable of integration with transistors

or ultraviolet detectors [74]. The work has also shown,

however, that the III-nitrides still suffer from a certain lack of

knowledge in terms of fundamental material parameters. We

therefore believe that future work on this topic will potentially

have a high pay-off not only for ultra-fast telecommunication

systems, but also for applications in laser and light emitting

diode technology, especially regarding defect levels and their

interaction with light.
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