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Abstract

Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and 
the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in 
preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of 
infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical 
needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in 
animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic 
are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of 
photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the 
fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photo-
sensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of 
PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of 
the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
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1 Introduction

Infections by multi-drug resistant (MDR) microorganisms 
are one of the biggest challenges to healthcare systems 
and pharmaceutical companies, and are expected to grow 
considerably over the next few decades. Indeed, if no 
substantial developments are made in the treatment and 
managing of MDR infections, the number of people dying 
from MDR infections will jump from 700,000 in 2016 
to 10 million in 2050 [1], and certainly will surpass the 
number of people dying from cancer, diabetes and cholera 
combined.

Bacterial antibiotic resistance is driven by excessive 
antibiotic consumption [2]. Antibiotics became wide-
spread on the treatment of infections both in humans and 
in animals. The global antibiotic consumption reached 42 
billion defined daily doses (DDD) for human use in 2015 
and if all countries continue their antibiotic consumption 
rate, it will increase to 128 billion DDD in 2030 [3]. This 
is much aggravated by animal use. A 2014 joint European 
Centre for Disease Control/European Food Safety Agency/
European Medicines Agency surveillance report estimated 
that, across 28 European Union member states, 8927 tons 
of antimicrobial active ingredients were used for animals, 
compared with 3821 tons used for medical purposes [4]. 
More than 70% of the antibiotics deemed medically impor-
tant for human health by the FDA sold in the United States 
(and over 50% in most countries in the world) are used 
in livestock [5]. The World Health Organization (WHO) 
has published a list of MDR bacterial strains for which 
there is an urgent need for new therapeutic solutions [6]. 
It includes strains of Gram-negative Acinetobacter bau-

mannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, 
Escherichia coli and Helicobacter pylori, and Gram-pos-
itive Staphylococcus aureus and Enterococcus faecium.

Fungi infections are also concerning, since they result 
in approximately 1.5 million deaths per year, with species 
of Aspergillus, Candida, and Cryptococcus responsible for 
90% of fungal infections in humans [7]. The prevalence of 
antifungal resistance is not yet at the levels observed for 
antibiotic resistance. However, drug-resistant fungal infec-
tions are increasingly becoming a concerning health issue, as 
fungal species resistant to more than one antifungal class are 
emerging [8]. Given that, there are only three major classes 
for the treatment of invasive fungal infections (polyenes, 
azoles and echinocandins), therapeutic options to treat multi-
drug resistant fungi infections will be rapidly exhausted if 
antifungal resistance becomes prevalent [9]. Additionally, 
current antifungal therapies often give poor clinical out-
comes for drug-susceptible fungal infections [10].

Viruses are the biological entity with the largest popula-
tion, exhibiting high rates of mutation, and may develop 

resistance to antiviral therapies. This is observed when 
treatments are not entirely successful in inhibiting viral 
replication, resulting in a selective pressure that allows 
proliferation of resistant strains [11]. Enveloped viruses 
such as hepatitis C, influenza A, HIV and SARS-CoV-2 
are particularly prone to mutations, and thus can more 
easily develop resistance to current therapies [12–14]. It 
is worth mentioning that exposure to antiviral drugs and 
metabolites in the environment may also be an important 
cause for antiviral resistance [15].

The demand for alternative treatments of infectious dis-
eases originated by multidrug-resistant microorganisms 
is not reflected in the pipelines of pharmaceutical indus-
tries [16, 17]. In particular, the development of antibiot-
ics effective against gram-negative bacteria, perhaps the 
most concerning type of MDR microorganisms, has seen 
no major progress in the XXI century as no new classes 
of antibiotics have been found. The recent clinically-
approved antibiotics are derivatives of drugs for which 
there is widespread resistance (e.g., β-lactams and qui-
nolones/fluoroquinolones classes) [18]. In most cases, 
antimicrobials have one specific biological target, given 
that multi-target approaches pose an increasing risk of 
promiscuity and can thus lead to side-effects to human 
cells and tissues. As a consequence, novel antimicrobials 
aiming at an increasingly specific target become depend-
ent on a given mechanism, and microorganisms can more 
easily adapt to modify that target or block the access of the 
drug to the target [19]. The specificity of antibiotics is also 
their Achilles heel. The dilemma of antibiotic specificity/
resistance or multi-targeting/toxicity is not readily solved, 
and fueled the revival of applications of the photodynamic 
effect to kill microorganisms.

The photodynamic effect was first reported in the begin-
ning of the XX century after the observation of Oscar Raab, 
working in the laboratory of Hermann von Tapiener, that the 
illumination of microbial cultures in the presence of acrid-
ine compounds induced microbe death [20]. This discovery 
came when antiseptics with low toxicity to tissues, such as 
flavine (3,6-diamino-10-methylacridinium) were actively 
investigated [21] and before Fleming discovered antibiot-
ics [22]. The large-scale use of penicillin in the Second 
World War promoted the uncontested use of antibiotics, and 
obscured the use of the photodynamic effect in the control 
of bacterial infections. The study of the photodynamic effect 
remained a minor curiosity until the 1960s, when Lipson 
and Schwartz gave a new impulse to the field with the dem-
onstration that hematoporphyrin derivatives accumulate in 
tumors [23] and can be used as photosensitizers to destroy 
tumor tissue [24]. The use of the photodynamic effect in 
oncology met with considerable success and various pho-
tosensitizers have been approved for the treatment of solid 
tumors [25–28].
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Today it is very well established that the photodynamic 
effect results from the combined actions of three elements: 
a photosensitizer molecule that absorbs light, a light source 
that emits light with a wavelength absorbed by the photo-
sensitizer, and molecular oxygen [27]. The absorption of one 
photon produces one electronically-excited photosensitizer 
molecule initially in a singlet state but that rapidly populates 
a triplet state, or decays to the ground state. The lifetime 
of the triplet state is sufficiently long (> 1 µs) to allow for 
energy or electron transfer to molecular oxygen, yielding 
singlet oxygen or superoxide ion, respectively. Other reac-
tive oxygen species (ROS) may be subsequently generated 
(e.g., hydrogen peroxide, hydroxyl radical) [29]. The tri-
plet state of the photosensitizer may also undergo electron 
transfer reactions with biomolecules to generate ROS. Elec-
tron transfer reactions yield radicals and are named Type 
I processes, whereas energy transfer to oxygen is known 
as the Type II process. The use of the photodynamic effect 
in oncology is termed photodynamic therapy. Its use for 
inactivation of pathological agents such as bacteria, fungi 
and viruses [30–32] became known as antimicrobial PDT 
(aPDT), photodynamic inactivation (PDI), photodynamic 
antimicrobial chemotherapy (PACT) or photodynamic dis-
infection (PDDI). Recently, the conjugation of a photosen-
sitizer molecule with a monoclonal antibody that targets 
an expressed antigen on the cancer cell surface has been 
referred as photoimmunotherapy (PIT) [33]. Although dif-
ferent designations are employed in different fields, the 
nature of the photodynamic process is the same.

The mechanism of cell death triggered by the photody-
namic effect depends on the oxidative stress locally pro-
duced [34]. The ROS generated in PDDI (singlet oxygen 
1O2, superoxide ion  O2

⋅–, hydrogen peroxide  H2O2, hydroxyl 
radical  OH⋅), have relatively short lifetimes and react with 
biomolecules before having time to diffuse from the illumi-
nated area. The lifetime of singlet oxygen (τ∆) in cells and 
its associated diffusion length were recently established: τ∆ 
≈ 3 µs [35], i.e. a diffusion length of 200 nm over a period 
of 5τ∆. The hydroxyl radical is extremely reactive and its 
lifetime in cells is 1 ns, which limits the radius of the volume 
where it can produce damage to 1 nm [36]. Superoxide ion 
and hydrogen peroxide are natural by-products of cellular 
metabolism. It is estimated that the aggregate rate of  H2O2 
formation inside aerobic E. coli is 10–15 µm/s [37] and that 
of  O2

⋅– is 5 µm/s [38]. The toxicities and fast rates of forma-
tion of these ROS led cells to developed specialized scav-
enger enzymes and stringent antioxidants (e.g., glutathione, 
cysteine). Catalases and peroxidases keep the steady-state 
concentration of  H2O2 in cells at ~ 20 nM [37]. Superox-
ide dismutases are sufficiently abundant in the cytoplasm 
to keep  O2

⋅– at ~ 0.2 nM [38]. The diffusion of  O2
⋅– is also 

limited by its poor ability to cross biological membranes. 
The relatively high diffusion radius of singlet oxygen and 

the lack of specialized endogenous scavengers to control its 
concentration, combine to make Type II processes particu-
larly important in PDDI of microorganisms. Singlet oxy-
gen reacts with proteins, nucleotides and lipids with rate 
constants of ~  104, ~  103 and ~  102 L/(g s). Considering the 
relative abundance of protein in cells, it is expected that 
quenching of singlet oxygen by proteins is two orders of 
magnitude higher than by nucleotides and lipids combined. 
Hence, when PDDI is performed with the photosensitizer 
inside the cell, proteins are likely the primary target of 
singlet oxygen. However, if PDDI is performed before the 
photosensitizers have time to permeate cell membranes, the 
oxidation or peroxidation of lipids may become determinant 
in the inactivation of microorganisms. The higher solubility 
of singlet oxygen in lipids than in aqueous environments, 
and the higher proportion by mass of lipids in the membrane, 
also contribute to make biological membranes attractive tar-
gets in PDDI. The diversity of ROS and their high reactiv-
ity towards different biomolecules ensures that PDDI is a 
multi-target approach to control infectious diseases, which 
reduces the efficacy of drug resistance mechanisms [39]. 
Moreover, PDDI is applied for a short period of time (typi-
cally the illumination lasts for just a few minutes) and it is 
uncommon to systematically repeat PDDI over long treat-
ment periods. Taken together, these factors explain why the 
magnitude of resistance to the photodynamic effect is less 
than that observed for chemotherapy and antibiotics [40, 41].

Although PDDI attains multiple cellular targets, it ben-
efits from the directionality of light to minimize off-target 
damage. This also contributes to make PDDI especially 
suitable to treat localized infections [42]. The photosensi-
tizer can be applied locally and, after a proper drug-to-light 
interval (DLI), the light dose is delivered to the infected 
area. Examples of localized infections include periodontal 
diseases, burn infections, surgical wound infections and 
infected wounds originated by venous, pressure or diabetic 
ulcers [43–45]. Superficial wounds are defined as wounds 
that affect only the epidermis. The epidermis reaches a maxi-
mum thickness of ~ 1.5 mm on the palms of the hands and 
the soles of the feet. Superficial wounds, including stage I 
pressure ulcers and stage 0 diabetic ulcers, are particularly 
suited for PDDI with topical administration of photosen-
sitizers. Partial-thickness wounds extend through the epi-
dermis into, but not through, the dermis, and correspond 
to depths between 1 and 4 mm. This is the case of stage II 
pressure ulcers. The slow diffusion of the topically-applied 
photosensitizer through the epidermis and low optical pen-
etration depth of light at wavelengths shorter than 650 nm 
may become limiting factors in PDDI of infected partial-
thickness wounds. Full-thickness wounds extend through 
the epidermis and dermis into subcutaneous fat and deeper 
structures. They correspond to stage III pressure ulcers, 
venous ulcers or surgical wounds [46, 47]. These wounds 
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are open wounds and light and photosensitizer do not have to 
penetrate 4 mm or more into the skin to reach the infection. 
Nevertheless, the clinical presentation of such large wounds 
may require debridement and this may still leave obstacles to 
homogeneous illumination and photosensitizer delivery. In 
addition to wound infections [48, 49], other possible super-
ficial targets of PDDI include acne [50] (i.e., colonization 
of follicles by Propionibacterium acnes) and impetigo [51] 
(mostly caused by Staphylococcus aureus, which colonizes 
the nasal epithelium first and from this reservoir colonizes 
the skin). Superficial soft tissue infections of the ear, nose 
and throat/upper respiratory tract (e.g., tonsillitis, pharyn-
gitis, scarlet fever, otitis media, sinusitis) may also be con-
trolled by PDDI [52, 53].

Although localized infections are the most obvious 
therapeutic indication for PDDI, the photodynamic patho-
gen inactivation of single units of fresh frozen plasma met 
with considerable commercial success in Europe. Initially 
developed to increase the viral safety of plasma transfusions 
and more recently shown to inactivate bacteria in plasma, 
PPDI of plasma with methylene blue has been used to treat 
more than 6 million plasma units in the last 15 years [54]. 
Other methods of extracorporeal blood photodisinfection are 
emerging to treat systemic infections such as sepsis [55]. 
We can expect to see continued advances in such methods 
but, for the purposes of this work, we will focus on recent 
development of PDDI that can potentially translate to the 
treatment of localized infections.

In 2004 Hamblin and Hasan authored a very impactful 
review on the use of PDDI to treat infections [31]. This 
followed from research on PDDI using polycationic pho-
tosensitizer conjugates that remains inspiring [56]. Ham-
blin’s contributions to PDDI also include the disclosure of 
very potent photosensitizers with intense absorption in the 
near-infrared [57], important animal models to refine PDDI 
approaches [58, 59], and methods to potentiate the efficacy 
of PDDI [60], among very numerous other contributions [31, 
42, 61–64]. It is a great pleasure to contribute to a special 
issue celebrating the achievements of Mike Hamblin with 
this review on PDDI.

Various excellent reviews on PDDI have been published 
[32, 65–77], including with a focus on the treatment of 
multi-resistant bacteria in planktonic suspensions or in bio-
films [78], as well as fungi [79] and viruses [80, 81]. Many 
efforts have been dedicated to the synthesis of photosensitiz-
ers and to new strategies for PDDI [62, 64, 66, 67, 82, 83], 
including the combination with antimicrobials [32, 84, 85]. 
There is also an interesting literature on the use of blue light 
(400–450 nm) to excite endogenous photosensitizers that 
generate oxidative stress or to produce oxygen-independent 
DNA damage [86], but such approaches are intrinsically lim-
ited by the low penetration of blue light in human tissues. 
Our approach in this work is to focus on photosensitizers that 

have been applied to clinically-relevant systems (e.g., bio-
films, animal models of infection) or that are employed in the 
clinic, identify their factors of success and relate them with 
properties of the systems. Success in PDDI also depends on 
proper choice and use of light sources. A detailed analysis 
of light delivery to infectious diseases and of available light 
sources is also presented. To understand better the specifici-
ties of photosensitizers aiming at the inactivation of microor-
ganisms, a very brief overview of photosensitizers employed 
in clinical PDT of solid tumors is presented to set the stage 
for photosensitizers used in PDDI of microorganisms.

2  PDT of solid tumors

It was emphasized above that even the ROS with the largest 
diffusion length (~ 200 nm for 1O2) deactivates within a very 
small volume. Indeed, 1O2 explores a radius ca. 2 orders of 
magnitude smaller than that of a typical a human tumor cell. 
This means that cell death triggered by PDT oxidative stress 
is facilitated if the photosensitizer first enters the tumor cell. 
Lower photosensitizer doses are required to kill tumor cells 
if they are exposed to light after substantial photosensitizer 
uptake.

Human cell membranes, illustrated in Fig. 1, are particu-
larly well studied [87] and only a brief description is needed 
in the context of photosensitizer cell uptake. The structural 
basis of human cell membranes is a complex lipid bilayer, 
constituted mostly by phosphatidylcholine, sphingomyelin, 
cholesterol, phosphatidylethanolamine, and phosphatidyl-
serine [88]. The distribution of these constituents in the 
inner and outer leaflets is heterogeneous, as phosphatidy-
lethanolamine and phosphatidylserine are more prominent 
in the inner leaflet, while sphingomyelin and phosphatidyl-
choline are located mainly in the outer leaflet. Figure 1 also 
depicts the lipid rafts, which are membrane microdomains 
more ordered and tightly packed than the rest of the bilayer, 
and contain high amounts of cholesterol and sphingomy-
elin [89]. Embedded in the lipid bilayer are peripheral 
and transmembrane proteins that serve multiple purposes, 
namely as enzymes, transporters, receptors and cell adhe-
sion molecules. In addition, polysaccharide chains located in 
the extracellular environment and linked to lipids (glycolip-
ids) and proteins (glycoproteins) forming the glycocalyx, 
play an important role in immune response namely in cell 
recognition, cell–cell interactions and protection from the 
environment.

The transport of substances through cell membranes may 
occur by simple diffusion, facilitated diffusion with the aid 
of a membrane protein, or active transport with an energy 
penalty paid by the cell. The latter two transport mecha-
nisms are endocytic pathways. It could be desirable to avoid 
endocytosis, and the associated low cytosolic release of the 
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transported substance, and have photosensitizers that pas-
sively diffuse across the membrane, driven by a concentra-
tion gradient. However, the derivation of Fick´s first law of 
diffusion for passive diffusion across a plasma membrane 
gives [90]

where dM/dt is the amount of compound transferred 
across a membrane over time t, PM is the membrane-water 
partition coefficient of the compound, MW is the molecular 
weight of the compound, ∆C is its difference in extra/intra-
cellular cellular concentration, S is the total surface area of 
the membrane, d is the thickness of the membrane. Only low 
MW drugs may diffuse rapidly across cell membranes. This 
is also pictured by Lipinski’s “rule-of-five”, which describes 
the bioavailability of oral drugs [91]. One of the Lipinski’s 
rules states that drugs should have MW ≤ 500 Da for high 
bioavailability after oral administration. This bioavailabil-
ity and membrane permeability are closely related because 
drugs traverse the gut epithelium mostly by transcellular 
transport.

Photosensitizers employed in PDT of cancer have been 
extensively reviewed [27, 28, 70, 92–95]. Our perspec-
tive here is to recall some examples of photosensitizers in 
clinical use, including photosensitizers in clinical trials, to 
emphasize some of their properties and their implications 
in translation to infectious diseases. All the photosensitiz-
ers in Table 1 have MW > 650 Da. It is not surprising that 
they require intravenous administration with appropriate 
formulations. With the exception of cetuximab saratolacan, 
their size and hydrophobicity favors endocytosis mediated 
by low density lipoproteins receptors as the main mecha-
nism of cell uptake [27], although temoporfin shows some 

dM

dt
=

P
M

SΔC

d

√

MW

degree of simple diffusion through the cell membrane [96]. 
The main cellular compartments where these lipophilic 
compounds accumulate include mitochondria, endoplasmic 
reticulum, Golgi apparatus, nuclear and lysosomal mem-
branes [97, 98]. Cetuximab saratolacan is an antibody–drug 
conjugate that targets the epidermal growth factor receptor 
often overexpressed on the surface of cancer cells. When this 
photosensitizer is excited, it releases ligands causing stress 
in the cellular membrane, impairing its function and leading 
to cell death [99]. This photosensitizer is not internalized 
by the cells.

Cell uptake is relatively slow (> 24 h to reach the maxi-
mum) for porfimer sodium and for redaporfin, and signifi-
cantly faster (2–3 h) for temoporfin and verteporfin [96, 108, 
109]. This follows the expectations based on their molecular 
weights. The cell uptake of talaporfin is also relatively slow 
(> 4 h) [110], certainly because of the combination between 
its moderately high molecular weight and 4 negative charges. 
Cell uptake and pharmacokinetics help explain why these 
photosensitizers are usually employed either at long drug-
to-light intervals (“cellular”-PDT, DLI > 24 h for porfimer 
sodium and temoporfin) or at short DLI (“vascular”-PDT, 
DLI < 30 min for verteporfin, padeliporfin, redaporfin). 
Talaporfin is employed in early-stage lung cancer with 
DLI = 4–6 h and in brain tumors with DLI = 22–26 h. The 
short DLI employed in PDT with verteporfin, padeliporfin 
and redaporfin target the photosensitizers while in the vas-
cular compartment, rather than inside tumor cells. PDDI 
would be most appealing at short DLI, but it is not possible 
to use vascular effects to selectively inactivate microorgan-
isms. Photosensitizers for PDDI must be based on different 
molecular designs.

PDT of actinic keratosis met with considerable success 
when precursors of Protoporphyrin IX (PpIX) such as 5-ami-
nolevulinic acid (5-ALA, commercialized as  Levulan® in the 

Fig. 1  Schematic representation of the biological membrane in animal cells [89]
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Table 1  Chemical properties of main tetrapyrrolic macrocycles used in PDT under clinical use

# Name/application Structure MW, g/mol Log POW Charge

1 Porfirmer sodium (Photofrin) [100]

 

1179 (for n = 0) 0.15 − 4 (for n = 0)

2 Temoporfin (Foscan) [101]
Head and neck

 

680 5.5 [102] 0

3 Verteporfin (Visudyne) [103]
Pancreatic cancer [104]

 

718 1.6 − 1

4 Talaporfin sodium
Lung cancer [105]

 

712 − 3 [106] − 4

5 Padeliporfin (Tookad-soluble)
Prostate cancer [107]

 

872 − 0.2 − 2
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USA) or 5-aminolevulinic acid methyl ester (MAL, com-
mercialized as  Metvix®) were administered in topical for-
mulations. 5-ALA has a molecular weight of only 131 g/mol 
and its methyl ester MAL increases the molecular weight 
to 145 g/mol. These small molecules diffuse rather rapidly 
through the skin and are efficiently internalized by cells. 
A randomized, double-blind, prospective study to compare 
 Levulan® and  Metvix® in PDT of extensive scalp actinic 
keratosis showed that there is no significant difference in 
efficacy between them [111]. Interestingly, this comparative 
study employed a red light (580–740 nm) for both products, 
but  Levulan® is indicated for use with BLU-U Blue Light 
PDT Illuminator (417 nm) whereas  Metvix® employs Akti-
lite CL (630 nm). These peak wavelengths match the Soret 
band and the lowest energy band of PpIX, respectively.

The use of blue light in PDT of actinic keratosis may 
be surprising since it is known that the penetration of light 
in human skin increases with the wavelength. The optical 
penetration depth increases from δ ≈ 0.3 mm at 417 nm to δ 
≈ 1.7 mm at 630 nm [112]. This means that 2 mm beneath 
the surface of the human skin, light intensity at 417 nm is 
attenuated by a factor of 1.3 ×  10–3 whereas at 630 nm it is 

only reduced by a factor of 0.3. The increase of optical pen-
etration depth in the red/infrared can have dramatic conse-
quences in the treatment of thick solid tumors and motivated 
the development of photosensitizers with intense absorp-
tions in the phototherapeutic window, i.e., between 650 and 
850 nm [27]. However, the photodynamic effect comes from 
the number of photons absorbed, and this depends both on 
the number of photons available at 417 and 630 nm and on 
the absorption coefficients of the photosensitizer at these 
wavelengths. The ratio of the absorption coefficients of PpIX 
at 410 vs. 624 nm in cells is ~ 56 [113], which partly com-
pensates the poor penetration of blue light in the skin. This 
comparison between  Levulan® and  Metvix® teaches that 
when the therapeutic target is within 2 mm of skin surface, 
the lower tissue penetration of light with wavelengths shorter 
than the phototherapeutic window can be partly compen-
sated by high absorption coefficients.

In summary, photosensitizers for PDT of cancer are 
designed to have intense absorptions above 650 nm and may 
be rather large “macromolecules” administered by intrave-
nous injection. Their molecular size is not critical for suc-
cess because they may operate via a vascular shutdown or 

Table 1  (continued)

# Name/application Structure MW, g/mol Log POW Charge

6 Redaporfin
Head and neck [108]

 

1135 1.9 0

7 Cetuximab saratolacan
(Akalux) Head and neck [33]

 

156,000–158,000 – − 4 (exclud-
ing cetuxi-
mab)
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by impairment of the cell membrane, and these mechanisms 
allow for solid tumor destruction without photosensitizer 
internalization by tumor cells. Moreover, when cellular-
PDT is desired, a long DLI can be employed to allow the 
photosensitizers to be internalized by the cells. The clinical 
adoption of photodynamic disinfection for the treatment of 
superficial infections requires a topical application of the 
photosensitizer followed within a few minutes by illumina-
tion of the infected area. Wavelengths in the visible range 
may be effective if the absorption coefficient of the photo-
sensitizer is high, it can diffuse rapidly into the infected tis-
sue, and the depth of the treatment does not need to exceed 
3 mm. Clearly, the development of photosensitizers for PDT 
or for PDDI is not driven by the same requisites.

3  Bacteria and bio�lms

The goal of PDDI must be to cure the local infection. When 
dealing with bacterial infections, it is important to distin-
guish between the bacteriostatic effect defined as the effect 
of an agent that prevents the growth of bacteria (i.e., keeps 
the bacteria in the stationary phase of growth), from the 
bactericidal effect where the agent kills the bacteria [114]. 
In practice, it can be considered that an agent has a bac-
teriostatic effect if it inhibits bacterial growth 24 h post-
treatment, with less than a 99.9% decrease in the number of 
colony forming units (CFU). A bactericidal effect requires 
at least a 3 log (99.9%) CFU reduction. The potency of 
antibiotics is often characterized by two measures: (1) their 
minimum inhibitory concentration (MIC), i.e., the lowest 
concentration that results in inhibition of bacterial growth 
after 24 h incubation; (2) their minimum bactericidal con-
centration (MBC), i.e., by the lowest concentration that 
results in 3 log CFU reduction. This measure is not entirely 
adequate for photosensitizers because lower drug concentra-
tions can be partly compensated by higher light doses, and 
the incubation times relevant for photosensitizers (less than 
1 h) and for antibiotics (18–24 h) are widely different. The 
discussion of the light doses is postponed to Sect. 6. Never-
theless, photosensitizers with bactericidal effects that require 
photosensitizer concentrations higher than 50 µM are likely 
to be difficult to translate to clinical practice because such 
high concentrations will be difficult to achieve in the whole 
infected region and may be toxic to human cells.

3.1  Biological barriers in bacteria and biofilms

It is now understood that only photosensitizer molecules 
located in the cellular membrane or inside the cells, are able 
to generate ROS that can damage cell components and lead 
to cell death. This gives special relevance to the understand-
ing of the biological barriers that the photosensitizers must 

cross before reaching their targets. There are two types of 
barriers that are relevant to photosensitizers targeting bac-
teria: the cell wall and the bacterial biofilm. Gram-positive 
(G+) and Gram-negative (G−) bacteria have substantially 
different cytoplasmic membranes, as shown in Fig. 2.

The membranes of G+ bacteria are characterized by a 
15–80 nm thick layer of up to 100 peptidoglycan chains that 
retains crystal violet stain after it is washed from the sample 
in the Gram stain test. The cytoplasm is surrounded by a sin-
gle lipid bilayer, composed mainly by phosphatidylglycerol 
(~ 70–80%) and cardiolipin (~ 20%) [116], in which some 
proteins are embedded. Facing the outer leaflet are multi-
ple strands of peptidoglycan stacked one upon another and 
cross-linked for additional strength. Inside the peptidoglycan 
layer there are copolymers of glycerol phosphate or ribitol 
phosphate and carbohydrates, linked via phosphodiester 
bonds, called teichoic acids (if bound to peptidoglycan layer) 
or lipoteichoic acid (Fig. 2a). This layer has a high degree 
of porosity that allow large macromolecules to diffuse read-
ily to the cytoplasmic membrane [69]. In addition to the 
multidrug resistant G+ bacteria already mentioned, other 
clinically-relevant G+ bacteria are: Streptococcus pneumo-

niae, Streptococcus epidermis, Streptococcus mutans, Ente-

rococcus faecalis and Propionibacterium acnes.
The walls of G− bacteria are composed by an inner phos-

pholipid bilayer, followed by a peptidoglycan layer, which 
anchors the outer membrane bilayer through lipoproteins. 
The phospholipid inner bilayer is composed by 80% of 
zwitterionic phosphatidylethanolamine, ~ 15% of anionic 
phosphatidylglycerol and ~ 5% of anionic cardiolipin [117]. 
The outer membrane possess an additional lipid bilayer 
(10–15 nm thick) above the peptidoglycan network, that 
includes lipopolysaccharides, rich in negatively charged 
phosphate groups, consisting of a lipid portion (lipid A) 
linked to polysaccharides [118] and proteins with porin 
function (Fig. 2b). The lipopolysaccharides, which carry 
a net negative charge, are non-covalently cross-bridged by 
divalent cations such as  Ca2+ and  Mn2+ [119]. This mem-
brane structure is one of the stringent limitations for anti-
biotic treatment of G− bacteria since only relatively small 
molecules (MW < 600 Da) can diffuse through the porin 
channels [69, 117]. Large antibiotic molecules, such as 
colistin, are able to disrupt negatively charged membranes, 
but include an amphiphilic moiety to enhance the interac-
tion with the membrane [120]. In addition to the multidrug 
resistance G− bacteria already mentioned, Porphyromonas 

gingivalis is also clinically relevant [121].
Most PDDI studies are performed with bacteria in 

planktonic form. However, the vast majority of bacterial 
infections, and particularly those associated with chronic 
infections, are caused by bacteria in the form of biofilms 
[122], which are 10 to 1000 times more difficult to destroy 
than planktonic bacteria [62]. A biofilm is a community 
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composed of bacteria from single or multiple species, capa-
ble of various phenotypic transformations, to perform differ-
ent functions. It consists in multiple layers of cells embedded 
in a negatively charged matrix composed by extracellular 
polymeric substances (EPS) englobing extracellular DNA 
(eDNA), polysaccharides, proteins (e.g., enzymes) and 
fatty acids [123] (Fig. 3). These polymers create the first 
barrier of protection, as they bind to positively-charged 
antibiotics, preventing their diffusion to the core. The high 
viscosity and low permeability of bacterial biofilms create 
a gradient of nutrients and oxygen, with low quantities in 
the core. This means that the activity of antibiotics is also 
affected since only low quantities reach the interior of the 
biofilm [124]. Therefore, in the core we find persister and 
resistant bacteria. These bacterial core cells are in a higher 
dormancy state, which lowers their metabolism and, conse-
quently, their nutrient requirements. Since most antibiotics 
target metabolic and cell division pathways, it is not sur-
prising that these bacteria are inherently more resistant to 
antibiotics. Despite this dormant state, if the upper layers 
of the biofilm are destroyed, bacteria can awake and rebuilt 
the biofilm, leading to relapses in the treatment of bacterial 
infections. While some studies suggest that persister cells 

are susceptible to ROS inactivation [125], the lower oxygen 
concentration at the biofilm’s core may hinder the success of 
PDDI. In this regard, some strategies have been proposed to 

Fig. 2  Schematic representation of the biological membranes in bacteria: a Gram-positive bacteria; b Gram-negative bacteria [115]

Fig. 3  Schematic representation of bacterial biofilm [124]
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reduce biofilm hypoxia, such as hyperbaric oxygen therapy 
[126], the use of  MnO2 nanosheets which catalyze  O2 forma-
tion from  H2O2 [127] or  O2-carrying perfluorohexane-loaded 
liposomes [128]. In particular, this last approach has recently 
been successfully employed in the treatment of bacterial 
keratitis in rat cornea [129].

The existence of a negatively charged matrix composed 
by extracellular polymeric substances determines the devel-
opment of new antibiotics and the design of new photosensi-
tizers where size and charge matter [71, 82, 130]. In view of 
the relevance of biofilms and of the challenges they present 
for the development of better photosensitizers, this work will 
address the photodynamic disinfection of biofilms rather 
than of planktonic bacteria.

3.2  Photodisinfection of bacterial biofilms

Tables 2 and 3 summarize recent studies (2015–2020) on 
in vitro photoinactivation of bacteria in biofilms and refer 
to G+ and G− bacteria, respectively. In general, more pho-
tosensitizers achieve a bactericidal effect with G+ bacteria 
than with G− bacteria. It is widely recognized that the dif-
ficulty to kill G− bacteria is closely related to the structure 
of its cell wall, which is more difficult to penetrate than that 
of G+ bacteria. 

Photosensitizers PS4, PS11–15 do not reach a bactericidal 
effect in the photoinactivation of Gram-positive bacteria 
under the reported conditions. Identically, photosensitizers 
PS4, PS9–10, PS13–16, PS22–24 did not reach a bacteri-
cidal effect for Gram-negative bacteria. This set of photo-
sensitizers includes molecules with MW > 1000 Da (PS4–5, 
PS10–11, PS22–23) and molecules that are not positively 
charged, although they have low molecular weights (PS9a, 
PS12–15). Photosensitizers PS9a (5-ALA), PS16 (SAPYR), 
PS19 (methylene blue derivative), PS20 (toluidine blue), 
PS21 (azure A) are in this list but should be considered as 
“borderline” cases because they narrowly reach the bac-
tericidal effect but were employed at [PS] ≥ 50 µM. Such 
high concentrations may be difficult to achieve without tox-
icity in clinical situations. MAL was not included in this 
list although it was employed at millimolar concentrations, 
because of its important bactericidal effect on G− bacteria. 
5-ALA and MAL are essential substrates for the biosynthesis 
PPIX and are efficiently internalized by cells. MAL seems to 
have a better performance with G− bacteria under the same 
conditions [149]. The methyl ester of aminolevulinic acid 
conceals the carboxylate functionality that could prevail at 
the biological pH and avoiding the presentation of a negative 
charge may be a factor that contributes to its better perfor-
mance. Methylene blue (PS18) achieves rather impressive 
log CFU reductions for both G+ and G− bacteria biofilms, 
however it requires relatively high concentrations. Methyl-
ene blue is used in the treatment of methemoglobinemia by 

intravenous injection (1–2 mg/kg) and it is likely to remain 
safe at high topical concentrations.

The photosensitizers that reach bactericidal effects are 
PS1–3, PS6–8, PS17–18 and PS25. In view of the prop-
erties of the other photosensitizers, it is expected that this 
list of photosensitizers includes positively charged species 
with MW < 1000 Da. This is verified with the exception of 
PS6 (MW = 1021 Da) and PS25 (MW = 1723 including the 
polymyxin B moiety). Chlorin e6 (PS7) and Photodithaz-
ine (PS8) achieved bactericidal effects with G+ bacteria at 
0.200–2.5 mM concentrations. It is likely that these neg-
atively-charged photosensitizers would require excessively 
high concentrations to have an effect on G− bacteria.

PS1 and PS2 are cationic imidazolyl porphyrins that gave 
impressive results against G+ and G− planktonic bacteria 
and against biofilms of G+ bacteria (> 6 log reduction of 
S. aureus biofilms with 5.2 nM @ 5 J/cm2 and 1 µM @ 
12 J/cm2 for PS1 and PS2, respectively), but were not tested 
against biofilms of G− bacteria. Confocal microscopy 
revealed that where PS1 could successfully permeate bio-
films, most of PS2 remained in the planktonic part [82]. As 
discussed above in Fig. 3, the dense matrix that composes 
bacterial biofilms hinders the diffusion of antimicrobials 
towards their interior. This means that amphiphilic and low 
molecular weight photosensitizers may partition to the bio-
films and diffuse more readily inside them. Moreover, the 
anionic nature of the components of this matrix must also 
be taken into account. While it can lead to favorable electro-
static interactions with cationic photosensitizers, it is pos-
sible that photosensitizers with too many cationic charges 
are trapped by Coulombic forces in the periphery of biofilm.

PS3 is a mixture of porphyrins substituted with a dif-
ferent number of pentafluorophenyl and methylpyridynium 
groups (FORM) and was tested in the photoinactivation of S. 

aureus and E. coli biofilms, in combination with KI. It was 
found that [PS3] = 0.1 μM in the presence of [KI] = 100 mM 
had bactericidal effect even at the modest light dose of 9 J/
cm2 (Table 2, entry 3) [131]. However, PS3 is unable to 
inactivate biofilms in the absence of KI, even at a 20 µM 
concentration. Hamblin and co-workers showed that using 
[KI] = 10 mM, which is in the range of KI concentrations 
in clinically approved products, it was possible to poten-
tiate PDDI with methylene blue of S. aureus and E. coli, 
manifested by an additional 2 log units decrease in bacteria 
survival fraction [60]. This potentiation was explained by 
the generation of short-lived reactive iodine species  (I⋅,  I2

⋅–) 
in the reactions between singlet oxygen or hydroxyl radical 
with iodide ions. Such reactions are expected for photosensi-
tizers in general and it is evident that the good performance 
of PS3 benefits from the potentiation with KI. This potentia-
tion helps to explain the prominence of PS3 in comparison 
with other photosensitizers in Tables 2 and 3, which did not 
benefit from the combination with KI.
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Table 2  Chemical properties and biological activity of photosensitizers used in vitro assays for inactivation of bacterial biofilms of Gram-posi-
tive bacteria

# Structure Biofilm strain Results

1

  
IP-2-Zn (PS1)
Charge: + 2
MW = 592 Da

S. aureus ATCC 25925 [82] Outcome: 7 log CFU reduction
[PS] = 5.2 nM
Light dose: 5 J/cm2 (Biotable λ = 400–650 nm)

2

  
IP-4-Zn (PS2)
Charge: + 4
MW = 754 Da

S. aureus ATCC 25925 [82] Outcome: 6 log CFU reduction
[PS] = 1 µM
Light dose: 12 J/cm2 (Biotable λ = 400–

650 nm)

3

  
Porphyrin mixture FORM (PS3)
Charge: + 1 to + 4
MW = 679 to 900 Da

MRSA DSM 25693 [131] Outcome: ~ 7 log CFU reduction
[PS] = 1.0 µM (in combination with 100 mM 

KI)
Light dose: 9 J/cm2 (white fluorescent lamp 

λ = 380–700 nm)

4

  
PS4 (in polymeric micelles of Pluronic 

F-127)
Charge: + 4
MW = : 1384 Da

S. aureus 209P [132] Outcome: > 99% bacterial death
[PS] = 10 µM
Light dose: 128 J/cm2 (500 W halogen lamp 

with filter λ = 420–1000 nm)
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Table 2  (continued)

# Structure Biofilm strain Results

5

  
TAPP (PS5)
Charge: 0 to + 4 (pH dependent)
MW = 1019 Da

S. aureus RN6390 [133] Outcome: 4 log CFU reduction
[PS] = 50 µM
Light dose: 180 J/cm2 (Tungsten Halogen 

lamps 500 W)

6

  
TAPC (PS6)
Charge: 0 to + 4 (pH dependent)
MW = 1021 Da

S. aureus ATCC 25923 [134] Outcome: 4 log CFU reduction
[PS] = 10 µM
Light dose: 108 J/cm2 (Novamat 130 AF slide 

projector 150 W lamp, using optical filters 
λ = 350–800 nm)

7

  
Chlorin e6 (PS7)
Charge: − 3
MW = 597 Da

Multi-species biofilm: M. catarrhalis strain 
7169, NTHi strain 86-028NP, S. pneumo-

niae EF3030 [135]

Outcome: 3–7 log CFU reduction
[PS] = 10 mM
Light dose: 123 J/cm2 (LED λ = 405 ± 10 nm)

8 S. mutans UA159 [136] Outcome: ~ 5 log CFU reduction
[PS] = 200 µM
Light dose: 15 J/cm2 (LED λ = 660 nm)

9

  
Photodithazine (PS8)
Charge: − 2
MW = 581 Da

S. mutans UA159 [137] Outcome 4.6 log CFU reduction
[PS] = 1 mM (in combination with 1.7 mg/mL 

chitosan suspension)
Light dose: 39.5 J/cm2 (Laser λ = 660 nm)
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Table 2  (continued)

# Structure Biofilm strain Results

10

  
5-ALA: protoporphyrin IX precursor (PS9a)
Charge: 0
MW = 131 Da

S. epidermis (clinical isolate) and S. aureus 
ATCC 25923 [138]

Outcome: 5 and 6 log CFU reduction, respec-
tively

[PS] = 2 mM ALA
Light dose: 210 J/cm2 (Tungsten Halogen 

lamps 500 W)

11

  
MgPc-octamorph (PS10)
Charge: + 8
MW = 1690 Da

S. aureus NCTC 4163 [139] Outcome: 3.3 /2.97 log CFU reduction
[PS] = 1 mM/100 µM
Light dose: 1.9 J/cm2 (visible light)

12

  
PS11

Charge: + 4
MW = 1235 Da

S. aureus CMCC 26003 [140] Outcome: 2 log CFU reduction
[PS] = 0.5 µM
Light dose: 24 J/cm2 (laser light)

13

  
Hypericin (PS12)
Charge: 0
MW = 504 Da

E. faecalis ATCC 29212 [141] Outcome: 0.4 log CFU reduction
[PS] = 15 µM
Light dose: 12 J/cm2 (40 yellow LEDs 

λ = 590 ± 10 nm)
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Table 2  (continued)

# Structure Biofilm strain Results

14

  
Riboflavin (PS13)
Charge: 0
MW = 376 Da

MDR S. aureus (clinical isolate) [142] Outcome: 0.3 log CFU reduction
[PS] = 50 µM
Light dose: n.a. (LED λ = 450 nm; 40 W/cm2)

15

  
Curcumin (PS14)
Charge: 0
MW = 368 Da

S. aureus ATCC 25923 and ATCC 33591 
[143]

Outcome: ~ 3.4 and 2.0 log CFU reduction, 
respectively

[PS] = 80 µM
Light dose: 5.28 J/cm2 (LED λ = 455 nm)

16 Curcumin (PS14) (imobilized in endotra-
cheal tubes)

S. aureus ATCC 25925 [144] Outcome: 1.3 log CFU reduction
[PS] = 0.5% w/w
Light dose: 50 J/cm2 (LED λ = 450 nm)

17 Curcumin (PS14) + Phycocyanin (PS15) (in 
chitosan nanoparticles)

S. aureus KY770792.1 [145] Outcome: 1.1 log CFU reduction
[PS] = 100 µg/ml
Light dose: 10 min with 5 W LED lamp

18

  
SAPYR (PS16)
Charge: + 1
MW = 272 Da

S. mutans ATCC 25175 [146] Outcome: 6 log CFU reduction
[PS] = 50 µM
Light dose: 30 J/cm2 (gas-discharge lamp 

λ = 380–600 nm)

19

  
SAPYR-PN-05 (PS17)
Charge: + 1
MW = 407 Da

S. mutans ATCC 25175 [146] Outcome: 6 log CFU reduction
[PS] = 500 µM
Light dose: 30 J/cm2 (gas-discharge lamp 

λ = 380–600 nm)

20

  
Methylene blue (PS18)
Charge: + 1
MW = 284 Da

S. aureus ATCC 29213 [147] Outcome: 6 log CFU reduction
[PS] = 200 µM
Light dose: 18 J/cm2 (LEDs λ = 625 ± 10 nm)
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PS5 and PS6 are a porphyrin and the corresponding 
chlorin, each linked to the same trialkyl amines. Although 
uncharged at neutral pH, the pKa of the conjugate acid 
is ~ 9–11 and cationization may occur in biological medium 
[133, 134]. The chlorin is a better sensitizer than the por-
phyrin when both are excited with light from 350 to 800 nm, 
as shown by lower concentration of the chlorin for the same 
effect as the porphyrin. This is readily explained by the 
intense absorption red light by the chlorin, which leads to 
more excited states formed and, consequently, to more ROS 
generated. PS5 was less effective photoinactivating biofilms 
of G− bacteria, but it is possible that PS6 achieves a bacteri-
cidal effect for such biofilms at concentration below 50 µM.

SAPYR (PS16) and its derivative PS17 are monocationic 
photosensitizers, with PS16 having a pyridinium group and 
PS17 an ammonium group with one long alkylic chain. Both 
photosensitizers were tested in the photoinactivation of S. 

mutans, with PS16, requiring a lower concentration (50 µM) 
than PS17 (500 µM) to achieve the same 6 log CFU reduc-
tion, under a 30 J/cm2 light dose [146]. Their efficacy is 
reversed in E. coli, where, under the same drug and light 
doses, PS16 and PS17 achieve 2.9 and 3.5 log CFU reduc-
tions, respectively [146]. The performances of both PS16 
and PS17 are quite remarkable.

Another class of dyes with good performance in the inac-
tivation of biofilms are phenothiazinium dyes (methylene 
blue, toluidine blue, azure A, rose bengal) [155]. Methylene 
blue (PS18) remains the most interesting photosensitizer of 
this class with a 6 log CFU reduction of S. aureus at 200 μM 
and 18 J/cm2 [147], and bactericidal activity against E. fae-

calis and K. pneumoniae G− bacteria [148]. Recently, a 

methylene blue-polymyxin B (PS25) conjugate was reported 
[154]. Polymyxin B is a potent antibiotic, selective for the 
inactivation of G− bacteria, and acts through disruption of 
bacterial membranes through binding to LPS layer. The con-
jugate yielded a remarkable effect (7 log reduction of E. coli 
in planktonic form at 10 µM concentration and light dose of 
6 J/cm2). Moreover, a very good result (7 log CFU reduc-
tion) for inactivation of E. coli in biofilm form (50 µM and 
288 J/cm2 light dose) was also reported [154].

The differences in light sources and in spectral overlap 
with the absorption bands of the photosensitizers, the dif-
ferences in doses and in photosensitizer incubation times, 
together with the differences in the panels of biofilms tested, 
recommend caution in the comparison between studies. 
For example, PDDI efficacy varies by 3 log CFU between 
ATCC strains and clinical isolates of methicillin-suscepti-
ble S. aureus (MSSA) and methicillin-resistant S. aureus 
(MRSA) [156]. A similar study recently performed for E. 

coli highlighted the same issue [152]. Nevertheless, the 
strong bactericidal effects at low doses of PS1–2 and PS6 
(with the caveat that they were not tested against biofilms of 
G− bacteria), SAPYR and its derivative (PS16–17), and of 
methylene blue and its Polymyxin B derivative (PS18 and 
PS25) suggests that low molecular weight photosensitizers 
with intrinsic cationic charges or highly basic groups that 
are protonated at physiological pH, are most promising for 
PDDI of bacterial biofilms. This can be rationalized con-
sidering the barriers for diffusion through the extracellular 
polymeric matrixes of biofilms and the fact that the bacteria 
wall is less porous and less fluidic than eukaryotic cells [88]. 
These factors certainly contribute to the exclusion of large 

Table 2  (continued)

# Structure Biofilm strain Results

21

  
New methylene blue (PS19)
Charge: + 1
MW = 312 Da

E. faecalis MTCC 2729 and
K. pneumoniae ATCC700603 [148]

Outcome: 3 log CFU reduction
[PS] = 50 µM
Light dose: 100 J/cm2 (laser λ = 630 nm)

22

  
Toluidine blue (PS20)
Charge: + 1
MW = 270 Da

E. faecalis MTCC 2729 and K. pneumoniae 
ATCC700603 [148]

Outcome: 3 log CFU reduction
[PS] = 50 µM
Light dose: 100 J/cm2 (laser λ = 630 nm)

23

  
Azure A (PS21)
Charge: + 1
MW = 256 Da

E. faecalis MTCC 2729 and K. pneumoniae 
ATCC700603 [148]

Outcome: 3 log CFU reduction
[PS] = 50 µM
Light dose: 100 J/cm2 (laser λ = 630 nm)
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Table 3  Chemical properties and biological activity of photosensitizers used in vitro assays for inactivation of bacterial biofilms of Gram-nega-
tive bacteria

# Structure Biofilm strain Results

1 5-ALA: protoporphyrin IX precursor (PS9a)
Charge: 0
MW = 131 Da

E. coli (clinical isolate) and P. aeruginosa 
ATCC 27853 [138]

Outcome: 0 and 3 log CFU reduction, respec-
tively

[PS] = 40 mM ALA
Light dose: 142 J/cm2 (Tungsten Halogen 

lamps 500 W)

2 K. pneumoniae ATCC 700603 [149] Outcome: 3.1 log CFU reduction
[PS] = 10 mM ALA
Light dose: 360 J/cm2 (150 W xenon lamp 

λ = 400–780 nm)

3

  
MAL: protoporphyrin IX precursor (PS9b)
Charge: 0
MW = 145 Da

K. pneumoniae ATCC 700603 [149] Outcome: 4.3 log CFU reduction
[PS] = 10 mM MAL
Light dose: 360 J/cm2 (150 W xenon lamp 

λ = 400–780 nm)

4 Porphyrin Mixture FORM (PS3)
Charge: + 1 to + 4
MW = 679 to 900 Da

Bioluminescent E. coli [131] Outcome: ~ 7 log CFU reduction
[PS] = 1.0 µM (in combination with 100 mM 

KI)
Light dose: 9 J/cm2 (white fluorescent lamp 

λ = 380–700 nm)

5

  
PS4 (in polymeric micelles of Pluronic 

F-127)
Charge: + 4
MW = 1384 Da

E. coli C600 [132] Outcome: 0.5 log CFU reduction
[PS] = 10 µM
Light dose: 128 J/cm2 (500 W halogen lamp 

with filter λ = 420–1000 nm)

6 TAPP (PS5)
Charge: 0 to +4 (pH dependent)
MW = 1019 Da

P. aeruginosa (clinical isolate) [133] Outcome: 3 log CFU reduction
[PS] = 30 µM
Light dose: 180 J/cm2 (Tungsten Halogen 

lamps 500 W)

7 MgPc-octamorph (PS10)
Charge: + 8
MW = 1690 Da

P. aeruginosa K1 [139] Outcome: 2.4 log CFU reduction
[PS] = 1 mM
Light dose: 1.9 J/cm2 (visible light)

8

  
ZnPc_iPyr4 (PS22)
Charge: + 8
MW = 1123 Da

Bioluminescent E. coli Top10 [150] Outcome: 2 log CFU reduction
[PS] = 40 µM
Light dose: 540 J/cm2 (Halogen/quartz 250 W 

lamp)
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Table 3  (continued)

# Structure Biofilm strain Results

9

  
ZnPc_iPyr8 (PS23)
Charge: + 16
MW = 1667 Da

Bioluminescent E. coli Top10 [150] Outcome: 2 log CFU reduction
[PS] = 40 µM
Light dose: 540 J/cm2 (Halogen/quartz 250 W 

lamp)

10 Curcumin (PS14) + Phycocyanin (PS15) (in 
chitosan nanoparticles)

P. aeruginosa KY770785.1 [145] Outcome: 0.9 log CFU reduction
[PS] = : 100 µg/ml
Light dose: 10 min with 5 W LED lamp

11 Curcumin (PS14)
(Imobilized in endotracheal tubes)

E. coli ATCC 25922 and P. aeruginosa 
ATCC 14502 [144]

Outcome: 0.7 log CFU reduction
[PS] = 0.5% w/w
Light dose: 50 J/cm2 (LED λ = 450 nm)

12 Riboflavin (PS13)
Charge: 0
MW = 376 Da

MDR E. coli (clinical isolate) [142] Outcome: 0.2 log CFU reduction
[PS] = 50 µM
Light dose: n.a. (LED λ = 450 nm; 40 W/cm2)

13

  
Rose bengal (conjugate with carbon nanotu-

bules) (PS24)
Charge: 0/− 1
MW = n.a

E. coli MCC 2412 [151] Outcome: 0.4 log CFU reduction
[PS] = 50 µg/ml
Light dose: 1674 J/cm2 (λ = 532 nm)

14 SAPYR (PS16)
Charge: + 1
MW = 272 Da

E. coli ATCC 25922 [146] Outcome: 2.9 log CFU reduction
[PS] = 500 µM
Light dose: 30 J/cm2 (gas-discharge lamp 

λ = 380–600 nm)

15 SAPYR-PN-05 (PS17)
Charge: + 1
MW = 407 Da

E. coli ATCC 25922 [146] Outcome: 3.5 log CFU reduction
[PS] = 500 µM
Light dose: 30 J/cm2 (gas-discharge lamp 

λ = 380–600 nm)

16 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

E. coli ATCC 25922 [152] Outcome: 3 log CFU reduction
[PS] = 31 µM
Light dose: 18 J/cm2 (LEDs 625 ± 25 nm)

17 P. aeruginosa ATCC 27853 [147] Outcome: 6 log CFU reduction
[PS] = 2.5 mM
Light dose: 18 J/cm2 (LEDs λ = 625 ± 10 nm)

18 Methylene blue (PS18) (in dextran capped 
gold nanoparticles)

Charge: + 1
MW = 284 Da

K. pneumoniae (clinical isolate) [153] Outcome: 7 log CFU reduction
[PS] = 70 µM
Light dose: 40 J/cm2 (laser λ = 660 nm)
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porphyrin derivatives from the short list of the most effec-
tive photosensitizers in PDDI of bacterial biofilms and to 
the inclusion in that list of dyes much smaller than tetrapy-
rrolic macrocycles. The molecular structures of the most 
successful photosensitizers in PDDI of bacterial biofilms 
are dramatically different from those of the photosensitizers 
presented in Table 1, which reflect the molecular structures 
preferred for PDT of solid tumors.

The rational presented above should not be interpreted 
as a discouragement to use neutral or anionic photosensi-
tizers in photodisinfection. They may play important roles 
in various applications. For example, curcumin (PS14) is 
neutral and 80 µM were required to reduce by 2.0–3.4 log 
CFU two S. aureus strains [143]. However, a significant 
part of its photodynamic activity was preserved when it 
was covalently immobilized on the surface of PVC-based 
endotracheal tubes (0.5% w/w), and immobilized curcumin 
achieved a 1.3 log CFU reduction of S. aureus biofilms 
[144]. Such photodisinfecting surfaces may help to reduce 
ventilator-associated secondary infections by MDR bacteria. 
An example that reached clinical studies is given by neu-
tral tetraphenylporphyrin (TPP) incorporated into a nanofi-
bre textile and applied topically in chronic leg ulcers of 89 
patients. After twice daily applications followed by 60 min 
illumination with white light for a period of 6 weeks, a 35% 
decrease in wound size was observed [157]. The authors 
claimed that singlet oxygen, despite being short-lived, can 
exert an antimicrobial effect in superficial wounds that are in 
close contact with a photosensitive material. A critical issue 
in such applications is to obtain a uniform surface modifica-
tion without photosensitizer leaching over time, to allow for 
repeated illumination under the same therapeutic conditions.

Bacterial susceptibility to PDDI can vary among differ-
ent strains [152, 156], but there is no clear correlation with 
their antibiotic resistance profiles [39]. While one study on 
clinically isolated MRSA and MSSA showed a tendency 
for MRSA strains to be less susceptible to PDDI, another 
report showed that most of the clinically isolated E. coli 
strains used were more susceptible to PDDI than the wild-
type ATCC strains [156]. Tables 2 and 3 show that PDDI 

provides effective treatments for a very broad spectrum of 
bacteria. The list of bacteria strains susceptible to PDDI 
in the planktonic form is even more extensive [158]. The 
underlying mechanisms that confer resistance to antibiot-
ics (e.g., target modification, upregulation of efflux pumps, 
increased membrane impermeability or production of inac-
tivating enzymes) do not seem to be closely connected with 
the mechanisms of PS uptake and ROS-mediated oxidative 
stress.

3.3  Photodisinfection in vivo and ex vivo

In vitro studies with biofilms provide insights into the per-
formance of photosensitizers in PDDI of bacterial infections, 
but their transition to the clinic requires further studies with 
biologically relevant models. Tables 4 and 5 list photosen-
sitizers tested in vivo and ex vivo against G+ and G− bac-
teria, respectively with the intent to bridge the gap to the 
clinic. Photosensitizer concentration in these studies is either 
expressed in concentration units or as a drug dose in terms 
of mass of photosensitizer per body weight of the animal. 
The latter case refers to systemic administration. In some 
cases, where a volume is reported, either a local instillation 
or dropwise addition to the surface of the infection were 
performed. In general, in vivo experiments require higher 
photosensitizer concentrations and higher light doses than 
in vitro studies with biofilms, which may be due to (1) light 
scattering/absorption by the host tissue, (2) increased diffi-
culty of the photosensitizer molecules to reach the bacteria, 
(3) reactions of ROS with other biomacromolecules. The 
doses employed in topical and systemic administrations can-
not be directly compared, and we focus our discussion on the 
photosensitizers used in topical applications. 

PS26–28 are phthalocyanines with molecular weight 
above 1200 Da. The CFU reductions obtained with these 
phthalocyanines were relatively modest, with the possible 
exception of PS28, although it required 2 mM and 60 J/cm2 
to yield a 3 log CFU reduction in S. aureus wound infec-
tions in BALB/c mice [161]. Similar CFU reductions were 
observed with a protoporphyrin IX dimer (Sinoporphyrin, 

Table 3  (continued)

# Structure Biofilm strain Results

19

 
MB-PMX (PS25)
Charge: + 1
MW = 1723 Da

E. coli ATCC 25922 [154] Outcome: 7 log CFU reduction
[PS] = 50 µM
Light dose: 288 J/cm2 (LED λ = 625 nm)
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Table 4  Chemical properties and biological activity of photosensitizers used in vivo/ex vivo pre-clinical studies for treatment of infections by 
Gram-positive bacteria

# Structure Model Results

1

  
ZnPc-(Lys)5 (PS26)
Charge: 0 to + 5 (pH dependent)
MW = 1272 Da

In vivo: Sprague–Dawley rats with wound 
infected by S. aureus Xen29 [159]

Outcome: 0.7 log CFU reduction
[PS]: 1 µM
Light dose: 15 J/cm2 (LED λ = 680 nm)

2

  
Arg–Arg–ArgPc (PS27)
Charge: 0 to + 6
MW = 1924 Da

In vivo: adult KM mice infected by S. 

aureus [160]
Outcome: 1.6 log CFU reduction
[PS]: 50 µM
Light dose: 30 J/cm2 (500 W halogen lamp 

with filter λ > 610 nm)

3

  
RLP068 (PS28)
Charge: + 4
MW = 1257 Da

In vivo: BALB⁄c mice with wound infected 
by MRSA ATCC 43300 [161]

Outcome: ~ 3 log CFU reduction in 2nd day 
after treatment

[PS]: 2 mM
Light dose: 60 J/cm2 (Laser λ = 698 nm)
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Table 4  (continued)

# Structure Model Results

4

 
Sinoporphyrin sodium (PS29)
Charge: − 4
MW = 1231 Da

In vivo: female BALB/c mice (5–6 weeks) 
with burn wound infection by MDR S. 

aureus ATCC 29213 [162]

Outcome: 1 log CFU reduction in 1st and 2nd 
days; 3 log in in 3rd day after treatment

[PS]: 20 µM
Light dose: 50 J/cm2 (Laser λ = 635 nm)

5 5-ALA: protoporphyrin IX precursor (PS9a)
Charge: 0
MW = 131 Da

In vivo: male C57BL/ksj db/db mice with 
ulcers infected with S. aureus MRSA 
ATCC 33591 [163]

Outcome: 2 log CFU reduction, 7 days after 
treatment

[PS]: 200 mg/kg (1.5 mmol/kg)
Light dose: 50 J/cm2 (LED λ = 410 nm)

6 In vivo: Sprague–Dawley rats CD osteomy-
elitis model with S. aureus Xen29 [164]

Outcome: qualitative inhibition of biofilm 
formation in bone

[PS]: 300 mg/kg (2.3 mmol/kg)
Light dose: 75 J/cm2 (LEDs λ = 640 ± 40 nm)

7 Chlorin e6 (PS7)
Charge: − 3
MW = 597 Da

In vivo: male BALB/c mice (6 weeks) 
with subcutaneous infection by S. aureus 
NCTC8532 [165]

Outcome: complete reduction of infection 
after 5 days

[PS]: 10 mg/kg (16 µmol/kg)
Light dose: 100 J/cm2 (Laser λ = 664 nm)

8 Chlorin e6- polyethylenimine conjugate 
(PS30)

Charge: positive
MW = 10,000–25,000 Da

In vivo: female BALB/c mice wound 
infected with MRSA Xen31 [166]

Outcome: 2.7 log CFU reduction
[PS]: 400 µM
Light dose: 360 J/cm2 (Light λ = 660 ± 15 nm)

9

  
Photogem (PS31)
Charge: − 2 to − 12
MW = n.d.

In vivo: Mongolian Gerbils with otitis 
caused by S. pneumonia ATCC 27336 
[167]

Outcome: complete reduction of S. pneumonia 
in 87.5% of infections

[PS]: 1 mg/ml (20 μl)
Light dose: n.d. total energy: 90 J (Laser 

λ = 632 nm)
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Table 4  (continued)

# Structure Model Results

10

  
PTMPP (PS32)
Charge: + 3
MW = 663 Da

In vivo: male BALB/c with third degree 
burns infected with S. aureus 8325–4 
[168]

Outcome: 1.7 log CFU reduction (7th day)
[PS]: 500 µM
Light dose: 210 J/cm2

(Light λ = 635 ± 15 nm)

11 Indocyanine green (PS33)
Charge: − 2
MW = 775 Da

In vivo: rat abrasion wound model infected 
with MDR S. aureus (clinical isolate) 
[169]

Outcome: 1 log CFU reduction
[PS]: 1.2 mM
Light dose: 450 J/cm2

(Laser λ = 808 nm)

12 Hypericin (in nanoparticle formulation) 
(PS12)

Charge: 0
MW = 504 Da

In vivo: female Wistar rats with wounds 
infected by MRSA ATCC 6538 [170]

Outcome: disappearance of infection 10 days 
after treatment

[PS]: 0.124 μM
Light dose: 23.5 J/cm2 (Halogen lamps 20 W)

13

 
Y1 (PS34)
Charge: − 1
MW = 432 Da

In vivo: adult male ICR mice with skin 
infection by MRSA [171]

Outcome: 3 log CFU reduction (7th day)
[PS]: 2.5 µM
Light dose: 30 J/cm2 (laser λ = 532 nm)

14 Curcumin (PS14)
Charge: 0
MW = 368 Da

In vivo: female Balb/C mice infected in 
the right ear with S. aureus ATCC 43300 
[172]

Outcome: 2 log CFU reduction on the draining 
lymph node 72 h after treatment

[PS]: 40 mM
Light dose: 54 J/cm2

(Light λ = 450 ± 20 nm)

15 In vivo: male Wistar rats with infection by S. 

aureus ATCC 25923 [173]
Outcome: 2 log CFU reduction after treatment
[PS]: 1.5% gel (60 µl)
Light dose: 60 J/cm2 (light λ = 450 ± 30 nm)

16 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

Ex vivo: human skin infected with MRSA 
ATCC 33592 [174]

Outcome: 5.1 log CFU reduction (immedi-
ately); 5.9 log reduction (after 24 h)

[PS]: 31 µM
Light dose: 96 J/cm2 (laser λ = 670 nm)

17 SAPYR (PS16)
Charge: + 1
MW = 272 Da

Ex vivo: human skin colonized by S. aureus 
MRSA ATCC BAA-44 [175]

Outcome: 4 log CFU reduction
[PS]: 100 µM
Light dose: 60 J/cm2 (light λ = 380–480 nm)

18

 
SACUR-3 (PS35)
Charge: + 4
MW = 517 Da

Ex vivo: porcine skin infected with S. aureus 
ATCC 25923 [176]

Outcome: 2 log CFU reduction
[PS]: 100 μM
Light dose: 34 J/cm2 (LED λ = 435 ± 10 nm)
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Table 5  Chemical properties and biological activity of photosensitizers used in vivo/ex vivo pre-clinical studies for treatment of infections by 
Gram-negative bacteria

# Structure Model Results

1

  
FS111-Pd (PS36)
Charge: + 4
MW = 938 Da

In vivo: adult female BALB/c mice with 
wound infection by E. coli [64]

Outcome: 4 log CFU reduction initially. Com-
plete inactivation 4 days after treatment

[PS]: 50 µM (50 + 20 + 20 µl)
Light dose: 80 J/cm2 (light λ = 415 nm)

2 Photogem (PS31)
Charge: − 2 to − 12
MW = n.d.

In vivo: Mongolian Gerbils with otitis 
caused by H. influenza ATCC 19418 [167]

Outcome: complete reduction of H. influenza 
in 50% of infections
[PS]: 1 mg/ml (20 μl)
Light dose: n.d. total energy: 90 J (laser 
λ = 632 nm)

3 5-ALA: protoporphyrin IX precursor (PS9a)
Charge: 0
MW = 131 Da

In vivo: Kunming mice infected with P. 

aeruginosa ATCC 27853 [177]
Outcome: 1 log CFU reduction after treatment
[PS]: 1.4 M ALA
Light dose: 54 J/cm2 (light λ = 630)

4

  
Verteporfin (PS37)
Charge: − 1
MW = 718 Da

In vivo: male BALB/c mice with subcu-
taneous Mycobacterium bovis induced 
granuloma sites [178]

Outcome: 0.7 log CFU reduction, 72 h after 
treatment
[PS]: 0.5 mg/kg (0.7 µmol/kg)
Light dose: 60 J/cm2 (laser λ = 690 nm)

5

  
EtNBSe (PS38)
Charge: + 1
MW = 445 Da

In vivo: male BALB/c mice with subcuta-
neous M. bovis induced granuloma sites 
[179]

Outcome: 2 log CFU reduction
[PS]: 5.25 mg/kg (11.8 µmol/kg)
Light dose: 60 J/cm2  cm2 (laser λ = 635 nm)

6 Chlorin e6-polyethylenimine conjugate 
(PS30)

Charge: positive
MW = 10,000–25,000 Da

In vivo: female BALB/c mice wound 
infected with A. baumannii ATCC BAA 
747 [180]

Outcome: 3 log CFU reduction 30 min after 
treatment. 1.7 log 1–2 days after
[PS]: 800–900 µM (50 µl)
Light dose: 240 J/cm2 (light λ = 660 ± 15 nm)
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Table 5  (continued)

# Structure Model Results

7

  
Poly-L-lysine-cp6 (PS39)
Charge: positive
MW = n.d.

In vivo: female Swiss albino mice with 
wound infected with P. aeruginosa MTCC 
3541 [181]

Outcome: 2 log CFU reduction 24 h after 
treatment
[PS]: 200 µM (25 µl)
Light dose: 120 J/cm2 (light λ = 660 ± 25 nm)

8

  
Tetra-lysine porphyrin (PS40)
Charge: 0 to + 8 (pH dependent)
MW = 1188 Da

In vivo: Sprague–Dawley rats with wound 
infected by mixed bacteria (E. coli, S. 

aureus, P. aeruginosa) [182]

Outcome: 5 log CFU reduction, 7 days after 
treatment

[PS]: 40 µM
Light dose: 100 J/cm2 (laser λ = 650 nm)

In vivo: adult female BALB/c mice wound 
infected with multi-resistant A. baumannii 
(clinical isolate) [183]

Outcome: 4 log CFU reduction, 4 days after 
treatment
[PS]: 40 µM
Light dose: 50 J/cm2 (Laser λ = 650 nm)

9

  
HB: La + 3 (PS41)
Charge: positive
MW = n.d.

In vivo: adult female BALB⁄c Mice with burns 
infected by P. aeruginosa (clinical isolate) [184]

Outcome: 2 log CFU reduction in bacteria 
recovered from blood

[PS]: 10 µM (100 µl)
Light dose: 24 J/cm2 (LED λ = 460 ± 25 nm)

10 SACUR-3 (PS35)
Charge: + 4
MW = 517 Da

Ex vivo: porcine skin infected with E. coli 
ATCC 25922 [176]

Outcome: 3 log CFU reduction
[PS]: 50 µM
Light dose: 34 J/cm2 (LED λ = 435 ± 10 nm)

11 MB-PMX (PS25)
Charge: + 1
MW = 1723 Da

Ex vivo: porcine skin infected with E. coli 
ATCC 25922 [154]

Outcome: 7 log CFU reduction
[PS]: 50 µM
Light dose: 288 J/cm2 (LED λ = 625 nm)

12 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

Ex vivo: cultured human epithelial surfaces 
infected with MRSA [174]

Outcome: 5 log CFU reduction
[PS]: 300 µM with 0.25% chlorhexidine 

glucose
Light dose: 96 J/cm2 (LED λ = 670 nm)

13 In vivo: female BALB/c mice infected with 
cecal slurry [185]

Outcome: improved wound healing
[PS]: 100 µM
Light dose: 24 J/cm2 (LED λ = 632 nm)
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PS29) [162] chlorin e6 (PS7) [165], a tri-cationic meso-sub-
stituted porphyrins (PS32) [168], polycationic bioconjugates 
of chlorins (PS30) [180] and PS39 [181], indocyanine green 
(PS33) [169] and curcumin (PS14) [172]. None of these 
photosensitizers fulfill simultaneously the criteria of being 
cationic and have a low molecular weight. Interestingly, a 
cationic derivative of curcumin named SACUR-3 (PS35) 
significantly improved the performance of curcumin, which 
further emphasizes the relevance of positive charges and size 
to enhance photosensitizer penetration in the bacterial wall 
[176]. In this respect, the negatively-charged hematopor-
phyrin derivative photogem (PS31) gave surprisingly good 
results in the photodisinfection of otitis caused by S. pneu-

monia or by H. influenza (complete reduction of infection 
in 87.5% or 50% of the infections, respectively, with 1 mg/
ml and 90 J total energy) [167].

Small molecules such as SAPYR (PS16) and methylene 
blue (PS18) confirmed in the treatment of ex vivo human 
skin infections with MRSA the potential for bactericidal 
effects shown in biofilms. These monocationic photosen-
sitizers achieved 5.1 and 4 log CFU reductions at 31 or 
100 μM concentrations and 96 or 60 J/cm2, respectively 
[171, 172, 174–176]. The Polymyxin B derivative of meth-
ylene blue (PS25) was also used in ex vivo porcine skin 
infected with E. coli and offered a remarkable 7 log CFU 
reduction [154]. Hypericin (PS12) in nanoparticle formula-
tion also proved to be efficient in the reduction of wound 
infections with MRSA in female Wistar rats at a remark-
ably low concentration (0.124 μM and 23.5 J/cm2) [170]. 
It is interesting to note that the anionic benzylidene cyclo-
pentanone Y1 (PS34) showed a stronger photodisinfection 
activity than analogous cationic derivatives, achieving a 3 
log CFU reduction of wound infections with MRSA. It was 
argued that this was due to its ability to diffuse through the 
porin channels to the spheroplast/protoplast of MRSA [171]. 
This derivative absorbs at 512 nm and has a singlet oxygen 
quantum yield of only 0.029 [171]. This is a very low value 
for a photosensitizer and other mechanisms may be relevant 
for this system.

One of the most successful cases of reducing G− bacte-
rial infections on mice models is that of the non-symmetric 
tetra-cationic porphyrin complex with Pd(II), FS111-Pd 
(PS36), recently published by Hamblin and co-workers 
[64]. Photodisinfection with FS111-Pd was more effective 
(complete inactivation 4 days after treatment with 50 μM 
photosensitizer concentration and 80 J/cm2) than with the 
corresponding free base macrocycle. The amphiphilicity of 
the compounds was ensured with three methylpyridinium 
groups and one pyridinium group linked to a C12 alkyl 
chain, and Pd (II) improved intersystem crossing rates to the 
triplet state, increasing its quantum yield and, consequently, 
that of ROS. However, complexation with heavy metals may 
not be sufficient to ensure bactericidal effect. Hashimoto 

[184] used a lanthanum complex of hypocrellin B as photo-
sensitizer to treat burned mice infected with P. aeruginosa 
but 10 μM with a light dose of 24 J/cm2 gave only a 2 log 
CFU reduction in bacteria recovered from blood.

Another interesting case of success is the porphyrin-
lysine conjugate with just four units, PS40. It reduced by 5 
log CFU the bacteria in wounds infected by multiple bacte-
rial strains (E. coli, S. aureus, P. aeruginosa), 7 days after 
treatment. This study in particular compared the effects of 
different light doses (12.5, 25, 50 and 100 J/cm2) on photo-
disinfection. It was found that 100 J/cm2 was the best light 
dose for photodisinfection, but this dose worsened wound 
healing when compared to lower light doses [182]. This 
demonstrates the importance of fine-tuning PDI protocols 
to achieve a good compromise between photodisinfection 
and damage to the host. Furthermore, this photosensitizer 
was successfully used in the treatment of wounds infected by 
multi-resistant A. baumannii (clinical isolate), where a 4 log 
CFU reduction was obtained at 40 μM and 50 J/cm2 [183].

Overall, there are relatively few cases of topical photodis-
infection in vivo where the reduction in CFU achieves the 
bactericidal level and is sustained for several days. The cases 
of success are even less common for G− bacterial infec-
tions. The most promising photosensitizers are the cationic 
porphyrin derivatives PS36 and PS40, and the small mole-
cules PS16 and PS18 (including the Polymyxin B derivative 
PS25). Their success probably results from efficient interac-
tions between positively-charged photosensitizers with the 
negatively-charged LPS that are present in outer membrane 
layer of G− bacteria.

3.4  Clinical studies of photodisinfection

PDDI of oral infections has been extensively covered in 
several recent reviews [186–191], in view of its interest in 
dentistry. Most of the studies in this field do not present 
results in the form of bacterial load reduction. For these 
reasons, clinical studies on oral photodisinfection are not 
covered here. It is known that acne responds well to PDT 
with PpIX precursors and various clinical studies have been 
published, but the mechanisms of action include anti-inflam-
matory effects and sebaceous gland inhibition or destruction, 
in addition to antimicrobial effects [192]. Excluding these 
clinical applications, the clinical trials involving photoin-
activation of bacteria presented in Table 6 correspond only 
to topical treatments of lower limb infections, often associ-
ated with diabetes [193], and to the oral administration of 
5-ALA to treat gastritis associated with Helicobacter pylori 
infections. Given these exclusions, the list of photosensitiz-
ers is very short. It contains only one phthalocyanine, three 
phenothiazinium dyes, 5-ALA and MAL.
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Table 6  Chemical properties and biological activity of photosensitizers used in clinical trials for inactivation of bacteria

# PS structure/generic name Condition Results

1 RLP068 (PS28)
Charge: + 4
MW = 1257 Da

Infected diabetic foot ulcers [194] Outcome: 2 log CFU reduction compared to 
placebo, 24 h after one treatment

[PS]: 3.5 mM
Light dose: 60 J/cm2 (laser λ = 689 ± 5 nm)

2 Infected diabetic ulcers [195] Outcome: bacterial CFU count close to 0, 
after 2nd treatment, in 94% of leg ulcers

[PS]: n/a
Light dose: 60 J/cm2 (λ = 630 nm) − 2 × treat-

ments

3 Infected diabetic ulcers [196] Outcome: significant ulcer reduction, with 
decrease of bacterial load over the 2 weeks 
of treatment

[PS]: n/a
Light dose: 60 J/cm2 (λ = 630 nm) − 4 × to 

6 × treatments

4 Infected diabetic ulcers [197] Outcome: 40% of the patients completely 
healed; 28% had ulcer area reduced 
by > 50%;

[PS]: n/a
Light dose: 60 J/cm2 (λ = 630 nm) − 4 × to 

16 × treatments

5

  
PPA-904 (PS42)
Charge: + 1
MW = 533 Da

Chronic leg and foot diabetic ulcers [198] Outcome: 0.7 log reduction compared to 
placebo, immediately after treatment. No 
difference between treatment and placebo 
groups 24 h after treatment

[PS]: ~ 490 µM
Light dose: 50 J/cm2 (CureLight 01™ 

λ = 570–670 nm)

6 Methylene blue (PS18) + toluidine blue 
(PS20)

Charge: + 1
MW = 284/270 Da

Osteomyelitis (diabetic foot) [199] Outcome: foot amputation was prevented in 
17/18 treatment groups periodontal patho-
gens versus 0/16 in control group

[PS]: ~ 36 mM of each
Light dose: 6–30 J/cm2 (light λ = 400–725 nm)

7 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

Infected diabetic foot ulcers [200] Outcome: statistically significant decrease of 
wound area compared to control group

[PS]: ~ 312 µM
Light dose: 6 J/cm2 (light λ = 660 nm) − 

10 × treatments

8 Infected wounds [201] Outcome: inactivation of MDR bacteria and 
wound healing in 5/5 patients

[PS]: 31 mM (2 ml)
Light dose: 120 J/cm2 (light λ = 635 nm) − 

multiple treatments

9 MAL: protoporphyrin IX precursor (PS9b)
Charge: 0
MW = 145 Da

Single case of chronic venous ulceration 
infected by S. aureus and E. faecalis [202]

Outcome: clinical improvement and no bacte-
ria detected after treatment

[PS]: 160 mg/g MAL cream
Light dose: 37 J/cm2 (light λ = 630 nm) − 

4 × treatments

10 Chronic leg ulcers [203] Outcome: all nine patients had complete ulcer 
healing after 24 weeks

[PS]: 275 µM
Light dose: 18 J/cm2 (light λ = 630 nm) − 

8 × treatments
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The tetra-cationic phthalocyanine RLP068 (PS28) was 
also evaluated in a single-dose PDDI clinical trial com-
prising infected foot ulcers in 62 patients aged ≥ 18, with 
diabetes. This PDDI treatment was used as an add-on to 
systemic antibiotic administration. The results showed a 
dose-dependent photosensitizing effect, as higher concentra-
tions had a higher effect in reducing the bacterial load meas-
ured in the day after treatment (− 1.92 ± 1.21, − 2.94 ± 1.60, 
and − 3.00 ± 1.82 log-CFU/ml for 0.10, 0.30, and 0.50% PS 
concentration vs. − 1.00 ± 1.02 log CFU/ml with placebo). 
These results illustrate the challenge of clinical treatments 
with PDDI using large macrocycles [194]. In a pilot study 
involving 36 patients infected with leg ulcers, two treat-
ments with PS28 with a 72 h interval resulted in a nega-
tive bacterial assay (zero CFU count) in 94% of cases. It is 
worth noting that bacterial biofilms were present in more 
than 50% of the cases before treatment, but PDDI treatment 
successfully eliminated all biofilms [195]. Recently, another 
pilot study involving multiple-dose treatment using PS28 
over the course of two weeks, also for infected leg ulcers, 
showed a gradual decrease of microbial load [196]. Another 
case series involving 22 patients with infected leg ulcers 
showed a good efficacy of multiple (4× to 16×) treatments 
using PS28. Here, 40% of the patients were considered com-
pletely healed, while 28% had ulcer area reduced by > 50%. 
Additionally, amputation was prevented in 95% of the cases. 
The authors remark that this PDDI treatment healed infected 
lesions that had already been treated unsuccessfully with all 
available methods (local and systemic) and thus prevented 
amputation, which is considered the last resort treatment 
[197]. Overall, the clinical studies involving RLP068 (PS28) 
show its potential for the treatment of infected leg ulcers, a 
fact clearly highlighted by two recent reviews [196, 206]. 
However, most reports do not comprise randomized con-
trolled trials, which are needed to better assess its benefits 
over conventional antimicrobial treatments.

The phenothiazinium dye PPA-904 (PS42), formulated as 
a cream (Unguentum  M®:water 1:2) for topical administra-
tion, was investigated in PDDI of infected diabetic ulcers by 
various types of microorganisms including S. aureus and P. 

aeruginosa. PS42 is similar to methylene blue but has long 
alkyl chains, which confer more amphiphilicity. The PDDI-
treated patients showed a reduction in bacterial load imme-
diately post-treatment but no difference between treatment 
and placebo groups was observed 24 h after the treatment. 
The authors found that the bacterial CFU log reduction 
achieved was similar to those observed in animal models, 
but lower than those achieved in vitro. Although explana-
tion for this phenomenon demands further investigation, it 
may be related to the heterogeneity of in vivo infections 
compared to in vitro experiments with bacteria in planktonic 
form and interaction of the photosensitizer with endogenous 
biomolecules, which may lead to singlet oxygen quenching 
and/or reduction of molecular oxygen available in infected 
tissue [198].

A mixture of methylene blue (PS18) and toluidine blue 
(PS20) was tested in the PDDI treatment of diabetic patients 
with osteomyelitis in one or more toes. Remarkably, seven-
teen out of eighteen patients were cured and amputation was 
prevented, while no effect was observed in sixteen patients 
of the control group, where amputation had to be performed. 
It should be noted that at least two of the successfully treated 
patients had resistant strains of P. aeruginosa and K. pneu-

monia. The classic antibiotic treatment for these cases 
requires intravenous antibiotic therapy often combined with 
surgical intervention. Such treatments usually require long 
hospitalization periods with development of MDR strains, 
which together with the low peripheral circulation and renal 
insufficiency of these patients, often culminate in amputa-
tion. In contrast, PDDI did not require hospitalization or 
show any relevant side-effects [199]. Phenothiazinium dyes, 
previously noted for their good performance in PDDI of 
biofilms and in topical photodisinfection in vivo, were also 
remarkably successful in this clinical study. Other studies 
using methylene blue showed a great reduction of wound 
area in PDDI treated patients with infected wounds [200, 
201].

In a single case study, one patient with a chronic venous 
ulceration infected by S. aureus and E. faecalis was treated 
with a topical formulation of MAL. After a total of four 

Table 6  (continued)

# PS structure/generic name Condition Results

11 5-ALA: protoporphyrin IX precursor (PS9a)
Charge: 0
MW = 131 Da

Chronic skin ulcers in lower limbs infected 
with P. aeruginosa [204]

Outcome: 2 log CFU reduction compared to 
placebo, 24 h after one treatment

[PS]: 1.5 mM
Light dose: 80 J/cm2 (light λ = 630 nm)

12 Infection by Helicobacter pylori [205] Outcome: greatly reduced infection in treated 
zones of gastric antrum

[PS]: ALA 20 mg/kg (0.15 µmol/kg)
Light dose: 50 J/cm2 (laser λ = 410 nm or 

white light from an Olympus GIF 100 
endoscope)
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PDDI treatments, the patient showed a clinical improvement 
and no bacteria were detected in the wound [202]. In another 
study comprising nine patients with chronic leg ulcers, a 
complete ulcer healing was observed after 8 × sessions of 
treatment with MAL and irradiation with red light (37 J/
cm2) [203].

Topical application of 5-ALA on lower limb ulcers caused 
by P. aeruginosa using a 1.5 h of drug-to-light interval, in 
treatments once a week for two weeks, led to a reduction of 
the mean ulcer size and improved healing, 7 days after treat-
ment completion. A 2 log CFU reduction 24 h post-treatment 
was observed in 26 patients [204]. 5-ALA PDI was also 
used for the inactivation of H. pylori in the gastric antrum. 
Oral administration of 4-ALA was followed 45 min later by 
illumination of a zone of the gastric antrum either using a 
laser or endoscopic light. Four hours post irradiation, 85% 
(laser) and 66% (white light) of biopsies of the illuminated 
area showed no detectable presence of H. pylori. However, 
bacteria regrowth in the irradiated areas occurred within 
48 h of photodisinfection, probably due to reinfection from 
adjacent areas. Interestingly, maximum uptake and kill of 
H. pylori occurred 20–40 min after oral administration of 
5-ALA, whereas the maximum uptake by the gastric mucosa 
takes 3 h. The selection of the drug-to-light interval allows 
for selectivity of the antimicrobial effect [205].

In summary, the number of photosensitizers investigated 
in clinical studies of photodisinfection remains very low, 
although results obtained in diabetic foot ulcers are very 
promising. It is expected that the diffusion of the photo-
sensitizer into the wound, the dispersion of light by tissues, 
the lowered amount of oxygen in poorly irrigated tissues, 
the competitive reactions of ROS with endogenous biomol-
ecules present in the wound, all combine to make clinical 
treatments more challenging than pre-clinical studies. Nev-
ertheless, the successful photosensitizers identified in PDDI 
of biofilms and in vivo justify further efforts to perform clin-
ical trials with cationic photosensitizers of low molecular 
weight.

4  Fungi and bio�lms

4.1  General biological structure of fungi

Fungi biological barriers are usually characterized by a lipid 
bilayer (phosphatidylcholine, phosphatidylethanolamine, 
phosphatidylserine and ergosterol) [207], enveloped in a 
cell wall with two components: (1) structural polysaccha-
ride polymers that provide structural rigidity and (2) matrix 
components that cross-link the polymers and coat the sur-
face, forming an exoskeleton [207]. Overall the cell wall 
thickness can range from 100 to 400 nm depending on the 
species [208]. The fungal plasma membrane is unique in 

the fact that it contains ergosterol, the equivalent of choles-
terol in animal cells, constituting one of the primary target 
of antifungal drugs that are used to treat human mycoses 
[209]. Relatively to the fungi cell wall, the most prevalent 
polysaccharide polymers are chitin (polymers of N-acetyl-
glucosamine) and glucans (polymers of glucose). In the 
case of Candida albicans, the matrix components consist 
in mannoproteins, which are essential in protecting the cell 
against external threats. (Fig. 4) They increase resistance 
towards antifungal drugs by forming a layer with low perme-
ability and porosity. Additionally, by concealing beneath an 
immunogenic β-glucan layer, they also reduce the immune 
response of the host against the fungi [210]. The presence 
of phosphate groups in mannoproteins side chains confers 
an overall negative charge to the cell wall [211]. Examples 
of potential pathogenic fungi include: Aspergillus fumiga-

tus, Cryptococcus neoformans, Histoplasma capsulatum and 
Candida albicans.

4.2  Photoinactivation of fungi

Fungal antimicrobial therapy has already been reviewed by 
several authors [79, 212–217]. Therefore, here we report 
only the latest results on biofilms, in vivo pre-clinical and 
human trials. Table 7 summarizes relevant in vitro biofilm 
assays published in 2017–2020. Informative reviews specifi-
cally focused on earlier work on PDDI of fungi are readily 
available [218–222].

Fig. 4  Fungal cell wall (illustrated for Candida albicans) [210]
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Anionic photosensitizers such as chlorin e6 (PS7) [223] 
and photodithiazine (PS8) [224] gave modest antimicrobial 
reductions (0.3–1.5 log CFU) at concentrations in the high 
µM scale with a single PDDI treatment. A significant CFU 

reduction of C. albicans biofilms was only achieved with 
photodithiazine after 5 successive treatment cycles [225].

PS43 is a meso-di-trans-substituted monocationic por-
phyrin, with a cationic pyridinium group linked to the 

Table 7  Photosensitizer chemical structure/properties and in vitro assays for fungi biofilms inactivation

# PS structure/generic name Condition Results

1 Chlorin e6 (PS7)
Charge: − 3
MW = 597 Da

C. albicans ATCC 10231 [223] Outcome: 0.3 log CFU reduction
[PS]: 20 µM
Light dose: 40 J/cm2 (LED λ = 660 nm)

2 Photodithazine (PS8)
Charge: − 2
MW = 581 Da

C. albicans (ATCC 90028), C. glabrata (ATCC 
2001) and C. tropicalis (ATCC 4563) [224]

Outcome: 1.0, 1.2 and 1.5 log CFU reduction 
for C. glabrata, C. albicans and C. tropicalis, 
respectively
[PS]: 154 µM
Light dose: 37.5 J/cm2 (LED λ = 660 nm)

3 C. albicans ATCC 90028 [225] Outcome: 6.1 log CFU reduction after 5× treat-
ment cycles
[PS]: 43 µM
Light dose: 18 J/cm2 (each cycle; LED 
λ = 660 nm)

4

  
PS43

Charge: + 1
MW = 744 Da

C. albicans ATCC 14053, Ca1, Ca2 and Ca3 
[226]

Outcome: 6.0, 7.0, 7.0 and 4.0 log CFU reduc-
tion, respectively
[PS]: 20 µM
Light dose: 150 J/cm2 (LED λ = 410 nm)

5 Porphyrin mixture FORM (PS3)
Charge: + 1 to + 4
MW = 679 to 900 Da

C. albicans ATCC  10231 [131] Outcome: ~ 7 log CFU reduction
[PS]: 0.5 µM (in combination with 100 mM KI)
Light dose: 9 J/cm2 (White fluorescent lamp 

λ = 380–700 nm)

6 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

C. albicans ATCC 10231 [227] Outcome: 0.6 log CFU reduction
[PS]: 62.5 µM
Light dose: 30 J/cm2 (Laser λ = 660 nm)

7 C. auris (clinical isolate): AR382, AR383, 
AR385, AR386, AR390 [228]

Outcome: 2.8, 1.5, 7.2, 2.6, 1.6 log CFU reduc-
tion, respectively

[PS]: 112 µM
Light dose: 19.2 J/cm2 (LED λ = 635 nm)

8 Curcumin (PS14)
Charge: 0
MW = 368 Da

C. dubliniensis CBS 7987 [229] Outcome: 0.5 log CFU reduction
[PS]: 40 µM
Light dose: 5.3 J/cm2 (LED λ = 435 nm)

9 C. albicans ATCC 90028 [230] Outcome: 1 log CFU reduction
[PS]: 60 µM
Light dose: 7.9 J/cm2 (LED λ = 455 nm)

10

  
Erythrosin (PS44)
Charge: − 2
MW = 880 Da

C. albicans ATCC 18804 [231] Outcome: 1.1 log reduction of C. albicans

[PS]: 400 µM
Light dose: 42.6 J/cm2 (LED λ = 532 ± 10 nm)
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macrocycle through a  C8 alkyl chain strengthening its 
amphiphilic character. This porphyrin showed a remarkable 
PDDI of C. albicans biofilms (4.0–7.0 log CFU reduction) 
under reasonable drug doses and excitation in the Soret band 
[226]. This result is in striking contrast with those of the 
porphyrin mixture FORM (PS3), previously mentioned in 
Tables 2 and 3, which did not achieve any significant CFU 
reduction of C. albicans biofilms without the addition of KI. 
The presence of KI strongly potentiates PDDI inactivation 
of fungi, in the same way as it potentiates PDDI of bacteria 
[131]. It is interesting to remark both the structural similarity 
of FORM and PS43 and the widely different results obtained 
with these photosensitizers. Changing from tetra to di-trans-
substituted porphyrins seems to improve PDDI of fungi.

Although the example above suggests that PDDI efficacy 
may increase as the molecular weight of the photosensitizer 
decreases, the modest photoinactivations observed with 
methylene blue (PS18), curcumin (PS14) [229, 230], and 
erythrosine (PS44) [231], advise against generalizations. 
These small photosensitizers are monocationic, neutral and 
dianionic, respectively. The dianionic and higher molecular 
weight photosensitizer of this series was tested at the higher 
concentrations and did not offer appreciably better results. 
Methylene blue was tested with five different clinical iso-
lates of C. auris and revealed a remarkable strain-dependent 
effect [228]. Strain dependence and wide variations in per-
formance between structurally-related photosensitizers make 
it particularly challenging to establish structure–activity 
relationships. This is clearly an area where more research is 
urgently needed. Nevertheless, studies with in vivo models, 
presented in Table 8, help understanding how to optimize 
PDDI for fungi infections.

Neutral chloroaluminium phthalocyanine (PS45) was 
evaluated as photosensitizer in the treatment of oral can-
didiasis caused by C. albicans. No statistical difference 
was observed in a DMSO formulation relatively to the 
non-treated control, but when the phthalocyanine was 
entrapped in cationic nanoemulsions 2.3 log CFU reduc-
tion was observed. In this case, the formulation was crucial 
in modulating the photosensitizer’s activity, as the cationic 
nanoemulsions may have reduced photosensitizer aggrega-
tion and may have enhanced its interaction with the fungus 
membrane [232, 233].

Anionic porphyrin photodithiazine (PS8) was evalu-
ated in mice with oral infections by four different strains 
of fluconazole-resistant C. albicans. PDDI had no effect 
in the R10 strain, a noticeable impact on the ATCC 96901 
and R15 strains (1.96 and 1.15 log CFU reduction), and 
a quite remarkable photoinactivation of the ATCC 90028 
strain (3 log CFU reduction, 24 h after treatment) [235]. 
This strengthens the concern that different strains of the 
same fungi may have different susceptibilities to PDDI, as 
mentioned for methylene blue in the discussion of Table 7. 

It cannot be excluded that drug resistance mechanisms 
(i.e. altered uptake or efflux rates or increase of antioxi-
dant enzymes) have an effect on the final outcome of PDDI 
[234]. The results obtained with Photogem (PS32), which 
is also an anionic porphyrin photosensitizer, in PDDI of C. 

albicans infecting female Swiss mice tongue (1.6 log CFU) 
[236] were comparable to those of photodithiazine. The tet-
racationic porphyrin PS46 did not perform better than the 
anionic porphyrin derivatives mentioned above in PDDI of 
mice ear infected by C. albicans. However, confocal micros-
copy revealed the accumulation of this photosensitizer in the 
regions of mice ear tissue where fungus cells were located, 
demonstrating selectivity for the microorganism relatively 
to the host tissues [237].

Phenothiazinium dyes were also tested for PDDI of fungi 
infections in mice. Toluidine blue (PS20) offered a ~ 0.7 log 
CFU reduction of T. rubrum in a murine model of derma-
tophytosis, which was slightly higher than the ciclopirox-
olamine control [238]. Methylene blue (PS18) was tested 
ex vivo in mice tongue infected with C. parapsilosis biofilms 
and compared with antifungal caspofungin. A 1 mM con-
centration of methylene blue and 15 J/cm2 inhibited biofilm 
growth even when the treatment was performed 24 h after 
the beginning of biofilm formation, whereas caspofungin 
was only efficient when applied before the beginning of bio-
film formation [239]. Methylene blue was also used in PDDI 
oral candidiasis of mice due to an azole-resistant clinical 
isolated strain of C. albicans, and a 2.74 log CFU reduction, 
corresponding to eradication of C. albicans, was achieved 
at a concentration of ~ 1.5 mM using a light dose of 275 J/
cm2 [240].

Erythrosin (PS44, 400 μM) [242] and curcumin (PS14, 
free or encapsulated in polymeric nanoparticles) [243] were 
also tested in mice models of oral candidiasis caused by C. 

albicans. The PDDI effect is negligible when curcumin was 
encapsulated in anionic nanoparticles, and modest other-
wise. The best results were obtained with free curcumin (1.1 
log CFU reduction at 260 μM and 37.5 J/cm2).

The charge of porphyrin derivatives seems to have a less 
significant effect on PDDI of fungi than of bacteria, espe-
cially when the photoinactivation of G− bacteria is consid-
ered. Methylene blue remains a major player in this field, 
although high concentrations must be employed. The clini-
cal trials on fungi photodisinfection, collected in Table 9, 
provide additional clues on promising photosensitizers. 
Applications in oral disinfection are not covered in this 
table because they were recently reviewed by Roomaney 
et al. [244].

The only randomized clinical trial using standard treat-
ment as control where a tetrapyrrolic macrocycle, photogem 
(PS31), was employed as photosensitizer to treat denture 
stomatitis caused mainly by C. albicans, C. tropicalis and 
C. galabrata. Photogem-PDDI (six sessions using 500 mg/l 
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Table 8  Photosensitizer chemical structure/properties and in vivo pre-clinical assays for fungi inactivation

# PS structure/generic name Condition Results

1

  
Chloroaluminum phthalocyanine 

(cationic nano emulsions) (PS45)
Charge: 0
MW = 574 Da

Female swiss mice with oral candidiasis by C. 

albicans ATCC 90028 [232]
Outcome: 2.3 log CFU reduction
[PS]: 31.7 µM
Light dose: 100 J/cm2 (LED λ = 660 nm)

2 Female swiss mice with oral candidiasis by C. 

albicans ATCC 90028 [233]
Outcome: 1.4 log CFU reduction after 5 × treat-

ments
[PS]: 31.7 µM
Light dose: 100 J/cm2 (LED λ = 660 nm)

3 Photodithazine (PS8)
Charge: − 2
MW = 581 Da

Female Swiss mice with oral infection by C. 

albicans ATCC 96901 and R10/R15 (clinical 
isolates) [234]

Outcome: 1.96 log CFU reduction for ATCC; 
1.15 log CFU reduction for R15; 0 log CFU 
reduction for R10

[PS]: 100 µM
Light dose: 40 J/cm2 (LED λ = 650–670 nm)

4 Female Swiss mice with oral infection by C. 

albicans ATCC 900283 [235]
Outcome: 3 log CFU reduction 24 h after treat-

ment. Complete remission of all lesions
[PS]: 154 µM
Light dose: 37.5 J/cm2 (LED λ = 660 nm)

5 Photogem (PS31)
Charge: − 2 to − 12
MW = n.d.

Mice model with oral candidiasis by C. albicans 
[236]

Outcome: 1.6 log CFU log reduction
[PS]: 500 mg/l
Light dose: 305 J/cm2 (LED λ = 455 or 630 nm)

6

  
TMP-1363 (PS46)
Charge: + 4
MW = 679 Da

Female BALB/c mice with ear infection by C. 

albicans SC5314 [237]
Outcome: 1.7 log CFU reduction
[PS]: 220 µM
Light dose: 90 J/cm2 (Fluorescent lamps 

λ = 575–700 nm)

7 Toluidine Blue (PS20)
Charge: + 1
MW = 270 Da

C57BL/6 mice infected by T. rubrum ATCC 
28189 [238]

Outcome: 0.7 log CFU reduction
[PS]: 7.4 mM gel
Light dose: 42 J/cm2 (LED λ = 630 nm)

8 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

BALB/c female mice tongue (ex vivo) infected 
by C. parapsilosis ATCC 22019 [239]

Outcome: total prevention of biofilm formation in 
mice tongue

[PS]: 1 mM
Light dose: 15 J/cm2 (LED λ = 576–672 nm)

9 Immunosuppressed mice with oral candidiasis 
by a clinical isolate of C. albicans [240]

Outcome: 2.4 log CFU reduction
[PS]: 1.5 mM
Light dose: 275 J/cm2 (laser λ = 664 nm)

10 BALB/c mice with oral candidiasis by C. albi-

cans CEC 749 [241]
Outcome: almost complete eradication of disease 

5 days after treatment
[PS]: 10 µl of 1 mM PS solution + 5 µl of 1 M KI 

solution
Light dose: 40 J (LED λ = 660 nm)
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of PS concentration and 122 J/cm2 light dose) gave a clinical 
outcome (~ 1.6 log CFU reduction in palate after 90 days fol-
low-up) comparable with standard nystatin antifungal treat-
ment. The authors remarked that PDDI had a better patient 
compliance than the conventional treatment with nystatin 
because it requires fewer sessions [245].

Interdigital mycosis was treated with 5-ALA, using a 4 h 
delay between its topical administration and illumination, 
and repeating the treatment twice [247]. Only 2 patients 
had a persistent remission 4 weeks after the last treatment. 
Similar results were reported in another study involving 10 
patients [259]. It is possible that additional treatments would 
improve the outcome, but ALA-PDT is more expensive and 
time consuming than other classical treatments.

Pityriasis versicolor is a common chronic superficial 
infection caused by Malassezia furfur. The recommended 
treatment is oral itraconazole for a long period of time, 
which is not devoid of systemic side effects. Treatment with 
topical application of 5-ALA for 4 h followed by irradiation 
with 70–90 J/cm2 allowed the complete clearance of infec-
tion 4 weeks after treatment and with no recurrence in the 
follow-up period [248]. A small clinical study with 5 women 
treated with topical application of methylene blue for 3 min 
immediately followed by the light dose, repeated 6 times 
in a two-week period, led to the clearance of the infection 
without any recurrence signs 6 months after the start of the 
treatment.

One of the most explored and successful clinical applica-
tions of PDI is in the treatment of nail onychomycosis, as 
was extensively discussed in several reviews [260–262]. We 
included in Table 9 some of the most successful examples of 
PDDI using 5-ALA [249, 250], curcumin [251], and methyl-
ene blue [253, 254]. Multiple treatments are necessary. The 
treatments with 5-ALA were repeated at least weekly and 
for several weeks; no recurrence of infection was observed 
after 3- and 6-month follow-ups, but recurrence occurred 

after 18-months lowering the cure rate. Curcumin required 
5–6 PDDI sessions to achieve a complete healing, con-
firmed by the negative microbiological tests. Methylene blue 
achieved a 90% cure rate in 12 sessions, which decreased 
to 80% in a 12-month follow-up due to the recurrence of 
some infections. This is a better clinical outcome than the 
group treated with the standard systemic treatment with flu-
conazole. In another trial with methylene blue, a 100% cure 
rate was achieved for cases of mild to moderate onychomy-
cosis, while only a 64% cure rate was obtained for severe 
cases. There is strong clinical evidence that PDDI with small 
molecules such as 5-ALA, curcumin and methylene blue 
gives clinical outcomes that are not inferior to conventional 
anti-fungal treatments of onychomycosis diseases and have 
favorable patient compliance.

In a study comprising ten patients with chromoblasto-
mycosis treated with methylene blue, although the wound 
size was reduced, complete healing was not observed for 
any patient. In most cases, fungi cells were still present in 
wounds, requiring adjuvant treatment with itraconazole 
[255]. Methylene blue as PS was also applied to the treat-
ment of leg ulcers infected by Fusarium oxysporum and 
P. aeruginosa. A case study showed that PDI completely 
inactivated both fungi and bacteria, with complete wound 
healing after 6 months [256]. Methylene blue (one treatment 
every 2 weeks for 3 months) was also successfully applied 
in treating a single case of cutaneous sporotrichosis infec-
tion, combined with intermittent low doses of the antifungal 
itraconazole, that did not respond to treatment with MAL 
[257]. Another single case report refers to the treatment of 
keratitis by a multi-drug resistant Fusarium keratoplasticum 
using rose bengal [258]. In this particular case, the infection 
was unresponsive to conventional treatment but a successful 
clinical outcome was achieved with just two PDDI sessions 
with no recurrence after 8 months [258]. It is worth noting 
that this kind of infection may lead to corneal blindness and 

Table 8  (continued)

# PS structure/generic name Condition Results

11

  
Erythrosin (PS44)
Charge: − 2
MW = 880 Da

Immunosuppressed mice with oral candidiasis 
by C. albicans ATCC 18804 [242]

Outcome: 0.7 log CFU reduction
[PS]: 400 µM
Light dose: 14.3 J/cm2 (LED λ = 532 ± 10 nm)

12 Curcumin (PS14)
Charge: 0
MW = 368 Da

Female Swiss mice with oral candidiasis by C. 

albicans ATCC 90028 [243]
Outcome: 1.1 log CFU reduction
[PS]: 260 µM
Light dose: 37.5 J/cm2 (LED λ = 455 nm)
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Table 9  Chemical properties and biological activity of photosensitizers intended for inactivation of fungi infections in clinical trials

# PS structure/generic name Condition Results

1 Photogem (PS31)
Charge: − 2 to − 12
MW = n.d.

Denture stomatitis (mainly by C. albicans, C. tropi-

calis and C. galabrata) [245]
Outcome: 1.6 log CFU reduction in palate after 

90 days
[PS]: 500 mg/l
Light dose: 122 J/cm2 (LED λ = 455 nm) − 6 × ses-

sions

2 5-ALA: protoporphyrin IX 
precursor (PS9a)

Charge: 0
MW = 131 Da

Single case of chromoblastomycosis by F. 

monophora [246]
Outcome: negative mycological test 4 months after 

treatment
[PS]: 1.5 M ALA
Light dose: 96 J/cm2 (LED λ = 633 ± 10 nm)—4× ses-

sions

3 Interdigital mycosis (T. mentagrophytes, C. albi-

cans, T. rubrum) [247]
Outcome: recovery in 6 out of 9 patients, but recur-

rence in 4 patients after 4 weeks (1–4 treatments)
[PS]: 1.5 M ALA
Light dose: 75 J/cm2 (filtered white light)

4 Single case of pityriasis versicolor [248] Outcome: complete healing after 4 weeks (2× treat-
ments)

[PS]: 1.5 M ALA
Light dose: 70–90 J/cm2 (LED λ = 630 nm)

5 Two cases of nail onychomycosis [249] Outcome: complete healing after 6–7× treatments
[PS]: 1.5 M ALA
Light dose: 100 J/cm2 (pulsed laser, λ = 630 nm)

6 Nail onychomycosis [250] Outcome: after 1 year, 43% of the patients were cured
[PS]: 1.5 M ALA
Light dose: 40 J/cm2 (light λ = 570–670 nm) − 3× ses-

sions

7 Curcumin (PS14)
Charge: 0
MW = 368 Da

Nail onychomycosis [251] Outcome: complete healing after 6× sessions
[PS]: 41 mM
Light dose: 120 J/cm2 (LED λ = 450 nm)

8 Methylene blue (PS18)
Charge: + 1
MW = 284 Da

Pityriasis versicolor [252] Outcome: complete cure in 1-month follow-up
[PS]: 63 mM
Light dose: 37 J/cm2 (LED λ = 630 nm) 6× in 2 weeks

9 Nail onychomycosis [253] Outcome: 90% clinical cure rate after treatment; 80% 
in 12-month follow-up

[PS]: 63 mM
Light dose: 18 J/cm2 (LED λ = 630 nm)

10 Nail onychomycosis [254] Outcome: 100% cure rate for moderate and 64% for 
severe onychomycosis

[PS]: 63 mM
Light dose: 36 J/cm2 (LED λ = 630 nm)

11 Chromoblastomycosis [255] Outcome: reduction of 80–90% in lesions but no com-
plete healing observed in any of 10 patients

[PS]: 700 mM
Light dose: 28 J/cm2 (LED λ = 660 nm) − 6× sessions

12 Leg ulcers infected with Fusarium oxysporum and 

P. aeruginosa [256]
Outcome: complete inactivation of bacteria and fungi 

and healing after 8 weeks
[PS]: 31 mM
Light dose: 37 J/cm2 (light λ = 630 nm)

13 Single case of cutaneous sporotrichosis [257] Outcome: complete healing after multiple treatments 
in combination with itraconazole (every 2 weeks for 
3 months)

[PS]: 31 mM
Light dose: 37 J/cm2 (LED λ = 635 nm)
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conventional drug treatments or surgery have a high failure 
rate.

Clinical translation of PDDI of fungi favors the use of 
small photosensitizer molecules or the repurposing of photo-
sensitizers employed for other indications. This approach led 
to conclusive clinical evidence that PDDI is a good clinical 
option for the treatment of onychomycosis and to encourag-
ing results in other diseases caused by fungi, such as pityria-
sis versicolor or keratitis. Photosensitizer precursors such as 
5-ALA and MAL may not be as cost-effective as pre-formed 
photosensitizers because they require drug-to-light intervals 
of 3–4 h.

5  Viruses

5.1  Structure of enveloped viruses: example 
of SARS-CoV-2

The representation of a virus envelope in Fig. 5 corresponds 
to that of coronaviruses, which are a diverse group of single-
stranded plus sense RNA virus. These are large enveloped 
viruses associated with up to 30% of respiratory tract infec-
tions in humans. Prior to the COVID-19 pandemic, none of 
the highly pathogenic zoonotic coronaviruses (SARS-CoV, 
MERS-CoV, and SARS-CoV-2) or the low-pathogenicity 
coronaviruses endemic in humans (HCoV-OC43, HCoV-
HKU1, HCoV-NL63, and HCoV-229E) had approved thera-
peutics [263].

It is interesting to point out critical differences between 
viruses and cells from the point of view of the photody-
namic effect. Viruses are the most abundant living entities 
and can be found in a wide variety of forms. They have 
in common the ability to infect eukaryotic or prokaryotic 
cells to force them to produce thousands of copies of the 
infecting virus. The entry of coronaviruses in cells is medi-
ated by the trimeric transmembrane spike (S) glycoprotein, 
which comprises a S1 subunit that mediates binding to the 

host receptor and a S2 subunit that induces fusion of the 
viral envelope with cellular membranes. S forms an exten-
sive crown decorating the virus surface and is the main 
target of neutralizing antibodies upon infection [264]. 
Receptor recognition is the first step of viral infection and 
is a key determinant of host cell and tissue tropism. The 
second step is entry of coronavirus into susceptible cells. It 
requires the concerted action of receptor-binding and pro-
teolytic processing of the S protein to promote virus-cell 
fusion. Although the process of merging two distinct lipid 
bilayers into a single one is a thermodynamically favorable 
reaction, it is associated with a high kinetic barrier. The 
fusion peptide plays the role of a catalyst in the membrane 
fusion reaction. It directly interacts with lipid bilayers to 

Table 9  (continued)

# PS structure/generic name Condition Results

14

 
Rose bengal (PS47)
Charge: 0/− 1
MW = 974

Single case of keratitis by MDR Fusarium kerato-

plasticum [258]
Outcome: successful treatment with 2 sessions. No 

recurrence after 8 month follow-up
[PS]: 1 mM
Light dose: 2.7 J/cm2 (light λ = 375 or 518 nm)

Fig. 5  Coronavirus with its lipid envelope containing hemagglutinin-
esterase, spike, envelop and membrane proteins, surrounding its posi-
tive-sense, single-stranded RNA, embedded in a helical nucleocapsid. 
Adapted from Graham et al. [267].
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disrupt and connect the two opposing membranes [265]. 
The next step is the delivery of the virus genetic material 
inside the cell where it is translated to produce viral repli-
cation proteins. These proteins selectively bind viral RNA, 
involve host proteins and lead to recruitment of the viral 
RNA from translation to replication in viral replication 
complexes (VCR). New RNAs are released from VCRs, 
starting a new cycle of translation and replication, become 
encapsulated and exit the cell [266].

A considerable number of in vitro studies regarding pho-
toinactivation of viruses have been performed, and have 
already been reviewed by several authors [80, 81, 268–271]. 
It was found that photoinactivation of viruses possessing a 
lipid envelope, like the one presented in Fig. 5 as an exam-
ple, is generally more efficient than of non-enveloped virus. 
This may imply that the lipid bilayer, or the proteins con-
tained within, are important targets in viral PDI. Indeed, the 
phospholipids present in the viral membrane can be targeted 
to prevent viral infections because they are essential to the 
curvature and fluidity of the membrane. It was shown that, 
in the presence of light, membrane-binding photosensitizers 
generate singlet oxygen that oxidizes the C=C double bonds 
of unsaturated phospholipids leading to cis-to-trans isomeri-
zation and introduction of hydroperoxy (–OOH) groups that 
result in increased positive curvature and reduced fluidity of 
the membrane, which affect the ability of viral membranes 
to undergo fusion [272–274]. The same level of oxidative 
stress is not toxic to human cells because these benefit from 
cellular reparative capacities that are absent in static viral 
membranes. The oxidative stress of PDI may have other tar-
gets in addition to unsaturated phospholipids. The most used 
photodynamic disinfection of blood products for transfusion 
employs methylene blue, which is known to intercalate with 
nucleic acids [275].

Virus inactivation with methylene blue is caused by 
nucleic acid lesions such as strand breaks, cross-linkages 
or other chemical modifications [276], which interrupts the 
amplification or reverse transcription of the initial RNA. The 
inhibition of real-time PCR amplification of treated RNA 
virus is correlated with the loss of viral infectivity, which 
is consistent with the damage to RNA being responsible 
for virus inactivation. Hence, the composition and size of 
viruses make lipids and nucleic acids as relevant targets for 
inactivation as proteins.

The COVID-19 pandemic led several authors to pro-
pose PDDI as an approach to inactivate SARS-CoV-2 virus 
and mitigate the effects of the pandemic [53, 277–280]. It 
was emphasized that PDDI is a good candidate for treat-
ing COVID-19 because SARS-CoV-2 is an enveloped RNA 
virus and these viruses are most sensitive to PDDI. Addi-
tionally, the use of light to treat airway related infections is 
relatively common [281]. In view of the recently published 
reviews on PDDI of viruses and of the tremendous global 

impact of the COVID-19 pandemic, below we focus only on 
PDDI of SARS-CoV-2.

5.2  Photoinactivation of SARS-CoV-2

Just like other SARS-CoV viruses, SARS-CoV-2 is sensitive 
to ultraviolet light, heat (56 °C for 30 min) and most disin-
fectants. For example, a 99.99% reduction of the virus on 
surfaces can be achieved in one minute with exposure to dis-
infectants such as ethanol (95%), isopropyl alcohol (> 70%), 
sodium hypochlorite (0.21%), hydrogen peroxide (0.5%) or 
povidone-iodine (0.23–7.5%) [282]. It is now well estab-
lished that the mechanism of cellular entry by SARS-CoV-2 
is through tight binding to human angiotensin-converting 
enzyme 2 (hACE2) [263]. The entry receptor hACE2 and 
the viral entry-associated protease are highly expressed in 
nasal globlet and ciliated cells, which highlights the poten-
tial role of the nasal epithelial cells in initial infection and as 
possible reservoirs for dissemination within or between indi-
viduals [283]. The highest viral loads were found in nasal 
swabs, rather than throat swabs, in the first few days after 
the onset of symptoms [284]. Considering that in the early 
stages of SARS-CoV-2 infection, active virus infection and 
replication occurs in the apical layer of nasal and olfactory 
mucosa, nasal lavages with large volumes, e.g., povidone-
iodine solution < 5%, have been recommended to limit viral 
contamination and spreading [285]. Identically, intranasal 
administration of inhibitors of the fusion between the viral 
envelope and the host cell were proposed to reduce transmis-
sion of SARS-CoV-2 [286]. It was also hypothesized that 
SARS-CoV-2 binding to the heme groups in hemoglobin 
is the cause of hypoxia in patients with severe COVID-19, 
and that the injection of porphyrin-based photosensitizers 
could block SARS-CoV-2 from binding to hemoglobin, and 
subsequent illumination could reduce the viral load [287].

Radachlorin and methylene blue are medicinal products in 
the Russian Federation, and their efficacy to photoinactivate 
SARS-CoV-2 was investigated to support their repurpos-
ing for the treatment of COVID-19. It was found that both 
radaporfin (0.5–5.0 µg/ml) and methylene blue (1.0–10 µg/
ml, i.e., ~ 3–30 µM) protected Vero E6 cell from infection 
when light doses of 16 and 49 J/cm2 were employed [288].

Although COVID-19 was first reported less than two 
years ago, two clinical studies on PDDI of SARS-CoV-2 
have already been published. Riboflavin (PS13) was used to 
test PDDI of SARS-CoV-2 on twenty patients COVID-19 
positive, who displayed mild symptoms [289]. After UV/
blue light irradiation for 10–20 min of mouth and nose, the 
viral load decreased significantly in these areas, with 70% 
of the patients showing a negative PCR test 5 days after 
treatment, which was accompanied by a reduction of clini-
cal symptoms of the disease. Another trial involved 300 
patients with active treatment and 300 with placebo [290]. 
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The active treatment patients had their oral cavity and throat 
exposed by flushing and gargling to a methylene blue solu-
tion (1%) followed by illumination with 72 J/cm2 (660 nm), 
and this procedure was repeated 5 times. The mortality rate 
was reduced from 3.3% in the placebo group to 0.7% in the 
active treatment group.

These are promising results but further work is necessary 
to establish PDDI as a viable therapeutic option for viral 
infections. It is still not clear if the protection against infec-
tion can only be achieved before the virus infects the cells, 
or if PDDI is also effective when both the photosensitizer 
molecules and viruses are inside the cells. In the first case a 
short DLI may favor PDDI of virus without phototoxicity to 
the cells. However, once the virus infects the cell, it may be 
very challenging to find selectivity and photoinactivate the 
virus while sparing the cell.

As mentioned in the Introduction, to achieve maximum 
efficiency in PDDI, it is always necessary to optimize the 
combination between the photosensitizer and light source. 
This aspect is analyzed below.

6  Light sources for PDDI

Light is a fundamental part in PDDI and PDT. Despite the 
crucial role of light in photosensitizer activation, the scien-
tific literature most often describes light sources and light 
dosimetry separately from the development of photosensitiz-
ers and from biological aspects. In this section, we consider 
light sources in the perspective of photosensitizer activation 
and address their efficiency, usability and cost effectiveness.

A fundamental, however sometimes misperceived, con-
cept about light activation is that what matters for PDT and 
PDDI is the number of photons absorbed regardless of their 
energies [291]. A compound that is suitable for PDDI in 
general has more than one absorption band in the UV–Vis-
NIR window. These absorption bands are connected to the 
energy levels of the molecule, meaning that light with dif-
ferent energy (or frequency, or wavelength) can excite elec-
trons to different energy levels of the molecule. However, 
the precursor of singlet oxygen and other ROS is almost 
invariably the lowest-energy triplet excited state  (T1) of the 
photosensitizer [27, 97]. Thus, even if light absorption is 
occurring to higher singlet energy states (e.g., UV band), the 
photodynamic reaction will only take place from its  T1 state, 
meaning that the same number of photons, whether of UV 
or visible light, will produce the same number of ROS. This 
phenomenon is related to Kasha’s rule [292]. For example, 
light doses in Tables 2, 3, 4, 5, 6, 7, 8 and 9 are expressed 
in J/cm2, but the number of photons at 420 nm or 650 nm is 
different for the same light dose in these units. A light dose 
of 10 J/cm2 corresponds to 2.0 ×  1019 photons at 400 nm and 
3.3 ×  1019 photons at 650 nm. It is this number of photons 

that is related, through the absorption cross section of the 
photosensitizer and its singlet oxygen quantum yield, to the 
number of singlet oxygen molecules that will be produced.

A proper definition of light dose in PDDI or PDT should 
consider the number of photons absorbed. This can be 
achieved by overlapping the absorption spectrum of the 
photosensitizer with the emission spectrum of the light 
source. Figure 6 shows the absorption spectrum of Rose 
Bengal and the emission spectrum of a standard fluores-
cence lamp used to activate this photosensitizer embedded 
in an antimicrobial coating [293]. Knowing the total flu-
ence rate in mW/cm2 emitted by the lamp, it is possible to 
calculate the correction factor for the number of photons 
emitted by the lamp actually absorbed by the photosensi-
tizer, by comparison with the photons absorbed when an 
ideal monochromatic light source emits at the lowest-energy 
peak of the photosensitizer absorption spectrum [291]. The 
overlap of both spectra depicted in Fig. 6 gives the light 
dose correction (LDC = 0.22) factor that reflects the actual 
number of absorbed photons [291]. This means that the flu-
ence rate of the light emitted by this fluorescent lamp should 
be multiplied by 0.22 to give the light dose of an equivalent 
monochromatic light source. This correction minimizes dis-
crepancies between light doses delivered by different (e.g., 
broadband, LEDs, laser) light sources.

Light sources in PDDI should be suitable for large field 
irradiation and anatomically compatible with the target. The 
wearable cap-like device developed for illumination of the 
scalp in PDT treatment of actinic keratosis is a good exam-
ple of the adequacy of the light source to the target [294]. 
Interesting solutions are now available with fabric-like 
devices composed of several side emitting optical fibers that 

Fig. 6  Normalized absorption and emission spectra of Rose Ben-
gal (black) and a fluorescent lamp (red). The overlap resulting in the 
LDC factor of 0.22 is shown in blue
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can be coupled to a laser device and generate high fluence 
rates with homogeneous light field. Such devices are very 
flexible and can adapt to different anatomical structures of 
the body, allowing homogeneous illumination of large areas 
[295–297]. Another innovative solution based on quantum 
dot light-emitting devices (QLEDs), originally employed for 
displays, was reported [298]. These QLEDs have emission 
wavelength that can be tuned, being flexible and adaptable, 
enabling wearable devices for targeted photomedicine.

An interesting example of adaptation of light sources 
to PDDI targets is the treatment of fungal infections of the 
nail, which were shown above to be a success case of PDDI. 
Two light sources devices composed of light emitting diode 
(LED) arrays were conceived to the treatment of onycho-
mycosis of nails, taking in account the particular anatomo-
morphological characteristics of this body structure and 
the adequacy of a light source for this particular treatment 
[299]. It was also mentioned above that PDDI has proven 
its relevance in dentistry, and light sources based on LEDs 
have been developed for PDDI of the root canal prophylaxis 
[300]. Another remarkable example of adaptation of light 
sources is the CE marked device developed by Ondine Bio-
medical for nasal photodisinfection therapy [301].

The interest in relatively large field illuminations for 
PDDI of skin infections motivated the development of LED 
devices tailored for methylene blue (635 ± 11.5 nm) and for 
sodium magnesium chlorophylin (433 ± 10.5 nm) [302]. 
This later dye is a food additive and is of interest for the 
photodisinfection of food. These devices respond to the 
concern that light sources in clinical settings are likely to 
require certification as medical devices. The availability of 
light sources that are certified medical devices will facilitate 
translation of PDDI to clinic in major markets.

At present, the most appealing applications of PDDI 
correspond to infections where the microorganisms are less 
than 3 mm from a surface accessible with a non-invasive 
light-delivering device. This, however, does not exhaust all 
possible application of PDDI. Although this review focused 
on the use of PDI to treat microorganism infections, it is 
important to emphasize that the photodynamic effect can 
also play an important prophylactic role. This includes nasal 
cavity photo-disinfection prior to surgery [303–305] or the 
disinfection of surfaces and medical devices [306–309]. For 
example, photosensitizers covalently attached to the surface 
of endotracheal tubes can prevent bacterial biofilms from 
colonizing such devices and prevent nosocomial infections 
[144]. An even more general example is the use of PDDI 
in environmental disinfection using a antimicrobial coating 
of Rose Bengal, which actually corresponds to the system 
illustrated in Fig. 6 [293]. There are vast opportunities to 
develop combinations of devices with photosensitizers in 
medical, veterinary, agricultural, food safety and environ-
mental fields.

Finally, it is important to realize that PDDI translation to 
the clinic will have to prove both that it can have a biocidal 
effect in a relevant infections disease and that it can be cost 
effective. The cost of the light source is still regarded as a 
barrier for market acceptance. However, it must be realized 
that today any laboratory can build a LED device for a pre-
clinical study with its preferred photosensitizer for less than 
one thousand euros. LEDs offer relatively narrow emission 
bands at very affordable prices. They still have the limita-
tion that the fluence rate is in the tens of mW/cm2. However, 
with a powerful photosensitizer with a bactericidal effect at 
a light dose of 5 J/cm2, less than 2 min of illumination at 40 
mW/cm2 are needed to deliver this light dose.

7  Conclusion

PDT of solid tumors has been witnessing the completion of 
clinical trials and regulatory approval of new photosensitiz-
ers in recent years. Chlorin, bacteriochlorin and phthalocya-
nine derivatives are enjoying the preference of the research-
ers and clinicians thanks to their intense light absorption in 
the red and near-infrared. These photosensitizers tend to be 
relatively large molecules, neutral or anionic, targeting the 
vasculature or the cell membrane. Using longer drug-to-light 
intervals, they may also localize inside the cells, with prefer-
ential locations in the endoplasmic reticulum, mitochondria 
or Golgi apparatus. All these photosensitizers are intended 
for intravenous administration.

PDDI of microorganisms was overlooked for many years 
but the recognition that antibiotic resistant microorgan-
isms are a major threat to public health and that PDDI can 
inactivate microorganisms with a lower risk of generating 
resistance led to a renewed interest in the application of pho-
todynamic effect to treat infectious diseases. The search for 
new photosensitizers for PDDI was informed by the early 
recognition that, especially for G− bacteria, cationic pho-
tosensitizers should be preferred. With the hindsight of two 
additional decades of research, it became clear that much 
of what was learnt about PDDI came from studies where 
the microorganisms were photoinactivated in the planktonic 
form. However, it is likely that PDDI will mostly address 
clinical cases where the microorganisms formed biofilms. 
Bacteria and fungi attach to surfaces, preferably of dead or 
poorly irrigated tissue, forming biofilms that offer a pro-
tective environment from where the bacteria will detach to 
colonize other part of the body [122]. The ROS generated 
when the photosensitizer is excited in the presence of oxygen 
have a very small diffusion radius compared with the size 
of biofilms. To be effective against biofilms, the photosen-
sitizers must partition from the aqueous environment to the 
biofilm matrix and diffuse inside this matrix. The screening 
of photosensitizers is more meaningful when it evaluates 
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the ability of photosensitizers to have a bactericide effect in 
biofilms. This is very demanding because biofilms are more 
difficult to destroy than planktonic bacteria.

An example of our research illustrates the difference 
between PDDI of bacteria in planktonic and biofilm form. 
IP-4-Zn (PS2) and IP-2-Zn (PS1) achieve a 7 log CFU 
reduction of S. aureus with concentrations of 0.1 and 1 µM, 
respectively, for the same light dose of 2 J/cm2 [82]. How-
ever, when S. aureus forms biofilms, IP-4-Zn gives a 6 log 
CFU reduction at 1 µM while IP-2-Zn achieves a 7 log CFU 
reduction at only 0.005 µM (Table 2). This dramatic change 
in efficacy was shown to result from the rapid diffusion of 
IP-2-Zn in the biofilm [82]. An excess of positive charges 
will limit both the partition to the biofilm and the diffusion. 
The smaller size of IP-2-Zn also favors diffusion.

Relatively few photosensitizers have been used in PDDI 
of biofilms and an even smaller number reached clinical tri-
als. The photosensitizers in clinical use are mostly repo-
sitioning of molecules clinically approved for other indi-
cations. Nevertheless, it seems that low molecular weight 
photosensitizers with intrinsic cationic charges or highly 
basic groups that are protonated at physiological pH, are 
most promising for PDDI of biofilms. More research is 
needed to establish clear structure–activity relations in 
PDDI of biofilms. This will contribute to a more successful 
translation of photosensitizers to the clinic. Such research 
efforts should take into consideration that photosensitiz-
ers with negative n-octanol:water partition coefficients are 
likely to stay in the aqueous media rather than partition to 
the biofilms.

It is interesting to realize that a large fraction of the 
photosensitizers with better performance in PDDI are not 
macrocycles. Phthalocyanines and bacteriochlorins are very 
valuable in PDT of solid tumors because they have molar 
absorption coefficients ε > 100,000  M–1  cm–1 above 680 nm. 
However, the depth of treatment of superficial infections will 
rarely exceed 3 mm and such intense absorptions in the red/
near-infrared may not be absolutely required. This is not to 
say that such macrocycles are not necessary to contribute to 
the advancement of PDDI. It is rather the recognition that 
smaller molecules with intense absorptions above 600 nm 
are major players in PDDI.

The translation of PDDI photosensitizers to clinical set-
tings must be accompanied by the development of light 
sources. Dedicated light sources will be necessary both to 
match the lowest-energy absorption band of the photosensi-
tizer and to fit non-invasively the anatomical region of inter-
est. The regulatory pathway for a drug-device combination, 
or to a medical device with an ancillary medicinal substance 
(i.e., in the terminology of the European Medicines Agency, 
a medicine that is incorporated within a medical device 
where the main mode of action is due to the device), may 
look fearsome. However, in many clinically-relevant cases 

PDDI may be positioned as a therapy that does not change 
the composition of the body, which simplifies the approval 
of clinical trials.

The control of multidrug-resistant microorganisms will 
require a wide range of interventions. PDDI should be able 
to contribute to this control by displacing the use of antibi-
otics, antifungals or antivirals from localized infections to 
generalized infections. This will help to avoid, or at least 
to delay, the development of resistance to antibiotics and 
increase their useful lifetime. To fulfill this ambition, PDDI 
must achieve sustained cures at a competitive price. Con-
vincing clinical evidence is now available for periodontal 
diseases and onychomycosis. Very encouraging results have 
been reported for infected diabetic foot ulcers and osteo-
myelitis, as well as for diseases caused by fungi, such as 
pityriasis versicolor or keratitis. The intense and promising 
research recently published in this field ensures that other 
cases of clinical success will appear in the coming years.
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