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Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the

excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be

applied in the settings of several malignant diseases. In fact, the earliest preclinical

applications date back to 1900’s. Dougherty reported the treatment of skin tumors by

PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT.

Thus, the technique has attracted the attention of numerous researchers since then.

Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in

1995. We have indeed witnessed a considerable progress in the field over the last century.

Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor

immune responses as well as demonstrating minimally invasive characteristics, it is

disappointing that PDT is not broadly utilized in the clinical setting for the treatment of

malignant and/or non-malignant diseases. Several issues still hinder the development of

PDT, such as those related with light, tissue oxygenation and inherent properties of the

photosensitizers. Various photosensitizers have been designed/synthesized in order to

overcome the limitations. In this Review, we provide a general overview of the mechanisms

of action in terms of PDT in cancer, including the effects on immune system and

vasculature as well as mechanisms related with tumor cell destruction. We will also

brieflymention the application of PDT for non-malignant diseases. The current limitations of

PDT utilization in cancer will be reviewed, since identifying problems associated with

design/synthesis of photosensitizers as well as application of light and tissue oxygenation

might pave the way for more effective PDT approaches. Furthermore, novel promising

approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/

organelle targeting, etc. will also be discussed in detail, since the potential of pioneering

and exceptional approaches that aim to overcome the limitations and reveal the full
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potential of PDT in terms of clinical translation are undoubtedly exciting. A better

understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT)

will most likely prove to be very useful for pursuing and improving effective PDT strategies.

Keywords: photodynamic therapy, tumor, photosensitizer, current limitations, novel approaches, bioengieering,

selectivity, targeting

INTRODUCTION

Photodynamic therapy (PDT) is a therapeutic modality for
specific malignant (e.g. gastrointestinal, skin, head and neck,
and gynecological cancers) as well as non-malignant [e.g. age
related macular degeneration (AMD), psoriasis] and pre-
malignant (e.g. actinic keratosis) conditions (Brown et al.,
2004; Castano et al., 2006b). The mechanisms of action
depend on the generation of singlet oxygen (1O2),
preferentially with high yield, through the excitation of a
particular photosensitizer (PS), which transfers its excited
energy to the molecular oxygen in tumor tissues via triplet
state manifold. The necrotic and/or apoptotic destruction of
the tumor cells are induced by cytotoxic singlet oxygen and
other secondary molecules such as reactive oxygen species
(ROS). Detailed mechanisms of action of PDT will be
summarized in the next section. The earliest preclinical
applications of PDT were published around 1900’s. Raab
showed the dependence of light and the necessity that the
light be of wavelengths that were absorbed by the sensitizing
“dye” (Raab, 1900). Von Tappeiner eventually coined the
term “photodynamic” to refer to this photosensitization. Von
Tappeiner applied eosin to basal cell carcinomas topically,
followed by the application of visible light to the region. The
results demonstrated that target tissue destruction was
achieved by the dynamic interaction among light, oxygen
and the photosensitizing agent (von Tappeiner and
Jodlbauer, 1907). In 1995, Photofrin [commercial name for
HpD (hematoporphyrin derivative)] received the FDA
approval as a clinical application of PDT by the efforts of
Dougherty (Dougherty et al., 1998). Eventually, the true
potential of PDT for therapeutic applications against
tumor tissues had been recognized more than 70 years
after Raab’s studies. HpD had some limitations, since it
had a weak absorption band in the near-infrared (NIR)
region, rendering it not suitable for deep-seated tumor
tissues. As a result, second generation of PSs [e.g. chlorins,
benzoporphyrin derivatives, texaphyrins, phthalocyanines
and natural products such as hypericin and
protoporphyrin IX (PpIX)] were designed in order to
overcome the limitations of HpD. These second generation
PSs have been used in cardiovascular and ophthalmological
diseases (Rockson et al., 2000; Sivaprasad and Hykin, 2006).
The third generation PSs integrated strategies that utilized
targeting (active and passive targeting) and delivery moieties,
such as monoclonal antibodies, high-affinity ligands (e.g.
peptides, antibodies, nucleic acids, vitamins or

carbohydrates) that can be attached to nanoparticles
(NPs), liposomes and ligands targeting overexpressed
receptors (Chen et al., 2010). The current limitations of
PDT applications will be discussed in detail in this review.
Furthermore, novel promising approaches in terms of PDT
will also be reviewed, since the potential of pioneering
approaches in order to overcome such limitations of PDT
are truly exciting.

MECHANISMS OF ACTION

PDT is an approach which utilizes specific agents that act as
photosensitizers (Moore et al., 2009). Such chemicals are in
inactive state until they are exposed to specific light. Their
activity is also strictly dependent on the presence of oxygen.
The photosensitizer (PS), which is activated in the presence of
light, generates ROS. ROS, in turn, are responsible for the effector
functions such as killing of tumor cells (Castano et al., 2006b). The
excitation of the PS with light results in the move of an electron to
the first excited singlet state. The following intersystem crossing
yields a triplet state. The triplet PS transfers energy to triplet
oxygen, resulting in the generation of reactive singlet oxygen
(1O2).

1O2 is capable of exerting a plethora of actions such as
direct killing of cancer cells, damaging vascular structures as well as
inducing immune responses (Figure 1). PDT can induce cancer
cell death via apoptosis and necrosis (Oleinick et al., 2002). In
addition, PDT may harm vascular structures of the tumor,
rendering cancer cells hypoxic and deprived of vital nutrients
(Krammer, 2001; Dolmans et al., 2002b). The current literature
has shown that ROS have various biological effects (Castano et al.,
2005a; Castano et al., 2005b). Although one of the most potent
effects of PDT is direct killing of tumor cells, PDT induced immune
responses also have a great potential to alter the overall
effectiveness of the treatment (Castano et al., 2006b). The net
effect of PDT may be either the stimulation or the suppression of
the immune system (Korbelik, 1996; Canti et al., 2002; van
Duijnhoven et al., 2003).

Due to convenience, the first clinical examples of therapeutic
applications of PDT are targeted against superficial diseases, e.g.
lupus vulgaris and skin tumors. At the beginning of 20th century,
Von Tappeiner and Jodlbauer published a book about the clinical
utilization of PDT against infectious diseases and cancer (von
Tappeiner and Jodlbauer, 1907). The first examples of PDT were
mostly based on excitation by visible light and topical application
of the PS, such as eosin. The problem to deliver light to the site of
cancer other than superficial ones was achieved via the utilization
of optical fibers, which could reach interstitial tumor tissues. Such
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advancements paved the way for the use of PDT against various
cancer types including those of the head and neck, pancreas,
prostate etc. (Bown et al., 2002; Lou et al., 2004). It is clearly
evident that PDT can be implicated in several non-cancer clinical
conditions such as acne vulgaris (Gold, 2007). The PS can be
administered i.v. or p.o. for the treatment of interstitial tumors.
Then, it is activated by means of a specific wavelength of light at
the desired tissue site. A laser can be used for this purpose. The
light can be applied to the target tissue through optical fibers
within transparent plastic needles (Moore et al., 2009). Specific
types of lasers or light-emitting diodes (LEDs) can be utilized for
PDT. The type and body localization of the tumor tissue
determine the kind of light that will be used. In order to
precisely target the tumor tissue, the guides are placed by the
help of ultrasonography, usually under general anesthesia. There
exists a period of time between the administration of the drug to a
patient and the application of light. This period, which can vary
from hours to days depending on the PS in use (e.g.
pharmacokinetic properties), is called as drug-to-light interval.
Most PDT applications do not require hospitalization and they
are commonly performed in an outpatient setting.

The route of administration of the PS can vary according to
the site of the tumor. For instance, topical application is used for
cutaneous lesions, whereas i.v. administration is frequently
utilized for deep-seated cancer tissues. In such applications, it
is conceivable that the pharmacokinetic properties of the agent
assume pivotal roles. Thus, such kinetic features in fact
determine the time of excitation of the PS at the target tissue
by light. As explained, vide supra, inactive PS that is distributed
to many sites of the body can then be activated in a site-specific
manner. The excited PS transforms into the triplet state, which
can undergo two kinds of reactions (Henderson and Dougherty,

1992). The activated PS can directly interact with oxygen to
generate 1O2 (type II reaction). On the other hand, it can also
react with a substrate such as a molecule or the cell membrane,
to form radicals; which may react with oxygen to generate
oxygenated products (type I reaction) (Dolmans et al., 2003).
Since the fundamental mechanisms of PDT mandate the
presence of oxygen, it is reasonable to foresee that such
mechanisms would not occur in the absence of oxygen in
tissues, i.e. anoxia. In line with this, seminal in vivo studies
demonstrated that experimental induction of hypoxia
diminishes the effects of PDT (Gomer and Razum, 1984).
Although both type I and II reactions usually take place at
the same time, the predilection toward either of them is
dependent on the PS, presence and levels of oxygen as well
as the type and levels of the substrate. Since the resultant 1O2 has
a very short half-life, most of the effects of PDT are limited to
the site of photosensitization (Moan and Berg, 1991). Moan
et al. reported that the half-life of 1O2 in the cells was
0.01–0.04 μs and the distance diffused by 1O2 was estimated
to be 0.01–0.02 μm (Moan and Berg, 1991). When all
parameters of the PDT process are taken into consideration,
the effectiveness of PDT significantly depends on several
different variables such as the dose, type, and cellular
localization of the PS; the intensity, duration and wavelength
of light; as well as the availability of oxygen at the target site
(Dolmans et al., 2003).

Effects of Photodynamic Therapy on
Tumors
The destruction of tumors by PDT is a phenomenon known for
about a century. PDT’s net effect of tumor elimination

FIGURE 1 | Basic Mechanisms of Action of PDT on Tumors. PDT can exert a plethora of actions such as inducing immune responses, direct killing of tumor cells,

and damaging vascular structures.
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encompasses several distinct mechanisms (Dougherty et al., 1998;
Oleinick et al., 2002). PDT may stimulate the host immune
system against tumor cells (Castano et al., 2006b). While
conventional anti-cancer treatment modalities such as
radiotherapy and chemotherapy mostly cause immune
suppression, PDT is capable of inducing inflammation,
recruiting leukocytes to the target area, as well as facilitating
the activation of anti-tumor T lymphocytes. PDT also decreases
the tumor microvasculature; thus, resulting in deprivation of
oxygen and nutrients in the tumor tissue (Krammer, 2001; Busch
et al., 2002). Last but not least, PDT is able to kill tumor cells
directly via induction of apoptosis or necrosis by 1O2. These
mechanisms are most likely interrelated (Figure 1). All or some of
those mechanisms prove to be important in different clinical
settings depending on the type of tumor and the PS. Tumor
tissues not only contain cancer cells (parenchyma), but also the
stroma (Peng and Nesland, 2004). Tumor microenvironment
consists of various entities such as immune cells, fibroblasts,
vascular structures, as well as extracellular matrix. Most of the
stromal elements function to facilitate tumor growth. Most of the
elements of tumor milieu can be affected by PDT.

Effects on Immune System
PDT has been shown to affect immune responses (Figure 2)
(Korbelik, 1996; Canti et al., 2002; van Duijnhoven et al., 2003).
Such effects can result in immunostimulation or

immunosuppression. Conventional therapies such as
chemotherapy and radiotherapy usually cause immune
suppression. The tumor tissue that has been treated with PDT
may provide important chemoattractant signals for immune cells.
PDT can exert effects on both monocytes/macrophages and
lymphocytes (Steubing et al., 1991; Jiang et al., 1999). Evans
et al. demonstrated tumor necrosis factor (TNF) production by
PDT treated macrophages, and proposed that this process might
serve as a mechanism of PDT cytotoxicity in vivo (Evans et al.,
1990). Gollnick et al. showed that PDT in vivo causes significant
changes in the expressions of interleukin (IL)-6 and IL-10, but not
TNF-α (Gollnick et al., 1997). PDT treated macrophages in vivo
may display increased Fc receptor mediated ingestion activity
(Yamamoto et al., 1991). Another study by Korbelik et al.
reported an enhancement of macrophage mediated killing of
tumor cells treated by PDT (Korbelik and Krosl, 1994b). Marshall
et al. investigated the effects of photosensitizers on functional
activities of macrophages and natural killer (NK) cells and
reported that PDT may alter NK cell functions (Marshall
et al., 1989).

PDT is capable of inducing acute inflammation at the target
tissue (Castano et al., 2006b). Such an inflammatory response can
be considered important for the activation of anti-tumor
immunity (Gollnick et al., 2003). As a result of PDT,
expressions of inflammatory cytokines [e.g. interleukin (IL)-6],
chemokines and adhesion molecules [e.g. E-selectin and

FIGURE 2 | Effects of PDT on Immune System. PDT can affect immune responses and induce anti-tumor immunity as well as stimulating inflammation at the target

tissue. PDTmay result in apoptosis and/or necrosis of the tumor cells. It is also capable of inducing immunogenic cell death, which stimulates immune responses against

dead cell antigens. The antigens are taken up by antigen presenting cells such as dendritic cells. These cells then travel to secondary lymphoid organs in order to present

those antigens to T cells. Activated T cells as well as monocytes, mast cells and neutrophils are recruited to the tumor microenvironment, resulting in inflammation.

Effector T cells are capable of eliminating tumor cells.
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intracellular adhesion molecule (ICAM)-1] as well as infiltration
of leukocytes (e.g. neutrophils) into the target tumor tissue were
observed (Gollnick et al., 2003). In fact, suppression of tumor
growth following PDT was proposed to be associated with the
presence of neutrophils. Furthermore, it was proposed that
neutrophils are pivotal for successful PDT in vivo (de Vree
et al., 1996). Yom et al. suggested that a systemically mediated
inflammatory response resulting from thoracic surgery followed
by PDT is important. They found that IL-1β, IL-6, IL-8, and IL-10
levels were elevated after surgery and PDT (Yom et al., 2003). In
another study, PDT was found to cause the release of
prostaglandin E2 (PGE2) from mouse radiation-induced
fibrosarcoma tumor cells and macrophages (Henderson and
Donovan, 1989). Moreover, Henderson et al. found that
endothelial cells could release prostaglandin F2α in response
to PDT (Henderson et al., 1992). In summary, activation of
inflammation is critical in terms of inducing potent immune
responses.

The contribution of the immune system in tumor regression
after PDT was investigated by several groups (Hendrzak-Henion
et al., 1999). CD8+ T cells were shown to be required to prevent
tumor regrowth after PDT. NK cells were also implicated in this
response. PDT was able to induce protective anti-tumor
immunity (Hendrzak-Henion et al., 1999). A study
investigated the effects of photoactivated phthalocyanines on
anti-tumor immune responses in immunosuppressed and
normal mice having fibrosarcoma. The results suggested that
PDT induced specific anti-tumor immunity was important
(Canti et al., 1994). Another study investigated the effect of
lymphoid cells in the response of murine EMT6 mammary
sarcoma to PDT (Korbelik et al., 1996). PDT cured the lesions
in BALB/c mice. On the other hand, PDT induced an initial
ablation but no long-term cure for tumors in the
immunodeficient strains (Korbelik et al., 1996). The results
underlined the importance of lymphoid cells for preventing
the recurrence of tumors after PDT and the role of PDT
induced immune reaction (Korbelik et al., 1996). In another
study, Korbelik and Dougherty demonstrated that cytotoxic
T cells were the main immune effector cells responsible for
the curative outcome of PDT, while helper T cells played a
supportive role (Korbelik and Dougherty, 1999). They also
reported NK cell activation in PDT treated sarcomas (Korbelik
and Dougherty, 1999). Castano et al. demonstrated that
benzoporphyrin derivative mediated PDT of poorly
immunogenic murine sarcoma tumors led to initial tumor
elimination, but all tumors recurred (Castano et al., 2006a).
On the contrary, they observed complete cures and 100%
mouse survival when they transduced the tumor cells with
green fluorescent protein (GFP), which may act as a foreign
antigen. Thus, PDT could then induce long term memory
immune responses (Castano et al., 2006a). Such studies
strongly underline the importance of the immune system in
terms of effective clinical applications of PDT. Although
various studies demonstrated augmented anti-tumor immunity
after PDT; several studies also reported that PDT can cause
immune suppression (Hunt and Levy, 1998). It was reported that
there was no correlation between photosensitivity and immune

suppression (Musser and Oseroff, 2001). In addition, the
properties of the immune suppression are affected by the type
and site of irradiation with light (Musser and Oseroff, 2001).

Tumor Cell Killing
PDT is able to eliminate tumor cells directly to some extent and
such an elimination is not achieved through a single mechanism
(Henderson et al., 1985). PDT is capable of reducing the number
of clonogenic tumor cells. It was reported that up to
approximately 72% reduction in the number of clonogenic
cells could be achieved immediately after the completion of
light irradiation of photosensitizer treated tumors (Chan et al.,
1996). In addition, tumor cell killing seems to be a kinetic process,
since the number of clonogenic cells further decreased as a
function of time after PDT. PDT directly induces a mixture of
apoptosis and necrosis on target tumor cells (Oleinick et al., 2002;
Yoo and Ha, 2012). PDT is able to rapidly induce apoptosis
(Kessel and Oleinick, 2010). In addition, PDT was also reported
to be able to induce cancer cell death by autophagy, which is an
important conserved cellular recycling mechanism (Kessel et al.,
2006; Buytaert et al., 2007; Reiners et al., 2010; Agostinis et al.,
2011; Yoo and Ha, 2012). Moreover, such mechanisms can occur
concurrently, depending on the type and dose of the
photosensitizer (Yoo and Ha, 2012). Agarwal et al.
demonstrated that PDT could result in DNA degradation into
fragments and induce apoptosis (Agarwal et al., 1991). The DNA
fragmentation was affected by time and dose. They also reported
the presence of chromatin condensation around the periphery of
the nucleus as well as damage to cytoplasmic structures (Agarwal
et al., 1991). PDT was reported to be a potent inducer of apoptosis
in various conditions and several photosensitizers affect the
mitochondria. There are numerous studies which investigate
the mechanisms implicated in the PDT-mediated induction of
apoptosis in cells as well as the role of signal transduction
pathways on the response to PDT. PDT mediated apoptosis
induction incorporates pathways coupled with Bcl-2 family
members and caspases (Yoo and Ha, 2012). On the other
hand, autophagy can take place in a Bax-independent manner,
when the apoptotic pathway is unavailable or in parallel with
apoptosis.

It has long been known that several cancer therapies including
PDT target apoptotic pathways. PDT is able to induce different
pathways of apoptosis (Buytaert et al., 2007; Ortel et al., 2009).
Both the extrinsic (death receptor mediated) and the intrinsic
(mitochondria mediated) pathways are associated with PDT
mediated apoptosis. The types of the photosensitizer and the
cancer cells affect the type of apoptotic pathway. PDT mostly
triggers the intrinsic pathway and activates caspase-3 or caspase-7
(Buytaert et al., 2007; Ortel et al., 2009). Mitochondria assumes a
pivotal role in the intrinsic pathway, which results in caspase
dependent and independent apoptosis in PDT. It should also be
noted that PDT primarily triggers caspase dependent apoptotic
pathways (Yoo and Ha, 2012). Intracellular localization of the
photosensitizer also affects the efficiency of apoptosis induction
in PDT (Oleinick et al., 2002). In line with this, photosensitizers
that localize to mitochondria are very potent inducers of
apoptosis (Oleinick et al., 2002).
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Several studies reported important findings concerning the
apoptotic pathways that are triggered in response to PDT and key
mechanisms associated with mitochondrial events. Various
apoptosis mediators as well as signaling pathways have been
uncovered in the setting of PDT (Moor, 2000; Agostinis et al.,
2004; Castano et al., 2005b; Plaetzer et al., 2005). In addition to
in vitro experiments, several studies demonstrated the in vivo
apoptotic implications of photodynamic tumor therapy (Lilge
et al., 2000; Chen et al., 2002a; Kaneko et al., 2004). One of the
earlier events observed in PDT mediated apoptosis is the
disruption of mitochondrial transmembrane potential. PDT
may rapidly cause loss of mitochondrial membrane potential
(Chaloupka et al., 1999; Kessel and Luo, 1999).

Kowaltowski et al. proposed that disruption of mitochondrial
membrane potential in PDT might result from the effects of the
PDT agent on inner membrane permeability to protons
(Kowaltowski et al., 1999). Several studies suggested that
photosensitizers that target the mitochondria might induce
effective apoptosis in PDT. Mechanisms including cytochrome
c release as well as activation of caspases such as caspase-9 and
caspase-3 were reported to be associated with PDT (Granville
et al., 2000; Xue et al., 2001b). In line with such findings, the role
of caspase-3 in PDT mediated apoptosis has been investigated in
many studies with various photosensitizers (Granville et al., 1997;
He et al., 1998; Assefa et al., 1999; Inanami et al., 1999; Chan et al.,
2000; Renno et al., 2000; Gad et al., 2001). PDT has also been
reported to alter several signaling pathways which have been
implicated in responses to oxidative stress (Moor, 2000). In
summary, it is evident that PDT is very potent in triggering
apoptosis (Oleinick and Evans, 1998). Nevertheless, PDT
currently is not completely successful in eradicating tumors in
the clinical setting. Several explanations have been proposed for
the current state. It was suggested that the efficiency of PDT
mediated killing of tumor cells decreases with increasing distance
of the cells from the vascular supply and heterogeneous
distribution of the photosensitizer in the tumor tissue may
result in critical implications (Korbelik and Krosl, 1994a).
Moreover, the availability and presence of oxygen in the target
tumor tissue also affects the efficiency of PDT. This topic will be
discussed in more detail. Many tumor tissues display hypoxia. In
addition, PDT consumes oxygen during photodynamic processes.
Last but not least, PDT is also capable of damaging vascular
structures; causing oxygen deprivation. It has been found that
PDT results in acute decreases in tissue oxygen levels (Tromberg
et al., 1990; Pogue et al., 2001). Pogue et al. reported that the
change in partial oxygen pressure in hypoxic tissue regions
demonstrated acute loss after treatment, while the regions with
higher partial oxygen pressure was heterogeneous, and some
areas maintained their partial oxygen pressure value after the
treatment (Pogue et al., 2001). In contrast, another study reported
that tumor tissue partial oxygen pressure increased after the light
application was finalized in a setting where the photosensitizer
was injected 3 h before the application of light (Pogue et al., 2003).
In fact, tissue hypoxia may limit the clinical effectiveness of PDT.
Fractionation of the irradiation process of PDT may allow for the
replenishing of oxygen in the tissue (Messmann et al., 1995;
Pogue and Hasan, 1997; Turan et al., 2016).

Vascular Damage
PDT can damage the vascular structures of the tumor tissue.
Henderson et al. demonstrated that in vivo treatment of tumors
with PDT decreased the number of clonogenic tumor cells, via the
damage to the tumor circulation (Henderson et al., 1985). The
decrease in tumor clonogenicity 4 h after PDT closely resembled
that of tumor deprived of oxygen for the identical period of time,
suggesting that one of the important factors that contribute to
tumor destruction might be the damage to the tumor vasculature
and the consequences of treatment-induced alterations in tumor
physiology. It is evident that the tumor cells heavily depend on
nutrients and oxygen supplied by the vasculature. As such, many
tumor cells were reported to secrete pro-angiogenic factors such
as vascular endothelial growth factor (VEGF) (Bergers and
Benjamin, 2003; De Palma et al., 2017). Therefore, cutting the
supply lines of tumor via PDT mediated vascular shut down is a
reasonable approach, which in turn results in hypoxia (Busch
et al., 2002). Numerous studies have revealed that PDT bears the
potential to significantly damage tumor blood vessels (Fingar
et al., 1999; Dolmans et al., 2002b). In addition, several
photosensitizers were demonstrated to decrease blood vessels
and cause thrombosis (Star et al., 1986; Fingar et al., 1997;
Fingar et al., 1999).

Signaling Alterations
The biological activity of PS in the cell may vary depending on
its type, localization in the cell, dose, as well as route of
administration. Such differences may result in alterations in
the regulation of cellular signaling mechanisms. Therefore, the
cell can respond to PDT with several biological responses such as
apoptosis, necrosis, or autophagy (Figure 3) (Chilakamarthi and
Giribabu, 2017; Kwiatkowski et al., 2018).

Apoptosis is the programmed death of the cell. Indeed,
PDT-mediated cellular damage can be achieved by crucial
mechanisms of apoptosis, which are activated by the induction

FIGURE 3 | Effects of PDT on Cancer Cells. PDTmay result in apoptosis,

necrosis, or autophagy.
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of pro-apoptotic proteins. The Bax/Bcl-2 ratio determines the fate
of cells in terms of PDT-mediated apoptosis. When the pro-
apoptotic proteins such as Bax are upregulated and the anti-
apoptotic proteins such as Bcl-2 are downregulated, caspases that
regulate apoptosis in the cell become activated (Figure 4). PDT
may increase the levels of ROS in the cells and can also alter the
concentration of Ca2+. It is known that subtle changes in Ca2+

concentration is able to regulate and trigger apoptosis. The p38-
MAPK (mitogen-activated protein kinases) repair pathway is
activated in normal cells under conditions of stress, such as
genotoxic DNA damage, UV irradiation and hyperosmolarity.
On the other hand, cancer cells use this signaling pathway as a
cat’s-paw to prevent apoptosis and provide adaptive advantages
such as proliferation, migration and invasion (Koul et al., 2013;
Martinez-Limon et al., 2020). In a study conducted with different
cell lines such as A431 (epidermoid carcinoma), HaCaT
(immortalized keratinocytes), L929 (murine fibroblast) and
HeLa (cervix adenocarcinoma), it was found that p38/MAPK
signaling pathway was activated in cells as a result of hypericin-
based PDT. It was demonstrated that activation of p38/MAPK
signaling pathway could protect the cells from apoptosis (Assefa
et al., 1999).

Necrosis is the premature death of the cell due to chemical
or physical damage. Such a cellular death is usually considered
as a violent and quick degeneration (Mroz et al., 2011).
Necrosis can be characterized by swelling of the cytoplasm,
organelle destruction as well as plasma membrane disruption.
These changes may cause the release of intracellular contents
and inflammation (Danial and Korsmeyer, 2004). It can be
proposed that high dose PDT (e.g. high PS concentration and/

or high light fluence) can result in cell death by necrosis. On
the contrary, lower doses of PDT may have a predilection for
apoptotic cell death (Mroz et al., 2011). Nagata et al. reported
that PDT that caused less than 70% cytotoxicity resulted in
mainly apoptosis; whereas, most of the cells appeared necrotic
with doses that induced 99% cytotoxicity (Nagata et al., 2003).
In another study, Dahle et al. reported that the mode of cell
death induced by PDT depended on cell density (Dahle et al.,
1999). They utilized meso-tetra (4-sulfonatophenyl) porphine
as a PS. The apoptotic fraction was found to be higher for cells
in confluent monolayers than those growing in microcolonies
(Dahle et al., 1999).

Glioblastoma may respond to PDT with ALA, mainly by
activating a necrotic cell death (Coupienne et al., 2011).
Receptor-interacting protein 3 (RIP3) was suggested to be
important in terms of this caspase independent form of
programmed cell death. Coupienne et al. investigated the
necrotic mechanism induced by ALA mediated PDT in human
glioblastoma cells and demonstrated that PDT-induced necrosis is
dependent on RIP3. They also proposed that PDT mediated 1O2

generation is responsible from RIP3 dependent activation of
necrotic pathway (Coupienne et al., 2011). In addition, PDT
was implicated in the formation of a pro-necrotic complex
containing RIP3 and RIP1 but lacking caspase-8 and FADD
(Coupienne et al., 2011).

Autophagy (self-eating) is an essential cellular mechanism,
which is implicated in removal of unnecessary or dysfunctional
components. Autophagy allows for the recycling of cellular
components. In cancer cells, autophagy may contribute to cell
growth. It has also been shown that photodamage may cause

FIGURE 4 | Cell Death by PDT. PDT may induce apoptosis, necrosis, or autophagy via different mechanisms.
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autophagy. As PDT augments the levels of ROS, cellular stress
increases, and Beclin one protein induces the autophagic
mechanism. PDT has been reported to be capable of inducing
autophagy (Kessel and Reiners, 2007; Francois et al., 2011). PDT
was proposed to induce autophagy by inactivating negative
regulators of autophagy (e.g. mTOR, Bcl-2) rather than
activating autophagic proteins (e.g. Atg7, Beclin 1, Atg5) (Xue
et al., 2001a; Xue et al., 2003; Weyergang et al., 2009).

Several studies demonstrated that autophagy may show tumor
suppressing or promoting effects depending on the type of PS
used in the PDT application as well as the cell type and light
flounce. A recent study with HCT116 and SW480 colorectal
carcinoma cell lines proposed that PDT with meta-
tetrahydroxyphenylchlorin (m-THPC) and verteporfin (VP)
activated the ROS/JNK signaling pathway in cells. In addition,
PDT induced autophagy mediated cell death through activation
of the ROS/JNK signaling pathway (Song et al., 2020).

Photodynamic Therapy for Non-Malignant
Diseases
Clinical trials have adequately proved PDT’s effectiveness in
treating various tumors. In addition to oncological conditions,
current studies show the efficacy of PDT in the treatment of
numerous non-oncological diseases. It was stated that PDT
could be used in the treatment of various illnesses (Dougherty,
2002; Karrer and Szeimies, 2007). For instance, PDT is used
to treat multiple dermatological and infectious diseases such
as psoriasis vulgaris, Darier’s disease (DAR), cutaneous
sarcoidosis (granulomatous disease), lichen planus, acne
vulgaris, acne inversa, rosacea, sebaceous hyperplasia,
verrucae vulgaris, cutaneous leishmaniasis, condyloma
acuminatum (genital warts), and circumscribed scleroderma
(Karrer and Szeimies, 2007; Babilas et al., 2010; Kharkwal et al.,
2011; Queiros et al., 2020). In addition, PDT is used as a
treatment method for dental ailments such as periodontitis,
cardiovascular diseases such as atherosclerosis, esophageal
varices, and neurological disorders such as Alzheimer’s
disease and prion diseases (Meisel and Kocher, 2005; Al
Habashneh et al., 2015; Yoo et al., 2021). Ophthalmologic
conditions such as age-related macular degeneration (AMD),
choroidal neovascularization (CNV, pathological myopia),
gastrointestinal diseases such as Crohn’s disease, and
musculoskeletal disorders such as rheumatoid arthritis and
synovitis might be treated with PDT (Rivellese and Baumal,
2000; Yoo et al., 2021). In addition, it has been proposed that
PDT can be an effective method in treating respiratory diseases
such as pneumonia and COVID-19 (Yoo et al., 2021). While
the aim of PDT in cancer is to cause cell damage, the main goal
of PDT in the treatment of non-neoplastic diseases is the
modulation of cellular function. For this reason, PDT is
frequently modified for non-neoplastic diseases in terms of
the treatment protocol. For instance, low dose PDT can be
used to treat inflammatory skin diseases, in contrast to high
dose PDT applications utilized for cancer treatment. Although
there exist no standardized PDT protocols for non-neoplastic
diseases yet, current studies demonstrate that PDT shows
promising results (Karrer and Szeimies, 2007).

CURRENT LIMITATIONS OF
PHOTODYNAMIC THERAPY UTILIZATION
IN CANCER

Light
PDT is a treatment modality which consists of multiple
components. PDT is a light-induced therapy and the therapeutic
action of PDT is based on the properties of the light that is used to
excite the particular chromophore. The requirement for excitation
by light represents both an advantage and a disadvantage. The PS
will not be active and generate cytotoxic singlet oxygen, unless it is
excited. This brings an inherent selectivity to the procedure, since
one can choose the timing and the area of irradiation. However, the
light cannot penetrate (Stolik et al., 2000) beyond a few millimeters
of tissue (Figure 5), limiting the therapeutic potential to superficial
tumors (Figure 6).

The penetration of light depends on optical properties of the
tissue and the wavelength of used light. There exists a
heterogeneity between tissues and even within a tissue. These
inhomogeneity sites (e.g. nuclei, membranes, etc.) cause light
scattering, reflecting, transmitting or absorption (Mourant et al.,
2000; Frangioni, 2003; van Straten et al., 2017). Moreover, water
absorbs light at longer wavelengths, which affects light
penetration depth into the tissue. In addition, hemoglobin and
melanin, which are endogenous dyes, absorb light at shorter
wavelengths. Therefore, they influence light penetration (Carroll
and Humphreys, 2006). These results demonstrated that the light
of spectral range (so-called “phototherapeutic window”) is
important for the PDT. The “phototherapeutic window” is
between 600 and 1,300 nm (Kim and Darafsheh, 2020). On
the other hand, the light within the range of wavelengths
between 620 and 850 nm has the most penetrating capability
to achieve the maximum skin permeability. At above 850 nm, the
light does not provide sufficient energy required to activate the
PS, as a result PS cannot generate sufficient energy transfer to its
triplet state to produce singlet oxygen. In conclusion, light within
the 620–850 nm spectrum range achieves the optimum tissue
penetration and PDT applications. The effective devices used for
the delivery of light are incandescent light and lasers (Brancaleon
and Moseley, 2002). There are some unique characteristics of the
light source used for PDT. Thus, a universal light source cannot
cover all types of PDT applications. First of all, the decision of
light to be used is determined by the type of disease (tissue type,
location and size of tumor). Secondly, a light source should be
suitable for the spectral characteristics of the PS (e.g. absorption
spectrum).

The power and density of light to be delivered are also
important characteristics of the source. Coherent light sources
(argon and argon-pumped lasers, solid-state lasers, metal vapor-
pumped dye lasers, optical parametric oscillators lasers) and non-
coherent light sources (fluorescent lamps, halogen lamps, metal
halide lamps, xenon arc lamps, phosphor-coated sodium lamps)
can be used for PDT (Gibson and Kernohan, 1993). For superficial
lesions (e.g. skin, oral cavity), non-coherent light sources may be
used, because they are cost-effective and commercially available,
compared to a laser. Moreover, they can be used for various PSs,
because of their broad emission range (Brancaleon and Moseley,
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2002). On the other hand, lasers are the most widely utilized
devices for the clinical applications of PDT. They provide a
monochromatic, coherent light with very high-power output.
Hence, they can reduce the time necessary for the application
of PDT. In addition, they can be combined with optical fibers. This
combination has proved to be useful in terms of illuminating deep-
seated tumors (Brancaleon and Moseley, 2002).

Several recent studies have aimed at optimizing the light
source for PDT. LED—based PDT is one of such approaches.
The use of LED source provides practical advantages in PDT. For
example, LED source is cheaper and easy to design and the field of
irradiation is larger (Pariser et al., 2008; Hempstead et al., 2015;
Erkiert-Polguj et al., 2016). Narrow emission band can be selected
precisely to maximize the PS efficacy compared to the use of
daylight (DL). Daylight can also be used as a light source in PDT
(Cantisani et al., 2015). It is known that daylight cannot penetrate
in deep tissues and its emission spectrum contains a large

proportion of blue light, so this therapy is effective for
superficial treatments such as non-melanoma skin cancer and
actinic keratosis (Lacour et al., 2015; Assikar et al., 2020). The
application of DL—PDT is safe, well tolerated and nearly painless
as well as mostly nonsurgical. Moreover, light dose and fluence
rate are other crucial aspects of PDT. By applying varying
irradiation methods with the same light source, we can obtain
different results in PDT. Low fluence rate was shown to promote
tumor control; whereas, high fluence rate depleted the oxygen
levels in tumor site in a very short time. Thus, depletion of oxygen
may limit the efficiency of PDT. Such results demonstrated that
in situ light dosimetry was crucial in terms of achieving optimum
outcome (Robinson et al., 1998; Henderson et al., 2006). In
another study by Robinson et al., light fractionation
extensively enhances the efficacy of ALA based PDT. The
results showed that light fractionation compared to a single
illumination significantly increased visual skin damage

FIGURE 5 | Light Penetration into Skin. Approximate penetration depths of light into skin according to its wavelength are illustrated.
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response in mouse skin (de Bruijn et al., 2016). In conclusion, the
subject of light requires further improvements and new
developments, in order to improve overall PDT efficacy and
widen therapeutic applications (Chen et al., 2002b; Guo et al.,
2015; Mordon et al., 2015).

Oxygen
The therapeutic efficacy of PDT depends on the concentration
of molecular oxygen in tumor tissues. On the other hand, it is
well known that tumor tissues are deprived of oxygen as a result
of their rapid growth and insufficient vasculature as well as
increased oxygen diffusion distances (Vaupel et al., 2001).
Hypoxic condition, which demonstrates oxygen
concentrations of typically less than 1 μM, is a critical
problem for PDT; given the fact that oxygen is a vital
component of this therapy (Ceradini et al., 2004). In fact, it
was observed that photosensitization itself depletes cellular
oxygen levels quickly in both tumor models and clinical
application of PDT. Thus, the light dose has to be carefully
adjusted and the light should be introduced in pulses
(fractionated), preferentially (Xiao et al., 2007). For this
reason, PDT is considered a self-limiting modality, which
causes its own inhibition. Hypoxic zones of solid tumors are
highly resistant to certain chemotherapies and radiotherapies
(Fuchs and Thiele, 1998; Rousseau et al., 2021). According to
recent studies, drugs such as carboplatin, cyclophosphamide
and doxorubicin show hypoxia induced resistance to
chemotherapy (Wouters et al., 2007). Similarly, the
effectiveness of PDT is significantly reduced when the major
vessels of the tumor tissue are shut down (Fingar et al., 1992). As

a result, hypoxic tissues alter the optimal drug dose required for
PDT (Harrison et al., 2002).

In order to overcome the problems associated with low
concentration of oxygen in solid tumors, hyperbaric oxygen
(HBO2) therapy was combined with PDT. The results showed
that HBO2 enhanced tumor oxygenation. Thus, a significant
improvement in PDT efficacy could be obtained when applied
during hyper-oxygenation (Al-Waili et al., 2005). In another
study by Hetzel et al., Photofrin-PDT was applied in
combination with hyperoxygenation in order to overcome
hypoxia. Mice with transplanted mammary carcinoma tumors
were kept under three atp (atmospheric pressure) hyperbaric
oxygen during the irradiation phase of PDT. The results showed
that PDT can be more potent in controlling hypoxic tumors when
combined with hyperoxygenation, (Chen et al., 2007b; Huang
et al., 2007). In conclusion, molecular oxygen was indeed a
fundamental element for PDT-induced cytotoxicity. The light
fluence rate is related with photochemical oxygen depletion
during the generation of cytotoxic singlet oxygen by PDT
(Robinson et al., 1998). In another study by Snyder et al.,
fluence rate was shown to affect the PDT tumor response in
the Colon 26 tumor model. Lower fluence light promoted tumor
control. Higher fluence light, on the other hand, significantly
decreased oxygen concentration in the tumor tissue, swiftly
(Robinson et al., 1998; Henderson et al., 2006). Furthermore,
tumor oxygenation levels were investigated both before and after
the application of PDT. The results showed that tumor
oxygenation at the time of PDT has a profound effect on
post-treatment tumor oxygenation. Such effects might be
because of PDT cytotoxicity and PDT damage to tumor

FIGURE 6 | PDT in Cancer. Selected limitations and approaches to improve outcome of PDT in cancer are illustrated.
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vasculature (Star et al., 1986; Chen et al., 1996). The therapeutic
action of PDT depends on the efficient generation of singlet
oxygen from the triplet oxygen (3O2); therefore, tissue
oxygenation seems to be extremely important for the efficacy
of PDT (Lee See et al., 1984; Moan and Sommer, 1985). In
conclusion, the choice of optimal combinations of PS dose, light
sources, and treatment parameters are very important in order to
achieve successful results in PDT (Henderson et al., 2006).

Photosensitizer (PS)
PS is another important component associated with PDT activity.
PSs are generally accumulated in malignant areas. Subsequently,
it is activated by a light source of specific intensity and
wavelength. The illuminated PS interacts with oxygen and
performs a photodynamic reaction (PDR). The anti-tumor
effects that occur via PDR are directly related with PS activity.
In this context; purity, pharmacokinetic properties,
amphiphilicity and dosimetry of PS are important parameters
in terms of treatment efficiency. Targeting different subcellular
compartments of the target cell by using different molecular
carriers of PS is another factor that may increase PDT efficiency.
The fluorescence features of PSs can also be used for theranostic
purposes in addition to PDT (Allison and Sibata, 2010; Allison
and Moghissi, 2013; Erbas-Cakmak and Akkaya, 2013; Allison,
2014; Turkoglu et al., 2020). For instance, theranostic approaches
can integrate hypoxia imaging and tumor therapy (Fan et al.,
2019; Zheng et al., 2020).

Some of the features that should be found in an ideal PS are
low dark toxicity, easy handling, high activation capacity and
singlet oxygen yield. Several PSs have demonstrated low solubility
and aggregation in water, which may cause them to be
photodynamically inactive in aqueous solutions. This issue can
hinder in vivo utilization of such PSs (Dumoulin et al., 2010; Li
et al., 2015). Most studies focus on the absorption and emission
properties of PSs in DMSO solutions (Sekhosana and Nyokong,
2014). An optimal PS should demonstrate water solubility and
high singlet oxygen quantum yield in aqueous solution. Insoluble
PSs were previously incorporated in liposomes, nanoparticles or
emulsions in order to be able to use them in aqueous solutions
(Jacques and Braun, 1981; Ricci-Junior and Marchetti, 2006;
Kuruppuarachchi et al., 2011; Rossetti et al., 2011).
Hydrophilic substituents such as ionic substitutions can also
be attached to PSs in order to enhance water solubility and
singlet oxygen generation in aqueous solutions (Dubuc et al.,
2008). In addition, nonionic water soluble PSs could be
synthesized through modification with functional groups (e.g.
carbohydrate and polyhydroxylate) (Zorlu et al., 2009).

NOVEL APPROACHES TO IMPROVE
OUTCOME

Overcoming Problems Related With Light
and Drug Dose in Photodynamic Therapy
The irradiation with light can be used as an external “ON-OFF”
switch controlling PDT for tumor tissues in vivo. Light
penetration severely limits the potential of PDT in deep

tissues. It is very important to overcome the short
penetration depth of light in PDT. Therefore, several studies
aimed to design different light sources, devices and targeted
delivery protocols in PDT. The excitation of PS can be achieved
by using NIR light, x-ray radiation, via bioluminescence
approaches, radioluminescent nanoparticles and quantum
dots. The aim of these approaches is to increase PDT efficacy
in deep-seated tumors (Bakalova et al., 2004; Juzenas et al., 2008;
Burgess, 2012; Turan et al., 2014; Kolemen et al., 2016; Mallidi
et al., 2016; Ozdemir et al., 2017). The sensitizer dye is
preferentially designed to have strong absorption bands in
the red to NIR region of the visible spectrum. This spectrum
region minimizes the scattering of light due to tissue
heterogeneity, reaches the penetration depths exceeding
several mms and enhances the signal to noise ratio due to
the low background emission in NIR (Oleinick and Evans,
1998). Designing of two-photon excitation sensitive PSs aim
to enhance the treatment penetration depth with NIR light
excitation (Bolze et al., 2017). These PSs can be combined with
nanoparticles to increase the therapeutic efficiency (Chen et al.,
2014). In a study by Akkaya et al., a NIR absorbing BODIPY
derivative sensitizer was synthesized. The BODIPY-based PS
produced cytotoxic singlet oxygen in the presence of high
intracellular glutathione (GSH) concentrations within cancer
cells (Turan et al., 2014). Besides NIR light, X-ray radiation is
also an effective candidate as an indirect excitation energy
source for the therapeutic application of PDT for deep-seated
tumors (Fan et al., 2016; Ni et al., 2018). However, it is clear that
there exists an energy mismatch between the photosensitizer
(singlet–triplet energy gap of eV) and the therapeutic X-ray
(photon energy of keV–MeV). As a result, this design requires
the use of induced Čerenkov radiation or radioluminescence of
nanoparticles (scintillation) that produce light upon X-ray
excitation, which can activate nearby PSs. Alternative routes
can be utilized in order to overcome depth limitations in
addition to the use of external excitation sources. In addition
to these studies, the auto-PDT strategy, which aims to increase
PDT efficiency without requiring the presence of an external
light source, has also been utilized (Blum et al., 2020). A self-
illuminating nanoparticle was designed as a PDT agent which
can be excited by enzyme-mediated bioluminescence
approaches (Fan et al., 2016; Ozdemir et al., 2017). Persistent
luminescence is another alternative method which may provide
an internal light source to generate cytotoxic singlet oxygen in
PDT. Nanoparticles that emit NIR light with long luminescence
lifetimes can excite PSs for a long duration. Hence, PDT may
then be emancipated from the requirement for external light
(Abdurahman et al., 2016; Fan et al., 2017).

Adjusting the dose of photosensitizing agent in the clinical
setting is one of the major approaches in terms of overcoming the
limitations of PDT. Administration of fractional drug doses
provides a new strategy to optimize PDT therapy. In a study
by Dolmans et al., the fractioned photosensitizer (MV6401) doses
show more efficacy in inducing tumor delay compared to the
same total dose given as a single treatment in an orthotropic
breast tumor model (Dolmans et al., 2002a). The metronomic
photodynamic therapy (mPDT) represents a strategy in which
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both the light and photosensitizer are delivered consistently at
low rates over several hours. The mPDTmethod was investigated
for the treatment of preclinical rat models of brain tumors. Laser
diode or LED was used as the light source and ALA was
administrated through the drinking water. The researchers
proposed that the study supported the concept of developing
ALA-mPDT in vivo as a treatment for brain tumors. (Bisland
et al., 2004). In summary, mPDTmay increase the selective tumor
cell killing through apoptosis.

Selectivity of Photodynamic Therapy
Bioengineering Approaches
Given the fact that most common side effect of PDT is light
sensitivity and that PDT in fact augments immune responses
against tumor cells (in contrast to chemotherapy/radiotherapy), it
is frustrating to see that such a treatment is not widely used in
treating cancer patients. PDT strategies and techniques should be
improved in terms of clinical applications and ease of use in order
to compete with other procedures such as surgery or
radiotherapy. Even though PDT applications in malignant
tissues (e.g. ophthalmological and cardiovascular diseases)
were thoroughly explored with the advent of new generation
of photosensitizers, further studies are still required (Rockson
et al., 2000; Sivaprasad and Hykin, 2006). As a result, third
generation PSs incorporated targeting and delivery moieties
such as mAbs, liposomes as well as ligands which target
specific receptors that are overexpressed (Chen et al., 2010).
Furthermore, the required drug dose of PDT is relatively high
in order to achieve therapeutic efficacy, because of the limited
selectivity of the PDT agents. The light dose has to be carefully
adjusted and the light can be applied preferably in pulses (Xiao
et al., 2007). The applications of PDT in deep-seated tumors are
limited due to light penetration problems (vide supra). Moreover,
hypoxia and issues related with skin toxicity severely limit the
potential of PDT. As a result, we will discuss the approaches to
overcome these limitations below.

Targeting Strategies
There are two main strategies in terms of targeting the drugs to
tumors; passive targeting and active targeting. As part of the
passive targeting strategies, various nanocarrier agents have been
used to promote their particular accumulation within tumors
through the enhanced permeability and retention (EPR) effect
(Zhang et al., 2020). The EPR effect is a common concept for solid
tumors associated with their pathophysiological and anatomical
differences from normal tissues (Matsumura and Maeda, 1986).
The EPR effect is manifested by enhanced accumulation of
macromolecules (e.g. liposomes, drugs, and NPs) in tumor
tissues in contrast to normal tissues. The mechanism
underlying this effect is attributed to the leaky vessels around
tumors as well as dysfunctional lymphatic system (Perrault and
Chan, 2010; Maeda, 2013). The blood vessels with such leaky
pores can augment the transport of circulating nanoparticles into
the tumor. On the other hand, the transportation in non-
malignant tissues is hindered by the intact barrier of the
vasculature. EPR effect has been proposed to be due to the
rapid growth of tumor cells, which require surplus amounts of

crucial nutrients; thus, inducing the dysregulated formation of
blood vasculatures. The size of nanoparticles should be between
10 and 200 nm to achieve the passive targeting effect (Allison
et al., 2008). The EPR effect is also dependent on other features of
nanoparticles, such as the charge, the shape, circulation time in
blood and hydrophilicity (Bertrand et al., 2014). Even though the
EPR effect has been demonstrated to have promising results in
preclinical in vitro studies, there still exist important issues that
should be solved in order to translate this approach into the
clinical setting (Fang et al., 2011). The passive targeting strategy
may fail to achieve the desired favorable therapeutic effects in
certain early stage tumors, because of the regular vasculature of
such tissues. Furthermore, vessel leakiness and permeability may
not be homogeneous in a tumor tissue. Thus, targeting via EPR
might yield heterogeneous effects (Peer et al., 2007). Moreover,
tumor microenvironment in human cancers and murine models
show some important differences. Therefore, “EPR” and
“nanomedicine” approaches need reconsideration for human
tumors (Danhier, 2016).

On the other hand, the active targeting strategy more
specifically and effectively targets the tumor tissue compared
to the EPR effect alone. Active targeting strategy includes the use
of high-affinity ligands (peptides, antibodies, nucleic acids,
vitamins or carbohydrates) that can be attached to the
nanoparticle surface. Thus, it will predominantly bind to
overexpressed receptors (ligand-receptor interactions) at the
target site (Lammers et al., 2012). Arginine-glycine-aspartate
peptide and epidermal growth factor have been used for the
active targeting of PDT agents (Fang et al., 2012; Conde et al.,
2016). Proteins, especially transferrin and antibodies, can be also
utilized as targeting agents (Kotagiri et al., 2015; Wang et al.,
2016). Last but not least; carbohydrates (Yoon et al., 2012),
vitamins (biotin and folic acid) (Li et al., 2017b; Poudel et al.,
2021) and aptamers (Farokhzad et al., 2006) have been implicated
in active targeting of PDT agents.

The combination of the phototoxic effects of
hematoporphyrin and the targeting ability of monoclonal
antibodies were used for anti-cancer treatment, which was
called as “photoimmunotherapy” (PIT) by Levy et al. (Mew
et al., 1983). Furthermore, photoimmunotherapy technique has
been developed also by other groups (Oseroff et al., 1987). Oseroff
et al. proposed an approach, antibody-targeted photolysis
(ATPL), which utilized PSs attached to monoclonal antibodies
(mAbs). These mAbs bind to cell surface antigens on malignant
cells. The results showed that cell death was dependent on the
doses of both light (630–670 nm) and mAb-PS (Oseroff et al.,
1987). Moreover, several groups have recently investigated PIT
strategies to increase targeted therapy efficacy (Zhang and Li,
2018; Wang M. et al., 2021).

Schmidt et al. published the first clinical application of
antibody-targeted photoimmunotherapy in 1992 (Schmidt et al.,
1992). They demonstrated the use of an antibody-targeted
phthalocyanine induced PDT, which resulted in cancer cell
killing in three patients with advanced ovarian carcinoma
(FIGO III). In another study by Kobayashi et al., a new model
of molecular targeted photoimmunotherapy was developed by
using a NIR phthalocyanine dye (IR700), combined to anti-
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EGFRmAb (ASP-1929) (Mitsunaga et al., 2011). Clinical phase III
trial of ASP-1929 PIT treatment in combination with anti-PD1
therapy is still ongoing in patients with recurrent head and neck
squamous cell carcinoma (NCT04305795).

In addition to passive and active targeting strategies, physical
forces (e.g. electric or magnetic field) may be utilized in order to
enhance PDT efficacy. Superparamagnetic nanoparticles (e.g.
Fe3O4) are frequently used as nanocarriers for PDT. They can
be combined with a photosensitizer, which has a strong optical
absorption band in the NIR region, so that they can be targeted to
tumor tissues as a result of external magnetic field application.
NIR laser irradiation is then applied to initiate cancer cell death.
Such approaches significantly increase the effectiveness of PDT
(Cheng et al., 2012; Dou et al., 2015; Wang et al., 2017). As
discussed vide supra, the PDT agents have been designed to
accumulate in the extracellular matrix of tumor
microenvironment or to selectively bind to the extracellular
layer of the cancer cell membrane. In addition to these
strategies, subcellular targeting of PSs can be used in order to
enhance the therapeutic efficacy of PDT. Subcellular targeting
approaches will be discussed in detail below.

Activatable Photosensitizers
Considering the fact that PSs are mostly in “ON” state, light
sensitivity in healthy tissues due to sunlight is a common side
effect of PDT. Therefore, patients undergoing PDT should avoid
direct sunlight after PDT treatment until the PS is eliminated
from the body, in order to prevent severe light sensitivity in
healthy tissues. Possible side effects after PDT treatment include
skin lesions and the ocular adverse events (Vrouenraets et al.,
2003; Huang, 2005). In order to improve patient prognosis and
enhance PDT response, activatable photosensitizers have been
developed (Li et al., 2017c; Gharibi et al., 2019; Digby et al., 2020;
Liu and Li, 2020; Sun et al., 2020; Yuan et al., 2020; Zheng et al.,
2020). The activatable photosensitizer designs can be used as an
“ON/OFF” switch controlling PDT for effective cytotoxic singlet
oxygen generation in the tumor tissue in vivo. It remains in an
“OFF” state (inactivated PS), unless activated by chemical/
biochemical parameters into the “ON” state (activated PS) in
the tumor region. Examples of such parameters are overexpressed
enzymes/proteins (Yuan et al., 2014; Digby et al., 2020) and
higher intracellular glutathione concentration in cancer cells
(Cakmak et al., 2011; Turan et al., 2014; Erbas-Cakmak et al.,
2015; Kolemen et al., 2015); hydrogen peroxide (Wang Y. et al.,
2021); low pH of the environment (Tian et al., 2015); hypoxia
(Ayan et al., 2020) and cathepsin B (Kim et al., 2014). The
working principle of this switch generally involves cleavage of
an intramolecular linker, which is connected to the PS as a
quenching moiety. After activation (such as by enzymes,
GSH), the PS becomes functional upon cleavage of the linker,
resulting in the generation of singlet oxygen. In fact, “OFF-ON”
switching of singlet oxygen generation according to cancer-
related parameters has become a very crucial approach for
researchers aiming to advance precision medicine (Erbas-
Cakmak et al., 2013). Moreover, other designs may also utilize
the “ON/OFF” switch controlling in PDT (Yurt et al., 2019). A 1:2
demultiplexer based on a Zn2+-terpyridine-Bodipy conjugate was

reported to remain in an “ON” state, unless 1O2 generated by
photosensitization triggered apoptotic response, which resulted
in autonomous switching “OFF” of 1O2 generation (Turan et al.,
2018). Another approach, which allows for a switchable strategy
for photodynamic-immunotherapy, takes advantage of a switch
that controls the 1O2 generation of self-assembled albumin
nanotheranostics (Cheng et al., 2021). In another study, Yoon
et al. reported a nanomaterial which self-assembles from
phthalocyanine building blocks. They demonstrated that
fluorescence and ROS generation may be activated based on a
protein-induced partial disassembly mechanism (Li et al., 2017b).
Moreover, heavy-atom-free PSs can also be utilized in terms of
PDT. Replacing oxygen atoms in conventional naphthalimides
with sulfur atoms was reported to cause important alterations in
photophysical features. Sulfur substitution could enhance the
intersystem crossing from the singlet excited state to the
reactive triplet state. Such a molecular design, which has
“OFF-ON” ROS generating properties depending on albumin
as a targeted protein to disassemble intact 4-R substituted
thionaphthalimides to the constituent monomers, has the
potential to function even under hypoxic conditions (Nguyen
et al., 2019).

Subcellular Targeting in Photodynamic
Therapy
The approaches related with the selectivity of PSs are aimed at
increasing the selectivity of PDT to tumor tissues; therefore,
augmenting the specificity of the treatment. In addition to
tumor tissue targeting, PSs can also be modified so that they
specifically target subcellular compartments or organelles. Such
approaches have the potential to potentiate the effectiveness of
PDT (Chen et al., 2019b; Li et al., 2020a). Targeting groups (e.g.
triphenylphosphonium) are very important in PDT in order to
direct the delivery of PS’s to the most critical subcellular organelle
in terms of singlet oxygen mediated apoptosis. This approach can
improve the efficacy and selectivity of PDT.

1O2 has long been known to have an extremely short lifetime,
since it is highly reactive (Sharman et al., 2000). Even though 1O2

has a lifetime of approximately 3 µs in water, its lifetime in cells is
estimated to be about 200 ns, because of its high reactivity with
biological substrates (Krasnovsky, 1981; Egorov et al., 1989; Baker
and Kanofsky, 1992). The quenching in water is facilitated by the
electronic to vibrational energy conversion, which results in
deactivation through interactions with the vibrational states of
O–H bonds. Such a short lifetime of 1O2 results in a short
diffusion range in cells, which was predicted to be
approximately 45 nm (Moan and Boye, 1981). Given the fact
that most human cells are between 10–100 µm in diameter, the
site of generation of 1O2 determines the subcellular target on
which it will mostly attack, as well as confining the photodamage
to the areas where the PS is located (Kessel and Reiners, 2015). In
fact, the sizes of most cellular organelles are much bigger in
respect to such a short diffusion range, given many organelles are
roughly about 1–5 µm (e.g. mitochondrion: ∼ 1–3 µm).
Therefore, it seems clear that the subcellular location of the PS
has a major impact on the effectiveness of PDT. As a result,
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several studies investigated the effects of utilizing organelle
targeted PSs, which localize to nucleus, mitochondria or
lysosomes (Karaman et al., 2019; Ucar et al., 2019). Indeed,
such approaches might improve the outcome of PDT (Wan
et al., 2020; Qiao et al., 2021). According to the literature,
mitochondria-targeting groups (e.g. triphenylphosphonium)
and nucleus-targeted peptides direct the agents to the most
critical organelles, mitochondria and nucleus, respectively, in
order to effectively initiate singlet oxygen mediated apoptosis
(Morgan and Oseroff, 2001; Chen et al., 2019a).

Nucleus-Targeting
The nucleus is a crucial cellular organelle. Several anti-tumor
agents target the DNA inside the nucleus. Such approaches are
regarded to be effective in terms of tumor cell destruction.
Vankayala et al. designed nucleus targeting gold nanoclusters
to achieve NIR light activated PDT. They reported that the gold
nanoclusters performed efficient nucleus-targeting PDT on
tumor cells through photoinduced DNA damage (Vankayala
et al., 2015). In another study, Chen et al. developed a nucleus
delivery platform based on C5N2 nanoparticles and proposed that
these nanoparticles might have a great potential in PDT (Chen
et al., 2019a). Akhlynina et al. demonstrated that targeting chlorin
e6 to the nucleus, presumably a hypersensitive site for oxygen
species mediated damage, augmented the photosensitizing
activity of chlorin e6, significantly reducing the EC50

(Akhlynina et al., 1997).
Nucleus-targeted PDT induce apoptosis via DNA damage.

The singlet oxygen generation results in the inactivation of DNA
repair enzymes as well as breaking DNA strands in nuclei (Ling
et al., 2012). Based on these two important damage mechanisms,
targeting the hypersensitive nuclei is considered as an important
component of PDT (Devi et al., 2020; Wan et al., 2020). Shi et al.
synthesized TAT and RGD (R: arginine, G: glycine, D: aspartic
acid) peptides which are conjugated to mesoporous silica
nanoparticles (MSNs). This PS was designed as an effective
nuclear-targeted delivery strategy. The accumulation of PS
inside nuclei can generate cytotoxic singlet oxygen upon
irradiation. Thus, such a specific PDT with low side effects
and high efficacy could be achieved in vivo (Pan et al., 2014).
Due to the preparation and modification difficulties of such
small-sized nanocarriers, nuclear targeting may also be
achieved by using a different road map. Han et al. reported a
simple and easy-to-fabricate delivery system. They designed an
amphiphilic chimeric peptide (PAPP–DMA) which was used to
realize sequential acidity-responsive tumor-targeted delivery of
PS (Han et al., 2016). PAPP–DMA contained an alkylated PpIX, a
PEG-linker and nuclear localization sequence (NLS) peptide
(sequence PKKKRKV) modified with acidic liable 2,3-
dimethylmaleic anhydride (DMA). Tumor acidic environment
triggered charge reverse of PAPP-DMA NPs, resulting in
accelerated cellular uptake of positively charged NPs. After the
NPs specifically entered the tumor cells, NLS peptide achieved the
intranuclear delivery of PS. in vivo and in vitro studies showed the
anti-tumor efficacy of nucleus-targeted PDT.

The upconversion nanoparticle (UCN)-based nanoplatform
was also used for nuclei-targeted PDT (Lucky et al., 2015; Chen

et al., 2017). UCNs, which behave as transducers that convert NIR
light to UV-VIS light, can be combined with PS (Lucky et al.,
2015). UV-VIS light can then excite the combined PS. Titanium
dioxide (TiO2) nanomaterial is commonly used for this platform,
because of its nontoxicity and high photostability (Chen and
Mao, 2007). Tang et al. combined a nano-UCNP@TiO2,
molecule-PS (Ce6) and TAT (nuclear targeted peptides) in one
platform. UCNP@TiO2-Ce6-TAT absorbed light at 980 nm and
then converted that light into the wavelengths of 362 nm
(absorbed by TiO2 shell) and 655 nm (absorbed by Ce6
molecules); so that multiple ROS were generated in nuclei by
the help of TAT (Yu et al., 2016). in vitro and in vivo results
confirmed the excellent therapeutic effects of nucleus-targeted
PDT by UCN-based approach.

Cell Membrane-Targeting
The cell membrane (or plasma membrane) acts as a protective
barrier, which is crucial for cellular integrity as well as
intracellular metabolism and transportation of nutrients
between extracellular and intracellular environment. Hence,
cell-membrane-targeted PDT may prove to be very efficient, as
it can attenuate the stability of the membrane, resulting in cell
death (Wang et al., 2014). One of the advantages of cell-
membrane-targeted PDT is that PSs do not need to cross the
cell membrane. On the other hand, it is difficult to design a PS
that stays anchored on cell membrane for long-term, due to
cellular uptake and cellular endocytosis. In order to overcome this
limitation, a new PS approach was proposed. This pH-driven
membrane-anchoring PS (pHMAPS) design took advantage of
pH low insertion peptide.

(pHLIP), which could insert across lipid bilayer at pH < 7
through conformational self-transformation (Andreev et al.,
2007; An et al., 2010; Luo et al., 2017). pHLIP is very practical
for targeting acidic tumors, since it can demonstrate three states;
i.e. soluble in water or bound to membrane surface at normal pH
(7.4) or inserted across membrane as an α-helix at low pH
(Andreev et al., 2007). Luo et al. reported that such a PS
could generate ROS upon excitation with laser at 630 nm,
resulting in plasma membrane damage and cell death (Luo
et al., 2017). Cell membrane-targeting chimeric peptides were
also studied by several groups to enhance PDT efficacy (Liu et al.,
2017; Ma et al., 2020). Moreover, amphiphilic polymers (Jia et al.,
2017; Cai et al., 2018) and fusogenic liposomes (Kim et al., 2017;
Bekmukhametova et al., 2020) were shown to insert PSs into cell
membrane to increase the therapeutic potential of PDT. In fact,
cell membrane-targeted PDT remains infrequently investigated,
because of the issues associated with the duration of membrane-
anchoring of PSs.

Mitochondria-Targeting
Mitochondria are important regulators of apoptosis (Green and
Reed, 1998). In general, they are responsible from most of the
ATP in a cell. Rubio et al. analyzed the spatial dynamics of PDT
and reported that mitochondrial targeting is the most efficient
PDT in terms of cell killing, while nuclear damage is the least
toxic to the cell (Rubio et al., 2009). Therefore, it is reasonable to
design and develop PSs that target the mitochondria. PSs can be
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chemically modified (e.g. with triphenylphosphonium
derivatives, which insert to the inner membrane of
mitochondria) so that they can be actively targeted to
mitochondria. Several PSs can accumulate in mitochondria
owing to their charge in case of positively charged agents. On
the other hand, negatively charged agents accumulate in
mitochondria as a result of their hydrophobicity (Morgan and
Oseroff, 2001). Furthermore, mitochondrial targeting can also be
achieved by synthesizing PSs that are attached to mitochondria
targeting sequences, which can direct molecules to the
mitochondrial matrix (Murphy, 1997). Hilf showed that
porphyrin sensitizers could affect inner mitochondrial
membrane enzymes and suggested that mitochondria are
important targets in terms of PDT (Hilf, 2007). Thomas et al.
reported an indocyanine derivative, which showed high
mitochondrial targetability. They proposed that mitochondria
targeting approach might yield high PDT efficiency (Thomas
et al., 2017). Kang and Ko reported that dual selective PDT with a
mitochondria targeting PS and fiber optic cannula might prove to
be a promising therapy approach (Kang and Ko, 2019). Zhang
et al. reported a tumor mitochondria specific PDT agent that
targets the translocator protein (TSPO) which is localized
primarily in the outer mitochondrial membrane (Rupprecht
et al., 2010; Zhang et al., 2015). They suggested that such an
approach with a translocator protein targeting PS might have a
potential (Zhang et al., 2015). Karaman et al. reported that
mitochondria targeting selenophene modified BODIPY based
PSs might prove to be promising in terms of realization of
next generation PDT agents (Karaman et al., 2019). In another
study, Kessel and Luo utilized 4 PSs with specific targets
(mitochondria, lysosomes, plasma membrane) to investigate
PDT induced apoptosis (Kessel and Luo, 1998). They reported
that PDT caused apoptosis after mitochondrial photodamage
(Kessel and Luo, 1998). Several mitochondria targeting moieties
(such as triphenylphosphine, guanidinium, bisguanidium) have
been reported; however, their efficacies in terms of targeting the
mitochondria had not been analyzed in detail. Mahalingam et al.

prepared triphenylphosphine, guanidinium and bisguanidium
derivatives of the verteporfin (a PDT agent approved by the
FDA). They reported that mitochondria targeting efficacy of the
triphenylphosphine derivative was better. Moreover, it showed
better 1O2 generation and mitochondria membrane toxicity than
unmodified verteporfin or its guanidinium derivatives
(Mahalingam et al., 2018). Oliveira et al. investigated whether
subcellular localization may compete with PS efficiency in terms
of overall effects of PDT (Oliveira et al., 2011). They proposed
that subcellular localization could be more important than
photochemical reactivity in terms of PDT. They also suggested
that mitochondrial localization might be an important feature in
terms of more effective PSs for PDT (Oliveira et al., 2011). In fact,
several clinically approved PSs such as Visudyne, Foscan, and
Photofrin partially localize to mitochondria (Wilson et al., 1997;
Chen et al., 2007a; Celli et al., 2011; Mahalingam et al., 2018).
Furthermore, application of aminolevulinic acid results in
endogenous synthesis of porphyrins in cells by the heme
biosynthetic pathway, generating the main photoactive product
PpIX in mitochondria (Gardner et al., 1991).

Lysosome-Targeting
In addition to targeting mitochondria, PSs that localize to
lysosomes may also demonstrate increased efficacy. Kessel and
Reiners Jr suggested that low dose photodamagewhich sequentially
targets lysosomes and mitochondria could provide advantages
compared to the use of single PSs (Kessel and Reiners, 2015).
Tsubone et al. demonstrated that damage in lysosomes was more
efficient against HeLa cells than a similar damage in mitochondria
(Tsubone et al., 2017). In another study, Li et al. reported that 1O2

generated by a lysosome targeted BODIPY PS could disrupt
lysosomes and PDT mediated by that PS could induce apoptosis
(Li et al., 2017a). Nguyen et al. proposed a new lysosome targeted
PS, which showed promising results in terms of PDT (Nguyen
et al., 2020). Niu et al. reported that a perylene derived PS for
lysosome targeting PDT could effectively destruct tumor cells (Niu
et al., 2019). Xiao et al. suggested that the pyridophenothiazinium
dyes might serve as promising lysosome targeting PSs in terms of
effective PDT (Xiao et al., 2020). The metallacages that were
encapsulated in a polymer to form nanoparticles, which
accumulate in the lysosomes, were reported to achieve favorable
results in 2-photon PDT (Zhou et al., 2019).

Given all these finding and the vast literature, precise targeting
of subcellular organelles may prove to be useful for designing and
developing novel effective PDT strategies.

New Promising Approaches, Enhanced
Photodynamic Therapy and Hypoxia
Two-Stage Photodynamic Therapy
Hypoxia is an important feature of most solid tumors. Due to
functionally and structurally abnormal microvascular systems,
almost all malignant tumors develop hypoxia. From the PDT
perspective, hypoxia (oxygen concentrations typically less than
1%) is an insurmountable problem, because molecular oxygen is
definitely a fundamental requirement for PDT. Tumor tissues are
deprived of oxygen due to their rapid growth-related insufficient
vasculature. All these features make hypoxia an important target
for therapy. A two-stage PDT (2S-PDT) may overcome the
problems of oxygen deficiency and light penetration depth in
tumor tissues, which currently limit clinical applications of PDT.
In a recent study by Akkaya et al., photosensitization (Stage I) is
carried out ex situ in the presence of a 2-pyridone derivative and a
PS, so the wavelength of excitation becomes unimportant. The
endoperoxide product (storage compound) is then transferred to
biological conditions. Once triggered by hypoxia, the
endoperoxide product was bioreductively changed (Stage II)
into a more labile version of itself. Thus, it will specifically
generate singlet oxygen, causing “apoptotic response” without
depending on, or depleting already low tissue oxygen levels in
tumors (Figure 7) (Ayan et al., 2020).

Fractional Photodynamic Therapy
Tumor tissues are known to have low levels of oxygen. PDT
mediated 1O2 generation via PSs in tumors is self-limiting, since
the tumor hypoxia may become more severe within tumor tissues
during the process. Thus, strategies aimed at reducing
photoinduced hypoxia may be beneficial. Accordingly, the light
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may be introduced intermittently (fractional PDT) in order to allow
time for the replenishment of tissue oxygen. Nevertheless, such
approaches prolong the period-of-time that is needed for efficient
treatment. Akkaya et al. showed that a PS with an additional 2-
pyridone module to trap 1O2 could be functional in terms of
fractional PDT. In the light cycle, the endoperoxide of 2-
pyridone was generated along with 1O2 (Figure 8). On the other
hand, the endoperoxide goes through thermal cycloreversion to
produce 1O2 in the dark cycle. Thus, it regenerates the 2-pyridone
module. In summary, photodynamic process can run on both in the
dark and light cycles (Turan et al., 2016).

Low pH and High Intracellular Glutathione (GSH)
Concentration
While energy metabolism in normal cells relies mainly on
oxidative phosphorylation and anaerobic glycolysis, energy
metabolism in cancer cells relies on aerobic glycolysis
(Warburg effect) (Vander Heiden et al., 2009). Cancer cells
are constantly exposed to acid-base fluxes due to the high
amount of lactic acid resulting from glycolysis. Intracellular
pH in cancer cells is stabilized at a favorable level via several
mechanisms (Swietach et al., 2014).

Tumormicroenvironment is slightly acidic and the extracellular
pH in tumor tissues is generally lower (6.5–7.2) compared to
normal tissues (pH 7.4) (Gerweck and Seetharaman, 1996). This
feature may be utilized in order to target tumor tissues. Oxidative/
metabolic stress increases in cancer cells. In this context, GSH,
which plays an essential role in antioxidant systems, increases in
cancer cells (Traverso et al., 2013; Kennedy et al., 2020). Thus, a
high GSH level may be a crucial cancer-specific target (Li et al.,

FIGURE 7 | Two Stage PDT. Two stage PDT can overcome the issues of light attenuation and oxygen deficiency in tumors. Reproduced from (Ayan et al., 2020)

(published by The Royal Society of Chemistry) with permission from the Royal Society of Chemistry.

FIGURE 8 | Fractional PDT. Fractional PDT allows for the continuation of

photodynamic process both in the dark and in the light cycles (Turan et al.,

2016). Reproduced from ref (Turan et al., 2016) with permission from Wiley,

copyright 2016.
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2017c). In a study by Akkaya et al., a series of pH and GSH
responsive PSs were designed. pKa values were optimized to reach a
pH range of slight acidity (6.0–7.4). pH-activatable behavior and
redox mediated release of the quencher from the PS by GSH
allowed for selective PDT.

Multimodal Synergistic Therapies
Combination of PDT with other therapy modalities may be
promising in order to increase effectiveness against tumors
(Firczuk et al., 2011). Dual or tri-modal synergistic therapy
approaches such as SDT (sonodynamic therapy), CT
(chemotherapy), RT (radiotherapy) and immunotherapy
enhance the effectiveness of PDT (Allman et al., 2000; Fan
et al., 2016; Lan et al., 2019). Combination of PDT with
chemotherapy can achieve increased tumoricidal effects
(Nahabedian et al., 1988).

Several sensitizers were reported to be activated by ultrasound,
instead of light. Although the tissue penetration of ultrasound
utilized in SDT strategy is higher than UV-VIS used in PDT,
sensitizer diversity is quite limited (Qian et al., 2016). For this
reason, SDT and PDT synergistic treatment strategy may offer a
more effective treatment than monotherapy (Abrahamse and
Hamblin, 2016). In addition, sono/photodynamic combined
therapy approaches were reported to improve the efficacy of
various immunotherapeutic strategies used in tumors (Shi et al.,
2019; Li et al., 2020b). PDT can trigger immunogenic cell death,
which stimulates immune responses against dead cell antigens
(Green et al., 2009; Kroemer et al., 2013; Ng et al., 2018). Indeed,
combination of PDT with cancer immunotherapy can show
synergistic results, cause tumor regression and achieve
immune memory (Ng et al., 2018).

CONCLUDING REMARKS

PDT has a favorable adverse event profile, demonstrate
minimally invasive characteristics and is able to enhance anti-
tumor immune responses. Although the earliest preclinical
applications of PDT were published more than a century ago
and Photofrin received the FDA approval in 1995, it is
disappointing that PDT is not broadly utilized in the clinical
setting for the treatment of malignant and/or non-malignant
diseases. In fact, we have witnessed great developments in terms
of illumination techniques, nanotechnology, smart chemical
designs as well as understanding the biological mechanisms
implicated in the responses to PDT. Pioneering approaches in
designing and synthesizing novel PSs demonstrated promising

preclinical outcomes. Moreover, the role and effectiveness of PDT
in treatment of various diseases have been investigated. However,
several issues still hinder the development of PDT, such as
limitations related with light, tissue oxygenation and inherent
properties of the PSs (e.g. water solubility). In addition, the
mechanisms of action of PDT seem to be not completely
understood. PDT is capable of inducing apoptosis, necrosis as
well as autophagy; and these mechanisms can be activated
simultaneously. Thus, a thorough insight into photobiological
and photochemical mechanisms seems to be priceless for
designing novel effective PDT strategies. Furthermore, several
studies reported inconsistent clinical results. Thus, we still need to
improve PDT strategies and perform clinical studies in order to
demonstrate the efficacy of PDT in comparison to other
treatment modalities such as surgery and chemotherapy. In
order to overcome the current problems and widen the
applications of PDT, strategies aimed to solve issues associated
with light and drug dose seem to be crucial. Exceptional designs
that increase the selectivity of PDT will also assume indispensable
roles. In addition, subcellular/organelle targeting strategies have
the potential to improve the effectiveness of PDT. Novel concepts
in the field (e.g. enhanced, two-stage, fractional PDT strategies)
may also prove to be very useful for pursuing and improving
effective PDT strategies. Finally yet importantly, the therapeutic
application methods of PDT as well as their ease-of-use should
also be considered carefully, so that clinical expansion of PDT can
be achieved. In this respect, combining PDT with other treatment
options such as chemotherapy and immunotherapy may indeed
yield better results. Such combination strategies underline the
importance of clinical studies which investigate the effectiveness
of multimodal therapy approaches that incorporate PDT. It will
be undoubtedly exciting to see future innovative studies that aim
to overcome the limitations and reveal the full potential of PDT in
terms of clinical translation.

AUTHOR CONTRIBUTIONS

GG, MG, and SA prepared the manuscript. Figures 1–6 were
created with BioRender.com.

ACKNOWLEDGMENTS

“There is remedy for all things except death.” Dedicated to the
memory of my beloved Dad Nejat Sahin GUNAYDIN, MD
(1953–2021).

REFERENCES

Abdurahman, R., Yang, C.-X., and Yan, X.-P. (2016). Conjugation of a
Photosensitizer to Near Infrared Light Renewable Persistent Luminescence
Nanoparticles for Photodynamic Therapy. Chem. Commun. 52 (90),
13303–13306. doi:10.1039/c6cc07616e

Abrahamse, H., and Hamblin, M. R. (2016). New Photosensitizers for
Photodynamic Therapy. Biochem. J. 473 (4), 347–364. doi:10.1042/BJ20150942

Agarwal, M. L., Clay, M. E., Harvey, E. J., Evans, H. H., Antunez, A. R., and
Oleinick, N. L. (1991). Photodynamic Therapy Induces Rapid Cell Death by
Apoptosis in L5178Y Mouse Lymphoma Cells. Cancer Res. 51 (21), 5993–5996.

Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O.,
et al. (2011). Photodynamic Therapy of Cancer: an Update. CA: A Cancer

J. Clinicians 61 (4), 250–281. doi:10.3322/caac.20114
Agostinis, P., Buytaert, E., Breyssens, H., and Hendrickx, N. (2004). Regulatory

Pathways in Photodynamic Therapy Induced Apoptosis. Photochem. Photobiol.

Sci. 3 (8), 721–729. doi:10.1039/b315237e

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 69169717

Gunaydin et al. Novel Approaches in PDT

https://doi.org/10.1039/c6cc07616e
https://doi.org/10.1042/BJ20150942
https://doi.org/10.3322/caac.20114
https://doi.org/10.1039/b315237e
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Akhlynina, T. V., Jans, D. A., Rosenkranz, A. A., Statsyuk, N. V., Balashova, I. Y., Toth,
G., et al. (1997). Nuclear targeting of chlorin e6 enhances its photosensitizing
activity. J. Biol. Chem. 272 (33), 20328–20331. doi:10.1074/jbc.272.33.20328

Al Habashneh, R., Asa’ad, F. A., and Khader, Y. (2015). Photodynamic Therapy in
Periodontal and Peri-Implant Diseases. Quintessence Int. 46 (8), 677–690.
doi:10.3290/j.qi.a34078

Al-Waili, N. S., Butler, G. J., Beale, J., Hamilton, R. W., Lee, B. Y., and Lucas, P.
(2005). Hyperbaric Oxygen andMalignancies: a Potential Role in Radiotherapy,
Chemotherapy, Tumor Surgery and Phototherapy. Med. Sci. Monit. 11 (9),
RA279–89.

Allison, R. R., and Moghissi, K. (2013). Oncologic Photodynamic Therapy: Clinical
Strategies that Modulate Mechanisms of Action. Photodiagnosis Photodynamic

Ther. 10 (4), 331–341. doi:10.1016/j.pdpdt.2013.03.011
Allison, R. R., Mota, H. C., Bagnato, V. S., and Sibata, C. H. (2008). Bio-

nanotechnology and Photodynamic Therapy-State of the Art Review.
Photodiagnosis Photodynamic Ther. 5 (1), 19–28. doi:10.1016/j.pdpdt.2008.02.001

Allison, R. R. (2014). Photodynamic Therapy: Oncologic Horizons. Future Oncol.
10 (1), 123–124. doi:10.2217/fon.13.176

Allison, R. R., and Sibata, C. H. (2010). Oncologic Photodynamic Therapy
Photosensitizers: a Clinical Review. Photodiagnosis Photodynamic Ther. 7
(2), 61–75. doi:10.1016/j.pdpdt.2010.02.001

Allman, R., Cowburn, P., and Mason, M. (2000). Effect of Photodynamic Therapy
in Combination with Ionizing Radiation on Human Squamous Cell Carcinoma
Cell Lines of the Head and Neck. Br. J. Cancer 83 (5), 655–661. doi:10.1054/
bjoc.2000.1328

An, M., Wijesinghe, D., Andreev, O. A., Reshetnyak, Y. K., and Engelman, D. M.
(2010). pH-(low)-insertion-peptide (pHLIP) Translocation of Membrane
Impermeable Phalloidin Toxin Inhibits Cancer Cell Proliferation. Proc. Natl.
Acad. Sci. 107 (47), 20246–20250. doi:10.1073/pnas.1014403107

Andreev, O. A., Dupuy, A. D., Segala, M., Sandugu, S., Serra, D. A., Chichester, C.
O., et al. (2007). Mechanism and Uses of a Membrane Peptide that Targets
Tumors and Other Acidic Tissues In Vivo. Proc. Natl. Acad. Sci. 104 (19),
7893–7898. doi:10.1073/pnas.0702439104

Assefa, Z., Vantieghem, A., Declercq, W., Vandenabeele, P., Vandenheede, J. R.,
Merlevede, W., et al. (1999). The Activation of the C-Jun N-Terminal Kinase
and P38 Mitogen-Activated Protein Kinase Signaling Pathways Protects HeLa
Cells from Apoptosis Following Photodynamic Therapy with Hypericin. J. Biol.
Chem. 274 (13), 8788–8796. doi:10.1074/jbc.274.13.8788

Assikar, S., Labrunie, A., Kerob, D., Couraud, A., and Bédane, C. (2020). Daylight
Photodynamic Therapy with Methyl Aminolevulinate Cream Is as Effective as
Conventional Photodynamic Therapy with Blue Light in the Treatment of
Actinic Keratosis: a Controlled Randomized Intra-individual Study. J. Eur.
Acad. Dermatol. Venereol. 34 (8), 1730–1735. doi:10.1111/jdv.16208

Ayan, S., Gunaydin, G., Yesilgul-Mehmetcik, N., Gedik, M. E., Seven, O., and
Akkaya, E. U. (2020). Proof-of-principle for Two-Stage Photodynamic
Therapy: Hypoxia Triggered Release of Singlet Oxygen. Chem. Commun. 56
(94), 14793–14796. doi:10.1039/d0cc06031c

Babilas, P., Schreml, S., Landthaler, M., and Szeimies, R.-M. (2010). Photodynamic
Therapy in Dermatology: State-Of-The-Art. Photodermatol. Photoimmunol

Photomed. 26 (3), 118–132. doi:10.1111/j.1600-0781.2010.00507.x
Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M., and Baba, Y. (2004). Quantum

Dots as Photosensitizers?. Nat. Biotechnol. 22 (11), 1360–1361. doi:10.1038/
nbt1104-1360

Baker, A., and Kanofsky, J. R. (1992). Quenching of Singlet Oxygen by
Biomolecules from L1210 Leukemia Cells. Photochem. Photobiol. 55 (4),
523–528. doi:10.1111/j.1751-1097.1992.tb04273.x

Bekmukhametova, A., Ruprai, H., Hook, J. M., Mawad, D., Houang, J., and Lauto,
A. (2020). Photodynamic Therapy with Nanoparticles to Combat Microbial
Infection and Resistance. Nanoscale 12 (41), 21034–21059. doi:10.1039/
d0nr04540c

Bergers, G., and Benjamin, L. E. (2003). Tumorigenesis and the Angiogenic Switch.
Nat. Rev. Cancer 3 (6), 401–410. doi:10.1038/nrc1093

Bertrand, N., Wu, J., Xu, X., Kamaly, N., and Farokhzad, O. C. (2014). Cancer
Nanotechnology: the Impact of Passive and Active Targeting in the Era of
Modern Cancer Biology. Adv. Drug Deliv. Rev. 66, 2–25. doi:10.1016/j.addr.
2013.11.009

Bisland, S. K., Lilge, L., Lin, A., Rusnov, R., and Wilson, B. C. (2004). Metronomic
Photodynamic Therapy as a New Paradigm for Photodynamic Therapy:

Rationale and Preclinical Evaluation of Technical Feasibility for Treating
Malignant Brain Tumors¶. Photochem. Photobiol. 80, 22–30. doi:10.1562/
2004-03-05-RA-100.1

Blum, N. T., Zhang, Y., Qu, J., Lin, J., and Huang, P. (2020). Recent Advances in
Self-Exciting Photodynamic Therapy. Front. Bioeng. Biotechnol. 8, 594491.
doi:10.3389/fbioe.2020.594491

Bolze, F., Jenni, S., Sour, A., and Heitz, V. (2017). Molecular Photosensitisers for
Two-Photon Photodynamic Therapy. Chem. Commun. 53 (96), 12857–12877.
doi:10.1039/c7cc06133a

Bown, S. G., Rogowska, A. Z., Whitelaw, D. E., Lees, W. R., Lovat, L. B., Ripley, P.,
et al. (2002). Photodynamic Therapy for Cancer of the Pancreas. Gut 50 (4),
549–557. doi:10.1136/gut.50.4.549

Brancaleon, L., and Moseley, H. (2002). Laser and Non-laser Light Sources for
Photodynamic Therapy. Lasers Med. Sci. 17 (3), 173–186. doi:10.1007/
s101030200027

Brown, S. B., Brown, E. A., and Walker, I. (2004). The Present and Future Role of
Photodynamic Therapy in Cancer Treatment. Lancet Oncol. 5 (8), 497–508.
doi:10.1016/S1470-2045(04)01529-3

Burgess, D. J. (2012). Tissue Penetration of Photodynamic Therapy. Nat. Rev.
Cancer 12 (11), 737. doi:10.1038/nrc3393

Busch, T. M., Wileyto, E. P., Emanuele, M. J., Del Piero, F., Marconato, L.,
Glatstein, E., et al. (2002). Photodynamic Therapy Creates Fluence Rate-
dependent Gradients in the Intratumoral Spatial Distribution of Oxygen.
Cancer Res. 62 (24), 7273–7279.

Buytaert, E., Dewaele, M., and Agostinis, P. (2007). Molecular Effectors of
Multiple Cell Death Pathways Initiated by Photodynamic Therapy.
Biochim. Biophys. Acta (Bba) - Rev. Cancer 1776 (1), 86–107. doi:10.1016/
j.bbcan.2007.07.001

Cai, X., Mao, D.,Wang, C., Kong, D., Cheng, X., and Liu, B. (2018). Multifunctional
Liposome: A Bright AIEgen-Lipid Conjugate with Strong Photosensitization.
Angew. Chem. Int. Ed. 57 (50), 16396–16400. doi:10.1002/anie.201809641

Cakmak, Y., Kolemen, S., Duman, S., Dede, Y., Dolen, Y., Kilic, B., et al. (2011).
Designing Excited States: Theory-Guided Access to Efficient Photosensitizers
for Photodynamic Action. Angew. Chem. Int. Ed. 50 (50), 11937–11941. doi:10.
1002/anie.201105736

Canti, G., De Simone, A., and Korbelik, M. (2002). Photodynamic Therapy and the
Immune System in Experimental Oncology. Photochem. Photobiol. Sci. 1 (1),
79–80. doi:10.1039/b109007k

Canti, G., Lattuada, D., Nicolin, A., Taroni, P., Valentini, G., and Cubeddu, R.
(1994). Antitumor Immunity Induced by Photodynamic Therapy with
Aluminum Disulfonated Phthalocyanines and Laser Light. Anticancer Drugs
5 (4), 443–447. doi:10.1097/00001813-199408000-00009

Cantisani, C., Paolino, G., Bottoni, U., and Calvieri, S. (2015). Daylight-
Photodynamic Therapy for the Treatment of Actinic Keratosis in Different
Seasons. J. Drugs Dermatol. 14 (11), 1349–1353.

Carroll, L., and Humphreys, T. R. (2006). LASER-tissue Interactions. Clin.

Dermatol. 24 (1), 2–7. doi:10.1016/j.clindermatol.2005.10.019
Castano, A. P., Demidova, T. N., and Hamblin, M. R. (2005a). Mechanisms in

Photodynamic Therapy: Part Three-Photosensitizer Pharmacokinetics,
Biodistribution, Tumor Localization and Modes of Tumor Destruction.
Photodiagnosis Photodynamic Ther. 2 (2), 91–106. doi:10.1016/S1572-
1000(05)00060-8

Castano, A. P., Demidova, T. N., and Hamblin, M. R. (2005b). Mechanisms in
Photodynamic Therapy: Part Two-Cellular Signaling, Cell Metabolism and
Modes of Cell Death. Photodiagnosis Photodynamic Ther. 2 (1), 1–23. doi:10.
1016/S1572-1000(05)00030-X

Castano, A. P., Liu, Q., and Hamblin, M. R. (2006a). A green Fluorescent Protein-
Expressing Murine Tumour but Not its Wild-type Counterpart Is Cured by
Photodynamic Therapy. Br. J. Cancer 94 (3), 391–397. doi:10.1038/sj.bjc.6602953

Castano, A. P., Mroz, P., and Hamblin, M. R. (2006b). Photodynamic Therapy
and Anti-tumour Immunity. Nat. Rev. Cancer 6 (7), 535–545. doi:10.1038/
nrc1894

Celli, J. P., Solban, N., Liang, A., Pereira, S. P., and Hasan, T. (2011). Verteporfin-
based Photodynamic Therapy Overcomes Gemcitabine Insensitivity in a Panel
of Pancreatic Cancer Cell Lines. Lasers Surg. Med. 43 (7), 565–574. doi:10.1002/
lsm.21093

Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N.,
Kleinman, M. E., et al. (2004). Progenitor Cell Trafficking Is Regulated by

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 69169718

Gunaydin et al. Novel Approaches in PDT

https://doi.org/10.1074/jbc.272.33.20328
https://doi.org/10.3290/j.qi.a34078
https://doi.org/10.1016/j.pdpdt.2013.03.011
https://doi.org/10.1016/j.pdpdt.2008.02.001
https://doi.org/10.2217/fon.13.176
https://doi.org/10.1016/j.pdpdt.2010.02.001
https://doi.org/10.1054/bjoc.2000.1328
https://doi.org/10.1054/bjoc.2000.1328
https://doi.org/10.1073/pnas.1014403107
https://doi.org/10.1073/pnas.0702439104
https://doi.org/10.1074/jbc.274.13.8788
https://doi.org/10.1111/jdv.16208
https://doi.org/10.1039/d0cc06031c
https://doi.org/10.1111/j.1600-0781.2010.00507.x
https://doi.org/10.1038/nbt1104-1360
https://doi.org/10.1038/nbt1104-1360
https://doi.org/10.1111/j.1751-1097.1992.tb04273.x
https://doi.org/10.1039/d0nr04540c
https://doi.org/10.1039/d0nr04540c
https://doi.org/10.1038/nrc1093
https://doi.org/10.1016/j.addr.2013.11.009
https://doi.org/10.1016/j.addr.2013.11.009
https://doi.org/10.1562/2004-03-05-RA-100.1
https://doi.org/10.1562/2004-03-05-RA-100.1
https://doi.org/10.3389/fbioe.2020.594491
https://doi.org/10.1039/c7cc06133a
https://doi.org/10.1136/gut.50.4.549
https://doi.org/10.1007/s101030200027
https://doi.org/10.1007/s101030200027
https://doi.org/10.1016/S1470-2045(04)01529-3
https://doi.org/10.1038/nrc3393
https://doi.org/10.1016/j.bbcan.2007.07.001
https://doi.org/10.1016/j.bbcan.2007.07.001
https://doi.org/10.1002/anie.201809641
https://doi.org/10.1002/anie.201105736
https://doi.org/10.1002/anie.201105736
https://doi.org/10.1039/b109007k
https://doi.org/10.1097/00001813-199408000-00009
https://doi.org/10.1016/j.clindermatol.2005.10.019
https://doi.org/10.1016/S1572-1000(05)00060-8
https://doi.org/10.1016/S1572-1000(05)00060-8
https://doi.org/10.1016/S1572-1000(05)00030-X
https://doi.org/10.1016/S1572-1000(05)00030-X
https://doi.org/10.1038/sj.bjc.6602953
https://doi.org/10.1038/nrc1894
https://doi.org/10.1038/nrc1894
https://doi.org/10.1002/lsm.21093
https://doi.org/10.1002/lsm.21093
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Hypoxic Gradients through HIF-1 Induction of SDF-1. Nat. Med. 10 (8),
858–864. doi:10.1038/nm1075
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