Photoelastic and Electro-Optic Properties of Crystals

T. S. Narasimhamurty

Osmania University Hyderabad, India

PLENUM PRESS • NEW YORK AND LONDON

Eigentum der Firma Kurt Eichweber Hamburg-Altona

Sel	ected	List of Figures	
Sel	ected	List of Tables	ŝ
No	tation	and Conventions	
1.	Phot	velasticity of Crystals. Introduction	
	1.1.	Discovery of the Phenomenon of Photoelasticity	
	1.2.	Mathematical Formulation and Neumann's Constants. Pockels'	
		Contribution	
	1.3.	A Brief Historical Survey	
		1.3.1. Amorphous Solids	į.
		1.3.2. Cubic Crystals	j
		1.3.3. Uniaxial and Biaxial Crystals	1
2.		hematical Tools, Tensor Properties of Crystals, and Geometrical tallography	
	2.1.	Linear Transformations)
		2.1.1. Coordinate Transformations)
		2.1.2. Orthogonality Relations)
		2.1.3. The Determinant of the Matrix $[\alpha_{ij}]$ of the	
		Direction-Cosine Scheme	1
	2.2.	Matrix Algebra	ł
		2.2.1. Introduction	
		2.2.2. Matrix Algebra and Coordinate Transformations 15	
		2.2.3. Some Common Types of Matrices	
		2.2.4. Orthogonal Matrix	1
		2.2.5. Matrix Operators and Transformation of Tensor	
		Components	
	14071114-0	2.2.6. The Diagonalization of a Matrix	
	2.3.	Vectors and Their Transformation Laws	
		2.3.1. Vector Components and Coordinate Transformations . 19	
		2.3.2. Transformations of Coordinate Differences 20	
		2.3.3. Transformation Law of Vectors	ų
	2.4.	Tensor Nature of Physical Properties of Crystals and the	2
		Laws of Transformation of Cartesian Tensors	
		2.4.1. Concept of a Tensor Property and Some Examples of	E
		Tensor Properties	í.

		2.4.2. 2.4.3.	Transformation Law of Cartesian Tensors Physical Properties and Crystal Symmetry	24 28
	2.5.		Symmetry and Geometrical Crystallography. The 32	
		Point 2.5.1.	Groups	29
		2.5.2.	Elements and Some Examples of Crystals Some Symmetry Operations and Their Representation	29
		2 0.02	by Symbols	32
		2.5.3.	The 32 Crystallographic Point Groups in the Schönflies Notation. Geometric Derivation	33
	2.6.	Symme	etry Operations and Their Transformation Matrices	36
	2.7.	Symme	etry Elements of the 32 Point Groups	39
		2.7.1. 2.7.2.	Symmetry Elements of the 32 Point Groups Comments on the 32 Crystallographic Point Groups and Their Symmetry Elements as Listed in Tables 2.3 and 2.5a	39 43
	2.8.	Neuma	ann's Principle and Effect of Crystal Symmetry on	
			al Properties	44
3.	Pock	els' Phe	nomenological Theory of Photoelasticity of Crystals	
	3.1.	Introdu	uction	47
	3.2.		nenological Theory, Stress-Optical and Strain-Optical	
			ints in Four- and Two-Suffix Notations; q_{ij} and p_{ij}	
			es for the 32 Crystallographic Point Groups	49
		3.2.1. 3.2.2.	The Assumptions Forming the Basis of Pockels' Theory Mathematical Formulation of Photoelasticity in Terms	49
		3.2.3.	of q_{ijkl} and p_{ijkl}	50
		3.2.4.		52
	22002	1.00 W	Constants	57
	3.3.		tion of the Nonvanishing and Independent Photoelastic	50
		3.3.1.	nts for the Various Crystal Classes by Different Methods Classical Method	58 64
		3.3.2.	Tensor Method	77
		3.3.3.	Group Theoretical Method	97
4.	Elast	icity of	Crystals	
	4.1.	Introdu	uction	135
	4.2.		and Strain as Tensors	136
		4.2.1.	Stress as a Second-Rank Tensor	136
		4.2.2.	Strain as a Second-Rank Tensor	139
	4.3.		's Law	142
		4.3.1.	Generalized Form of Hooke's Law with Elastic	
			Constants c_{ij} and s_{ij} and the Matrices of c_{ij} and s_{ij}	142
			for the 32 Point Groups	142

		4.3.2.	Generalized Form of Hooke's Law with Elastic	
			Constants c_{ijkl} and s_{ijkl}	145
		4.3.3.	Interrelation between c_{ijkl} and c_{mn} and between s_{ijkl}	
			and s_{mn}	151
	4.4.		imental Methods of Determining c_{ij} and s_{ij} ; Christoffel's	
			ion and Its Use in Determining c_{ij} of Crystals	154
	4.5.		onics	160
		4.5.1.		160
		4.5.2. 4.5.3.	Optical Methods of Determining the Ultrasonic Velocities and Elastic Constants of Transparent Solids Employing the Schaefer-Bergmann Pattern, the	161 165
		4.5.4.	Hiedemann Pattern, and the Lucas-Biquard Effect	105
		4.5.5.	Mayer and Hiedemann's Experiments	170
			Ultrasonic Waves	176
		4.5.6.	Doppler Effect and Coherence Phenomenon	184
	4.6.		in Effect and Crystal Elasticity	186
		4.6.1.	Introduction	186
		4.6.2.	Theory of Light Scattering in Birefringent Crystals	189
		4.6.3.	Concluding Remarks	194
5.	Expe	rimenta	l Methods of Determining the Photoelastic Constants	
	5.1.	Optica	l Behavior of a Solid under a Mechanical Stress, and	
			ann's Constants	197
	5.2.		ation of Expressions for the Stress Birefringence in	
		Terms	of q_{ij} for Cubic and Noncubic Crystals	198
		5.2.1.	Stress Birefringence in Cubic Crystals	198
		5.2.2.	Stress Birefringence in Noncubic Crystals	205
		5.2.3.	O TUAL TIMOP	217
		5.2.4.	,	
			for an Orthorhombic Crystal for a Specific Orientation	219
	5.3.	Experi	mental Determination of q_{ij} and p_{ij} by Optical Methods	220
		5.3.1.	Measurement of Stress Birefringence, and Relative Path	
			Retardation	222
		5.3.2.	Measurement of Absolute Path Retardation by	NAMES AND ADDRESS
			Interferometric Methods	226
		5.3.3.		231
	5.4.		sion of q_{ij} by Spectroscopic Methods	234
		5.4.1.	Birefringent Compensator for Studying Very Small	
		5 mg	Changes in Double Refraction	234
		5.4.2.	Dispersion of the Individual Stress-Optical Coefficients	
			q_{11} and q_{12} of Vitreous Silica	241
		5.4.3.	Interference-Spectroscope Method of Studying the	
			Absolute Photoelastic Coefficients of Glasses and Their Variation with Wavelength	243

xvii

	5.5.	Elliptic Vibrations and Elliptically Polarized Light 5.5.1. Composition of Two Rectangular Vibrations Giving an	246
		Ellipse: Use of the Sénarmont Compensator	246
		5.5.2. Photometric Method for the Measurement of Photoelastic Birefringence	253
		5.5.3. The Poincaré Sphere and Its Application to the Study of	255
		the Photoelastic Behavior of Optically Active Crystals .	256
	5.6.	Ultrasonic Methods of Studying the Elasto-Optic Behavior	
	5.0.	of Crystals	262
		5.6.1. Introduction	262
		5.6.2. Mueller's Theory	263
		5.6.3. Experimental Determination of p_{ij}/p_{kl} by Three	
		Different Methods Due to Mueller	269
		5.6.4. Pettersen's Method of Determining p_{ij}/p_{kl}	278
		5.6.5. Bragg Diffraction Method of Determining the Individual	
		Values of p_{ij}	281
		5.6.6. Borrelli and Miller's Method of Determining the p_{ij} of Glass	286
		5.6.7. Technological Applications of the Acousto-Optic Effect	289
	5.7.	Brillouin Scattering and Photoelasticity of Crystals	289
6.	Atom	istic Theory of Photoelasticity of Cubic Crystals	
	6.1.	Introduction	299
	6.2.	Mueller's Theory—A Brief Survey	302
	6.3.	Effect of Hydrostatic Pressure on the Index of Refraction n ;	
	0.5.	The Strain Polarizability Constant λ_0	306
	6.4.	Anisotropy of R_j and λ_j	308
	6.5.	Thermo-Optic Behavior of Crystals and Photoelastic Behavior.	312
	6.6.	Pockels' Photoelastic Groups in Cubic Crystals and Mueller's	512
	0.0.	Theory	313
	6.7.	Photoelastic Dispersion in Cubic Crystals; λ_0 as a Function of	515
	0.7.	Crystalline Material, Wavelength of Light, and Temperature \therefore	315
	6.8.	Effect of Elastic Deformation on the Oscillator Strengths and	515
	0.0.	Dispersion Frequencies of Optical Electrons	321
	6.9.	Temperature Dependence of Stress-Optical Dispersion	323
		Reversal of the Sign of Stress Birefringence in Pure and	Jacob
	0.10.	Mixed Crystals	324
		6.10.1. Pure Crystals	324
		6.10.2. Mixed Crystals of KCl and KBr	325
	6.11	Stress-Optical and Strain-Optical Isotropy in Cubic Crystals	327
		Optic Axial Angle and Its Dispersion in Stressed Cubic	521
	0.12.	Crystals of T and T_h Classes	329
7.	D:	electricity	
/.	100000000000000000000000000000000000000		12312737
	7 1	Introduction	222

1.1.	Introductio	n.		20.03		1.1	:*:				22	\mathbf{x}		\mathbf{R}		\mathcal{O}	333
7.2.	Direct and	Cor	iverse	e P	iezo	beled	etrie	E	Effec	cts							334

С	0	n	t	e	n	t	s

	7.3.	Mathematical Formulation, Piezoelectric Constants d_{ijk} in Tensor Notation, and d_{ij} in Two-Suffix Notation; Relation between d_{ijk} and d_{ij}	335
	7.4.	Deduction of the Surviving d_{ijk} for Some Crystal Classes by Tensor Method, and the d_{ij} Matrices for the 21	
	7.5.	Noncentrosymmetric Classes	338 344
8.		tro-Optic Effects in Crystals: Pockels Linear Electro-Optic and Quadratic Electro-Optic Effects	
	8.1.	Introduction	345
	8.2.	Demonstration of the Electro-Optic Effects, Linear and	
		Quadratic	346
	8.3.	Historical Survey	347
		8.3.1. Earlier Work	347
		8.3.2. More Recent Work	347
	8.4.	Pockels' Phenomenological Theory of the Linear Electro-Optic	
		Effect in Three- and Two-Suffix Notations, R_{ijk} and r_{ij}	351
	8.5.	Derivation of the Relation between the Linear Electro-Optic	122002
		Constants of a Crystal: Free and Clamped Constants	355
		8.5.1. Discussion: Primary and Secondary Electro-Optic Effects,	257
		and Clamped and Unclamped Electro-Optic Coefficients 8.5.2. Methods of Obtaining the Primary and Secondary	357
		Linear Electro-Optic Effects	358
	8.6.	Kerr Quadratic Electro-Optic Effect: Pockels' Phenomenological	550
	0.0.	Theory	359
	8.7.	Crystal Symmetry and the Number of Surviving Linear	557
	0.7.	Electro-Optic Coefficients R_{ijk} and r_{ij} and Their Deduction	
		by Tensor Method: r_{ij} Matrices for the 21 Noncentrosymmetric	
		Classes	362
		8.7.1. Crystal Symmetry and the Surviving Linear Electro-Optic	
		Constants	362
		8.7.2. Tensor Method of Deducing the Nonvanishing	12/22
		Independent R_{ijk}	363
	8.8.	Derivation of the Expressions for $\delta = f(r_{ij})$ for Some Typical	
		Crystal Classes and Orientations	388
		8.8.1. Cubic System: Classes 23 (<i>T</i>) and $\overline{4}3m(T_d)$	388 391
		8.8.2. Tetragonal System: Class $\overline{4}2m(D_{2d})$	391
	0 0		399
	8.9.	Experimental Methods of Determining r_{ij}	399
		Crystal Classes	399
		8.9.2. Some Experimental Methods	400

xix

	8.9.4.																										×	401
8.10.	Some Crysta	8 · · · · ·		100			-																					409
8.11.	Some	Te	ch	nc	olo	gio	cal	A	\p	pli	ca	tic	ons	0	of	Pc	ck	els	5 (Cel	lls	(I	_in	iea	r			
	Electro-Optic Devices)														411													
	8.11.1. Use of the Electro-Optic Effect in Technology 41													411														
	8.11.2.	S	on	ne	A	pp	olic	cat	io	ns	0	f 1	Ele	ect	ro	-0	pt	ic	D	evi	ice	s	1		1.	:8	•	412
BIBLIOGR	APHY .					•			•			•					3. • .5			•			•S			•		421
AUTHOR																												503
SUBJECT	INDEX		(1 .)	2			2						ų.			52			2			22	20	ų.	5	8	2	507