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Photoelastic study of dense granular free-surface flows
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In this study, we perform experiments that reveal the distribution of dynamic forces in the bulk of granular

free-surface flows. We release photoelastic disks from an incline to create steady two-dimensional avalanches.

These gravity-driven dry granular flows are in the slow to intermediate regime (I � 1), dense (ϕ ≈ 0.8), and

thin (h ≈ 10d). The transition between solidlike (quasisteady) and fluidlike (inertial) regimes is observable for

certain experimental settings. We measure constant density and quasilinear velocity profiles through particle

tracking at several points down the chute, for two different basal topographies. The photoelastic technique allows

the visualization and quantification of instantaneous forces transmitted between particles during individual

collisions. From the measured forces we obtain coarse-grained profiles of all stress tensor components at various

positions along the chute. The discreteness of the system leads to highly fluctuating individual force chains which

form preferentially in the directions of the bulk external forces: in this case, gravity and shear. The behavior

of the coarse-grained stress tensor within a dynamic granular flow is analogous to that of a continuous fluid

flow, in that we observe a hydrostatic increase of the mean pressure with depth. Furthermore, we identify a

preferential direction for the principal stress orientation, which depends on the local magnitudes of the frictional

and gravitational forces. These results allow us to draw an analogy between discrete and continuous flow models.

DOI: 10.1103/PhysRevE.100.012902

I. INTRODUCTION

Granular materials can display behaviors reminiscent of

solids, liquids, or even gases depending on the mean particle

energy. Analogies with such systems have helped character-

ize different granular regimes, but particularly intermediate-

energy systems often present phenomena that are unique to

granular structures [1,2]. In a granular regime, the marked

differences with typical fluids are attributed to the existence of

static friction, the fact that temperature does not play a role,

and the inelastic nature of collisions [3]. Until the roles of

these differences are fully understood, it will be difficult to

develop a unified theory for the rheology of granular flows.

The combined complexities of interparticle interactions result

in the inhomogeneous distribution of stresses through force

chains [4]. We consider chains to be the result of the combined

effect of the properties that make granular systems unique and

that are difficult to evaluate individually. This work therefore

focuses on the characterization of force chains in dynamic

avalanches.

Due to the large variability and complexity of the force net-

work formation, much work on its characterization has been

approached through statistical modeling. The probability den-

sity of contact forces has been identified as a key quantitative

feature in the understanding of the inhomogeneous nature of

stress transmission in granular media, particularly in the study

of jamming and yielding [4–7]. However, a full understanding

of the network and the effect of its topology also requires

information on the force chain’s spatial arrangement, arching,
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and branching [8]. Snoeijer et al. [9] introduced a method

to combine this theory with a model for the ensemble of

possible network arrangements for a given fixed arrangement

of particles. Notwithstanding, the modeling of granular force

networks has proven complex even for static configurations

of particles. More so, the characterization of force networks

in dynamic systems is to this day markedly underrepresented.

An important factor in the slow progress in the theoretical

modeling of granular force networks is the fact that mod-

els are difficult to validate experimentally. Most rheological

models for granular free-surface flows are therefore based

on numerical simulations [10–13], where the forces exerted

between particles can be estimated through the contact model

of choice. Although these studies have indeed supplied in-

valuable insight, the limitation of results obtained through

numerical simulations is that they are susceptible to carrying

the errors of the theoretical models they are based on. It

is essential that real-life experiments validate how realistic

numerical results are. Experimental studies do exist [14–17]

where the kinematic flow properties are inferred from particle

tracking through chute side walls. However, because the link

between the flow kinematics and dynamics is not yet fully un-

derstood, limited experimental information on the distribution

of forces within granular flows has been obtained to this date.

In the following sections, we describe an original and

innovative experiment where we apply the photoelastic tech-

nique to quantify all the individual forces exerted during

interparticle collisions within avalanches. Photoelasticity has

been the stepping stone onto many of the advances made in

our understanding of, for example, jamming [18–21], slope

failure [22], and force propagation [23–25]. Still, for large

systems the computational cost of resolving forces remains
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time consuming and expensive because high spatial and

temporal resolution is required to image many disks with

enough detail. Other experimental methods to quantify forces

based on the particle positions and deformations have been

attempted [26–28], but the photoelastic technique remains the

most accessible. However, as far as the authors of this paper

are aware, none have yet quantified forces in dynamic systems

where torque and particle velocity play a significant role.

The novelty of this work lies in the experimental, rather

than numerical or theoretical, measurement of forces within

the bulk of dynamic two-dimensional (2D) free-surface gran-

ular flows. We first explain the principles behind the mea-

surement of forces from photoelastic patterns. The application

of the photoelastic technique in a dynamic system where

torque and momentum are not balanced is unique, and here we

briefly discuss the adaptations made to the classical approach.

Next, we characterize the state of the flow by presenting the

coarse-grained packing fraction and velocity profiles obtained

through particle tracking. We then use the discrete interparti-

cle forces measured experimentally to analyze the preferential

direction and strength of the average force chain. These dis-

crete experimental results are also coarse grained to obtain

continuous profiles for the internal stress tensor components.

The dense, slow, and thin regime explored in this work allows

the rheological study of the transition between solidlike and

fluidlike behavior of granular systems through the formation

of a superstable heap (SSH). Throughout the Results section,

we compare the observations made to other reports of both 2D

and three-dimensional (3D) flows confined within a narrow

channel, while simultaneously pioneering in the experimental

observation of the force-chain network. Finally, we report the

conclusions drawn from our experimental results, and explore

the extent to which granular flows are analogous to classic

fluid dynamics.

II. EXPERIMENTS

A. Experimental technique

The experimental technique applied in this study is based

on the material property of photoelasticity, by which certain

materials become birefringent in a degree proportional to the

magnitude of external loads [29]. In other words, the refractive

index of these materials at each point depends on the internal

stress magnitudes. As a result, the material may have different

refractive indices in the different principal stress directions.

If this is the case, the light that travels through the material

will experience a change in its polarization, enabling direct

observation of forces in photoelastic systems.

Consider a setup of two opposite circular polarizing films

in parallel, positioned as shown in Fig. 1. As they are opposite

in polarization directions, the pair will absorb all the light

that passes through them. If a birefringent sample material is

placed in-between them, circularly polarized light transmitted

by one of the polarizers will no longer be circular after

it is transmitted through the sample. This is because the

polarization of the transmitted light is affected by the sample

having different directional refractive indices. As a result, the

light transmitted through the second polarizer will no longer

be circularly polarized, but will have a residual phase change

FIG. 1. Sketch of the basic setup needed to visualize the photoe-

lastic response of a sample.

upon leaving the sample. On reaching the second polarizer, the

component of this light corresponding to a circular polariza-

tion is absorbed by the second polarizer, while the component

associated to the change of phase may be transmitted through

the setup. The intensity of the light transmitted through this

system depends on the degree of phase shift created by the

sample, which depends on the internal stress magnitudes,

which in turn can be related to the external forces applied on

the photoelastic sample.

An outside observer sees a black background with bright

light patterns visible inside the photoelastic material, an ex-

ample of which is shown in Fig. 2(a). These patterns depend

on the magnitude and direction of the loads applied to the

material. By measuring the pixel-by-pixel intensity of the light

transmitted in this system, we deduce the internal stresses and

from them the magnitudes of the external forces acting on the

sample. The quantitative relationship between the observed

light intensity and the external forces is not linear nor straight-

forward [30,31]. For a reliable measurement, the forces must

instead be calculated by postprocessing the photoelastic light

patterns, or fringes. If the distribution of internal stresses of a

specific photoelastic sample can be modeled, then the fringe

pattern can be predicted and compared to the experimental

observation. Figure 2(b) shows the photoelastic fringe pattern

expected given a specific pair of forces acting on a disk.

Via an iterative optimization algorithm, the forces that would

produce a specific fringe pattern can be converged into with

very high precision (with errors as low as 5% [32,33]). In

Fig. 2 the patterns observed in the experimental image and the

theoretical reconstruction look very similar because the force

magnitudes used to produce Fig. 2(b) are indeed the values

measured when compressing the disk in Fig. 2(a).

FIG. 2. (a) Example of a photoelastic disk under two opposite

concentric known forces, and (b) theoretical fringe pattern [30,34]

produced for the experimental forces.
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FIG. 3. Experimental setup for the observation of forces within a 2D avalanche of photoelastic disks.

For this work in particular, Clear Flex 50 (Smooth-on) was

used to cast the photoelastic disks mimicking a procedure

developed by Barés [35,36]. Although less photoelastically

responsive than other popular materials (see Fig. 8 in Daniels

and Puckett [32] for the calibration plot), Clear Flex 50 was

chosen because it can be cast into any shape with no residual

stresses and the cured product shows minimal light diffusion.

As a result, the experimental images observed are remarkably

similar to the theoretical construction. The main difference

in the patterns observed experimentally and those produced

theoretically [34] is around the force application point. The

model assumes the force is applied at a single point, which

is unrealistic because in practice pressures are applied over a

small area that deforms slightly.

The approach we apply to estimate forces from photoe-

lastic patterns by solving the optimization problem is often

referred to as the inverse method. As we apply it, the limits

of the technique lie in the temporal and spatial resolution

of the experimental images (due to camera resolution and

diffusion in the photoelastic material) and in the tradeoff

between computational cost and accuracy. High-resolution

imaging of each photoelastic disk is needed to measure

forces accurately, and the dynamic nature of our system

requires our capture frame rate to be much higher than the

frequency of network force rearrangement. Moreover, the

constraint introduced by force equilibrium in static arrange-

ments is released in the case of flowing particles, increasing

the computational cost of the inverse method calculations

for a given target accuracy. These technical challenges have

been the reason why previous studies preferred to use the

photoelastic technique to study static arrangements only, and

to use estimative methods, such as the G2 method [37–40],

instead of the inverse method, to resolve forces from ex-

perimental images. Recent advances in high-speed imaging

and computational resources have now allowed us to over-

come such experimental challenges to study dynamic flow

configurations.

B. Experimental setup and procedure

The experiment is set up as shown in Fig. 3, so as

to observe a single layer of 6-mm-thick photoelastic disks

avalanche down an incline. Two large acrylic panels are

pressed together and separated by 8 mm of plastic and alu-

minum framework, providing enough space to allow the disks

to roll freely with minimal resistance. The complete setup is

just over 3 m high and 3.5 m long, and permanently inclined

at an angle of 20◦ to the floor.

Before an experiment, Clear Flex 50 disks of 11, 12, and

13 mm in diameter (all 6 mm in thickness) were introduced in

equal numbers from above into either or both hoppers seen on

the top left of the setup. The approximate 10% polydispersity

causes a randomness in disk size distribution large enough to

prevent crystallization [41], but small enough that segregation

is negligible. Indeed, neither phenomenon is observed in the

flows discussed henceforth. To reduce the frictional effect of

the chute walls on the flowing disks, they are regularly lightly

coated in flour.

We then manually slide a plastic gate located at the base of

each hopper (visible as dark gray strips in Fig. 3) to release the

disks at a constant flow rate. The particles fall into a channel,

formed by two 2-m-long and 0.5-m-high acrylic sheets which
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FIG. 4. Evolution in time of the binned particle streamwise ve-

locities as they pass through a mark 75 cm downstream from the

hopper.

are also clamped 8 mm apart. A plastic strip with glued

semidisks can be fixed to the base of the inclined chute to

introduce basal friction. Half of the experiments were carried

out without any basal roughness (smooth base case), while the

other half were performed over a layer of semidisks (of the

same diameters, 12 mm, as the flowing disks average) glued

to the strip clamped to the channel base (rough base case).

Simultaneously to the release of the gate, we trigger a

Phantom v2012 Ultrahigh-Speed Camera (Vision Research)

to record the flow of photoelastic disks at a fixed position

down the avalanche channel. By progressively increasing the

recording frame rate, we determined that the loading and

unloading at the contact between particles can take as little

as 1 ms. Hence, we set the camera exposure to 1/8000 s,

corresponding to the highest frame rate at which the range

of light intensities recorded was not compromised, but we

save only 1000 frames per second to allow for rearrangements

between captures.

The background illumination is provided by a TruOpto

OSPM-R5030ETS Red LED, while a pair of opposite circular

polarizers, one on either side of the chute, reveals the disks’

photoelastic response to forces exerted on them. We can

adjust the target location for measurements along the chute

by moving the combination of LED lights and polarizers

along a runway on top of the chute, after which the external

camera field of view can be aligned. When the Clear Flex

50 disks roll in-between the polarizers, the camera captures

the photoelastic response to interparticle interactions as bright

light patterns on a dark background.

Figure 4 shows the velocity profile time series measured at

a location 75 cm from the hopper for an experiment performed

over a rough base. The experimental videos of the flow past a

given point are divided into three stages: (1) initially the flow

quickly thickens and slows as the avalanche head passes the

observation point, until it reaches (2) a steady state where a

constant height and velocity profile is maintained for several

seconds, after which (3) the flow decelerates and thins. For

this work, we ignore the transient developments and focus on

the middle section in the time series instead, marked (2) in

Fig. 4, which is characterized by a constant flow height. From

this steady-state stage, we collect up to 3000 frames in each

experiment, but as postprocessing is such a time-consuming

and expensive process, only 500 frames (equivalent to 0.5 s of

flow) were used to analyze photoelastic patterns. We tested

with different sets of 500 frames within this steady-state

region and always observed the same averaged profiles, so we

determined that 500 frames is a large enough frame sample

number to obtain results representative of the whole stage.

FIG. 5. (a) Example experimental frame; (b) identification of

significant forces, measured using PEGS, that form the force-chain

network; and (c) reproduced photoelastic patterns predicted from the

measured forces.

Finally, a large box placed beneath the lower end of the

incline collects the disks as they exit the lower end of the

chute freely. In the rough base cases, a layer of static disks,

forming an angle in the laboratory frame of about 23◦, remains

deposited on the base even after the inflow stopped.

C. Experimental data extraction

1. Discrete particle data

Figure 5(a) shows a typical experimental image as captured

by the camera. The outlines of the disks are visible due to

minor light pollution from the surrounding; something that

is allowed on purpose to aid the identification of particle

position. We apply the MATLABfunction imfindcircles, with

empirically tested parameters, in postprocessing to every ex-

perimental image to locate all disks in the middle half of

the image (where the background lighting is consistent). As

the frame rate is so high, the circles identified move at most

only a few pixels between frames, so they are easily tracked

throughout the experiments. Depending on the specific parti-

cle edge visibility and the instantaneous photoelastic pattern

brightness, we estimate a location error of at most 1 mm,

or ≈10% of the mean diameter. Some disks appear slightly

murky due to the random settling of the flour coating on their

surface. As the photoelastic fringes are considerably brighter,

the error introduced by this noise is considered negligible.

The flow depicted in Fig. 5(a) is visibly very dense, with

all disks being in contact with most of their neighbors at any

time. We determine from the data collected during the particle

tracking that the coordination number of the system is 4.2 ±

0.3, which is consistent throughout all experiments, over both

smooth and rough bases. Nevertheless, Fig. 5 illustrates the

property of granular systems by which not all contacts carry

the same loads, which results in only a small proportion of the

total particles taking part in the force network. The wide black

gaps between force chains are filled with particles that do not

exhibit an obvious instantaneous photoelastic response to any

force. The proportion of disks involved in the force network

increases with depth, but in the experimental frames analyzed

no more than 30% of disks form part of force chains.

The force-measuring code was built on the open-source

program PEGS written by Kollmer [32,33]. This program ex-

tracts the light intensity distribution inside the circles located
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by the imfindcircles function. We assume two disks are in

contact when their circumferences are closer than the disk

location error. As we are only interested in load-bearing

contacts, we discard those whose G2 values (sum of the pixel

intensity gradient squared) near the contact do not exceed

a minimum value determined empirically. PEGS then uses

the G2 method [37–40] to estimate an initial guess for the

optimization algorithm that solves the inverse problem. This

particular code was used because it offers the option to enable

or disable the condition of equilibrium (force and torque

balance) at the user’s discretion. Most existing work quantify

forces among static disks in equilibrium, but PEGS is able

to analyze dynamical systems that lack force equilibrium. If

applicable, this condition is used to simplify the internal stress

distribution model and to provide a quicker initial guess for

the iterative optimization algorithm. Both these parts of the

code were adapted for its application to dynamic disks in

an avalanche, at the cost of higher computational processing

times.

The experimental technique limitations depend on the in-

herent photoelastic response of Clear Flex 50, the thickness

of the disks, and the image resolution intrinsic to the camera.

In our current setup we are limited by the sensitivity lower

bound of 0.02 N, and a systematic error of 0.05 N exists for

forces of magnitudes smaller than 0.5 N. On the other hand,

the random error of the technique can be as large as 20%

between this lower bound and a critical value that depends

on the number of forces acting on the disk z. The reliability of

the force measurements drops significantly when the loads on

the disks exceed 2.5 N when z = 2, 1.6 N when z = 3, and

1.2 N when z = 4. In our experiments, approximately 1 in

100 disks is subject to three or four force-bearing contacts,

and in these cases two of them are usually dominant by at

least an order of magnitude. See the Appendix for the details

of how these values were obtained.

Given that the average disk mass is mi ≈ 0.78 ± 0.04 g,

only forces that are at least three times greater than the average

disk weight will produce a visible photoelastic response,

which indeed rules out a great majority of the contacts as

bearers of significant loads. On the other hand, disks that are

involved in force chains carry loads that are on average at least

an order of magnitude larger than the minimum. It is important

to be aware that a large number of small forces are neglected

in the following analysis, as the technique sensitivity naturally

filters the force chains. The experiments still provide much

valuable information about the structure and general statistics

of the force network. Figure 5(b) shows yellow (light gray)

thick solid lines along the network found for a particular

example frame.

The overall experimental result of running the selected

frames through the photoelastic force-calculating program,

PEGS [32], is a list per frame of tracked disks, each of which

has associated to it a unique id number, its radius, center

coordinates, disk velocities, and a list of force vectors acting

on the disk. Each force measured is recorded as a struc-

ture including the magnitude, direction, point of application,

and the id of the disk that applies each load. Figure 5(c)

shows the photoelastic pattern reproduced in postprocessing

using the contact locations and forces measured from exper-

imental images. The qualitative and quantitative similarity of

Fig. 5(c) with the original experimental image (a) endorses the

technique’s reliability.

2. Continuous flow data

To obtain continuous profiles from the list of discrete

experimental results, we applied the coarse-graining approach

described by Goldhirsch [42] and Weinhart et al. [43]. We

apply the same coarse-graining equations for density, velocity,

and stress components proposed by these groups, but in this

work the coarse-graining function used was

ϕ(r,w) =

{

Ce
1

1−|(r−ri )/w|2 , |r − ri| < w

0, |r − ri| � w

(1)

where ϕ represents the coarse-graining function that, at point

with coordinates r, depends on the distance to the center of

each disk, ri, in terms of a predefined coarse-graining length

scale w, which may have different components in the vertical

and horizontal directions wz and wx, respectively. C represents

the total volume of ϕ over the whole domain. The function

ϕ can be chosen arbitrarily, as long as it satisfies [44] that

it is non-negative ϕ � 0 (ensuring the density ρ is always

positive, and that the moment p has the same sign as the

particle velocity); that it is spatially normalized
∫

R3 ϕ = 1 (to

hold mass and momentum conservation); and that there exists

a cutoff c such that ϕ(r) = 0 for |r| > c (ensuring that the

effect of each variable is constrained within a finite distance

defined by the length scale w). Gaussian functions [45,46]

and Lucy polynomials [43,44] are popular choices for ϕ, but

we use Eq. (1) because aside from satisfying all necessary

requirements, it naturally tends to zero at lengths equal to w

and thus provides an easy visualization of the coarse-graining

length scale based only on w. The function ϕ spans over an

ellipse of height and width equal to the vertical and horizontal

coarse-graining lengths.

The ideal coarse-graining length scale w depends on the

system and on the coarse-graining function ϕ. In each case,

Goldenberg et al. [47] stipulated the optimal w is such

that it is large enough to average over microscopic changes

(for example, mass variations between individual grains) but

small enough to not average over macroscopic changes (for

example, if part of a system has lower packing fraction than

another). In other words, w must be the smallest value such

that using the function ϕ(w) results in smooth profiles within

sub-w length scales. For the experiments described in this

paper, the optimal wz was found to be 3d . However, we notice

that the flow does not change significantly in the streamwise

direction (horizontal x̂), while it does vary rapidly in the cross-

flow direction (ẑ). We therefore set wx = 5d , which allows us

to coarse grain over the largest possible area within the middle

half of the images where the background intensity is uniform.

III. FLOW CHARACTERIZATION

A. Density profiles

In order to analyze the grain density distribution, we coarse

grain [42,43] the particle mass and position information

obtained by particle tracking. We defined wz = 3d as the

optimal coarse-graining length scale to obtain smooth profiles,

averaged over microscopic variations. However, by using a
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(a) (b)

FIG. 6. Coarse-grained density profiles at seven positions down

the chute for flows over (a) a smooth base and (b) a rough base.

Both figures apply the same color scheme for the profiles measured

at different downstream positions.

wz < 3d for this particular analysis only, we forfeit a smooth

profile in lieu of a plot where we can observe the effect of

layering in the packing fraction profile. For the following

analysis, we half the optimal wz, setting it to the arbitrarily

small value of 1.5d , so that microscopic vertical changes can

be observed, but we keep wx = 5d in order to ensure the

coarse-graining space is large and representative of the flow.

The particle coordinates tracked using the MATLAB func-

tion imfindcircles were coarse grained according to the expres-

sion proposed by Goldhirsch [42] along the central vertical

line on each frame. This line passes through the cross section

of the chute at fixed downstream distances of exactly 25, 50,

75, 100, 125, 150, and 175 cm away from the hopper gate. A

vector of coarse-grained densities ρCG(z), with a length equal

to the vertical pixel resolution, can be obtained for different

depths within the flow. This vector is produced for every frame

and the results for 500 frames were averaged to obtain a single

plot of density versus height from the chute base. Figure 6

shows a representation of these data converted into packing

fraction (we measured cured Clear Flex 50 to have a density of

1120 kg/m3) as a function of height for different downstream

positions (shown in different colors, or shades of gray) and

basal roughnesses [for Fig. 6(a) the smooth base and Fig. 6(b)

the rough base].

Several interesting features of Fig. 6 stand out. First, the

flow thickness is noticeably affected by the basal topography.

The flow thickness across the smooth base remains fairly

constant in downstream direction, but thins dramatically in the

rough base by 60%. Interestingly, the thickness at the bottom

of the chute (x = 175 cm) in both roughness cases is almost

identical.

Second, the average packing fraction is effectively constant

throughout the flow thickness at about φavg = 0.81 ± 0.07 for

all experiments performed. This result is only slightly smaller

than the 2D random close packing fraction of φrcp = 0.84

for 2D systems made of monodispersed circles [48], bearing

in mind that the experiments performed in this work have

approximately 10% polydispersity. Aside from justifying the

assumption of a uniform constant density, the similarity be-

tween φavg and φrcp unequivocally places all the experiments

discussed into the same regime of dense granular flows.

The third relevant characteristic of Fig. 6 is that, despite

the broad coarse-graining area, wide undulations can be

seen at sub-wz distances. Although an even longer vertical

coarse-graining length scale would provide a smoother pro-

file, important physical meaning can be deduced from this

behavior. We observe in Fig. 6 for all downstream positions

that the undulations all show the same wavelength but their

amplitude increase with depth. An autocorrelation analysis for

both smooth- and rough-base experiments shows a consistent

separation between density peaks of 1.08 ± 0.02 cm, which

is equivalent to 0.9d , throughout the flow depth. This result

implies that the disks flow in well defined layers, which

are equally distanced throughout the depth, but with smaller

vertical velocity fluctuations closer to the base. The fact that

the undulations decrease in amplitude, but not in wavelength,

with height, suggests a higher disorder at the top of the

flow, where disks move at the fastest velocity. These results

agree with the Weinhart et al. [49] numerical study of dry,

frictional, steady-state granular flows down rough inclines,

where they found that particles flowed in slightly interlocked

layers separated by 0.907d . This was true for all slow and

intermediate flows and they also observed that the layering

was most organized closer to the base but decayed over larger

distances for slower flows (I � 0.2).

If we model mass to be distributed normally around ri,

with variance σ 2, then the standard deviation σ effectively

represents the mean squared vertical displacement 〈δz2〉 of the

disks from the ith layer midpoint. Knowing that layers contain

the same particle density and that they are all equally spaced

by 0.9d , we model the corresponding coarse-grained density

profile, calculated as

ρn
CG(r) =

N
∑

i=1

ϕ(r − ri )

∫ ∞

−∞

mi

(

µi, σ
2
i , z

)

dz, (2)

where the mass function mi for layer i is normally distributed

along the z axis around the layer center µi with variance σ 2
i ,

ϕ represents the coarse-graining function defined in Eq. (1),

and N the number of particles within a coarse-graining length

scale of each point along the profile. By fitting each layer’s

variance σ 2 to best agree with the measured density profile,

values for each layer’s mean squared displacement 〈δz2〉 were

obtained for all smooth base experiments. Only smooth-base

experiments were used for this analysis because the mean

particle velocity is parallel to the base, which is not true for the

top moving layer of the rough-base experiments. Besides, the

rough-base experiments include different depths of a bottom

static layer, and we wish to compare the vertical displacement

of layers of particles in motion. Interestingly, we find that all

experiments show a similar seemingly linear increase in δz

with height, as evidenced by Fig. 7.

The displacements obtained for the bottom layer match

the particle tracking error, implying the vertical fluctuation

in this bottom layer is minimal. In fact, direct observation

of the experimental videos shows that disks in this layer do

not fluctuate around the layer center at all, but mostly slide

over the base. The mean vertical displacement from the layer
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FIG. 7. Fitted standard deviation of the mass normal distribution

around each layer center, representative of the mean particle devia-

tion from the layer center, plotted against the layer height. Results

are shown for the seven experiments carried out over a smooth base.

center of these disks is measured to be of 1 mm, which coin-

cides with the difference in radius between the smallest (r =

5.5 mm) and largest (r = 6.5 mm) disk. Therefore, the mean

displacement obtained for the bottom layer is reasonable.

B. Velocity profiles

We apply the expression for coarse-grained velocity pre-

sented by Weinhart et al. [43] with ϕ as defined in Eq. (1)

and wz = 3d and wx = 5d . Figure 8 shows the resulting

plots of downstream velocity against height from the base for

experiments carried out over both smooth and rough bases,

and measured at seven different positions downstream.

The velocity profiles seem to evolve downstream, partic-

ularly in the rough-base case, where the flow thins visibly.

However, Fig. 9 shows that by plotting the velocity against

depth from the free surface rather than against height from

the base, the velocity profiles in fact collapse. Moreover, the

flowing layer of the rough-base experiments has the same

thickness as the flow over a smooth base.

The velocity profiles reflect that while the particle density

remains constant and uniform throughout all experiments, the
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FIG. 9. Collapse of the coarse-grained downstream velocities

profiles at seven positions down the chute for flows over two different

topographies. Both figures use the same color scheme for the profiles

measured at the different downstream positions.

flux depends strongly on the topography. In the smooth-base

case there is high slippage and a quasilinear increase of the

downstream velocity with height. Faug et al. [50] reported

obtaining high slippage and a Bagnold profile in similar

experiments over gentle slopes, but with only 10 layers of

particles it is difficult to confirm or rule out such a result,

as opposed to a linear profile. Except in the experiment

recorded at a position closest to the hopper (25 cm), all

profiles are remarkably similar to each other with no obvious

thinning or acceleration. This implies that the gravitational

downstream forces are balanced by the friction introduced

by the base. If the chute were inclined less than the 20◦ it

was built at, the gravitational component would not be large

enough to maintain a flow. In other words, the experiment

is inclined at the dynamic angle of repose corresponding to

a near monodisperse system of disks made of ClearFlex 50,

flowing within the channel described in the previous chapter

over a smooth base. In contrast, by forming a 2D pile of

disks and tilting it slowly and smoothly until the first disks

FIG. 8. Evolution of the coarse-grained downstream velocities profiles at seven positions down the chute for flows over two different

topographies.
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topple, it was found that the system’s static angle of repose

is 31 ± 2◦, which is as expected larger than the dynamic

counterpart.

The picture is completely different when basal roughness

introduces shear into the system. Here, the dynamic angle of

repose is larger because the increased basal friction requires a

stronger gravitational downstream component to balance the

higher shearing forces. A static layer therefore forms at the

bottom, and it is this layer that thins while the moving layer

on top maintains its thickness and quasilinear velocity profile

throughout. The free-surface forms an angle of 25◦ degrees to

the floor, 5◦ larger than in the smooth-base case. Furthermore,

we verified that all particles in the flowing layer travel parallel

to the free surface, confirming that the quasistatic layer effec-

tively increases the system dynamic angle of repose. The static

layer is referred to as a superstable heap (SSH), and many

authors [51] have attributed it, and the shape of the velocity

profile of the flow above it [52], to the effect of the chute

side-wall friction on the flowing particles.

As the hopper depletes and the flux rate decreases, the

inclination angle of the free surface decreases from 25◦

when the flow is in steady state to 23◦ when the flow stops

completely. This is indicative of an increase of friction with

depth, as particles need a steeper angle to flow when they

are under pressure. This result suggests there is a relationship

between the flowing layer thickness and the angle made by

the free surface, as proposed by Taberlet et al. [51] assuming

a Coulomb-type friction at the side walls. In any case, friction

at the side walls has a significant effect on the flow velocity

profile, but lack of photoelastic response in fast-moving rat-

tlers (Fig. 5) regardless of particle depth, suggests side-wall

friction is not large enough to interfere with the measurement

of interparticle forces.

The observations presented so far agree with other re-

ports [10,53,54] that say that the packing fraction in slow-

intermediate flows is uniform, and is only a decreasing func-

tion of the inclination angle. In all experiments, a combination

of relatively slow hopper discharge flux and small inclination

angles causes the flow to have the minimum recorded flow

thickness possible for gravity-driven flows [55]. The observa-

tions made here therefore correspond to flows with the slowest

possible speed and thickness. It stands to reason that the mean

packing fraction in these cases would tend to the 2D random

close packing fraction.

Also confirming the slow and thin regime is the fact that

the velocity profile is linear [17,56]. All flows (excluding the

static layer in rough-base experiments) have approximately

10 diameters d in thickness, which is significantly below

the estimated thickness of 20d at which Bagnoldian velocity

profiles are observed [57]. However, in this case, the side-wall

effect is also partially responsible for the velocity profile

linearity [53].

No less significant is that the ability to compare the exper-

iments described in this work with those reported by other

groups confirms the small effect of the normal restitution

coefficient e on the flow behavior [58,59]. The restitution

coefficient of Clear Flex 50 is lower than that of the particles

used in said studies, yet the kinematics of these photoelastic

flows are analogous to all flows in the same regime, regardless

of the constitutive particle material.

(a)

(b)

FIG. 10. Average number of forces per frame measured acting in

angles to the cross-flow direction ẑ.

IV. RESULTS

A. Forces statistical analysis

1. Force numbers, means, and directions

By collecting all the information on the instantaneous

interparticle force magnitudes, directions, and application

points, we are able to extract a network of forces within

the avalanching flow. The total number and mean magnitude

of interparticle forces observed in each direction varies. By

binning each force according to the direction they are applied

in into 5◦ wide bins between −90◦ and 90◦, the preferred

direction and the mean magnitude of the interparticle forces

is revealed.

Figure 10 shows the mean number of forces per frame N f

recorded within each bin for the experiments performed over

both a smooth and rough base. The forces measured in the

rough-base experiments were further separated according to

whether they were measured at depths of up to 11d from the

free surface (corresponding to the flowing layer, according to

Fig. 9), and those at z > 11d (within the SSH). The flow-

ing layers in both types of experiments have approximately

the same thickness, which is consistent along the chute, so

Fig. 10(a) shows the mean number of forces measured in

each direction per frame in the flowing layers over both

types of basal roughness, averaging the results obtained at all

7 positions along the chute. On the other hand, because the

static layer decreases in thickness along the chute, we plot

N f measured at each position along the chute in Fig. 10(b).

In all cases, the data are time averaged over 500 frames per

experiment.
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FIG. 11. Mean force magnitude measured acting in angles to the

cross-flow direction ẑ.

From Fig. 10(a) we observe peaks in the number of forces

measured to act at angles of 90◦ (parallel to the chute base),

and close to −20◦ (direction of gravity). At depths z > 11d

we observe the middle peaks coincide exactly with −20◦, as

seen in Fig. 10(b), but as the static layer thins the number of

forces measured decreases. In contrast, in the flowing layer

the middle peak is slightly skewed to a more negative angle,

which we attribute to the friction accompanying interactions

between particles in different layers. In all cases, we see that

the ratio of forces acting at 90◦ to the number acting at −20◦ is

larger in all rough-base experiments than in those with smooth

base.

Figure 11 plots the mean force magnitudes 〈F 〉 in each

direction, for the flowing layers in the smooth- and rough-base

experiments and within the static layer in the latter case. In

all three cases we measure peaks in mean force magnitude

around the direction of gravity. In the smooth-base case we

observe that the forces acting at 90◦ are significantly weaker

than those at −20◦. In contrast, in experiments over a rough

base the forces at 90◦ are as important in the flowing layer, and

even more significant within the SSH, than those at −20◦. In

addition, we notice that in rough-base experiments, peaks in

〈F 〉 are more pronounced in the static layer than in the moving

layer.

From Figs. 10 and 11 we conclude that force chains tend to

form preferentially in the directions of the two external forces

acting on the flow bulk: gravity and basal friction. When

particles in different layers interact, if they move at different

speeds, friction causes the force chains acting against gravity

to skew slightly to slightly more up-slope values. Moreover,

we measure less and weaker force chains acting parallel to

the chute base in smooth- than in rough-base experiments. We

associate this observation with the high slippage at the base

[Fig. 9(a)] and weaker friction between layers within the flow.

On the other hand, in the rough-base case we observe more

and stronger force chains forming in the direction of friction

acting on the particle layers. We observe that the peaks are

sharper in the static layer, suggesting force chains bend and

branch more in the moving layer. From the fact that we do not

observe stronger forces at −20◦ in the SSH than in the moving

layer, we deduce that particles in force chains carry similar

loads. The extra weight supported by the SSH is spread into

more force chains, that are not necessarily stronger.

2. Force-chain fluctuations

The downstream velocity profiles for the rough base, which

were presented in Fig. 8, suggest a static layer forms at the

channel base to effectively increase the flowing layer angle of

inclination to its new dynamic angle of repose. The flux of

disks, measured as Q =
∫

v · dA, is confirmed to be constant

for the different experiments recorded at the various points of

its development.

Separately, the occurrence of high intensity pixels in the

experimental images are indicative of the presence of a force

chain. These chains mostly span from the channel base until

the second or third layer from the top, independently of

velocity. From direct observation we see that the density of

force chains and the duration or persistence of an individual

chain decreases with the distance to the free surface.

Pouliquen and Forterre (2009) [11] used a similar intuitive

assumption as the basis of an original attempt to model

the nonlocal rheology of sheared granular materials. They

formulated that force-chain rearrangements are self-activated,

meaning that they are a consequence of rearrangements else-

where in the system. In their analogy with viscous liquid state

transitions, it is the rate of rearrangements in the force network

that plays the role of temperature in thermal systems, rather

than individual particle fluctuations. They then assumed the

rate of plastic deformation proportionally affects the rate of

generation of new random force network within a granular

flow.

Since in our experiments the photoelastic response is in-

dicative of force-chain presence, we can measure the duration

for which each point in the image forms part of a force chain.

We can thus offer the first experimental validation of the

assumption that shear rate γ̇ is proportional to force-chain

fluctuation. We obtain shear rate profiles from the velocity

profiles (Fig. 8) and compare them to the fluctuations in

pixel intensity at each point in the image. We define, through

first-order finite differences, the mean rate of change of the in-

tensity I at a pixel with coordinates x and y in the experimental

images as

δI (x, y)2 =
1

N

N
∑

t=1

[I (x, y, t + 1) − I (x, y, t )]2, (3)

where the total number of frames N = 500 and t is the

extracted frame number. To account for the higher density of

force chains at lower depths, we normalize by dividing this

result by the mean intensity Ī (x, y). We calculate δI (x, y)2 by

averaging over all pixels at equal depths, and then dividing the

result by the sum of the mean intensities squared for that row:

〈δI (y)2〉 =
〈δI (x, y)2〉x

〈Ī (x, y)2〉x

. (4)

Figure 12 plots in thick black lines the velocity profile

coarse grained at each downstream position. The solid red

lines represent the shear rate calculated by first-order finite

differences from the velocity profiles. Finally, the dashed-

dotted blue lines plot the normalized squared pixel inten-

sity fluctuation δI2 (measured in arbitrary units). Results for

both γ̇ and δI2 are smoothed using the MATLAB function

smooth with factor 5. This analysis was performed only for
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FIG. 12. Comparison between the force-chain squared fluctuations [Eq. (3)], mean downstream particle velocity, and shear rate profiles for

experiments performed over a rough topography, measured at seven different downstream positions. The velocity profiles correspond to the

same measurements shown in Figs. 8 and 9, and the shear rates were calculated from them by first-order finite differences.

experiments carried out over a rough base as they exhibit a

wider range of velocities than the smooth base experiments,

and contain the particularly interesting regions where particles

are stationary. Each of the seven plots shows information

obtained at different distances from the beginning of the

chute.

Figure 13 plots the measured values for the fluctuations δI

against the corresponding shear rate at the same point in the

flowing layer (that is, depth z < 10d). Data within distances of

wz from the base and from the free surface are ignored because

the velocity measurements in this region are affected by the

coarse-graining process.

Figure 13 shows noisy data that at first glance could

suggest there is indeed a monotonic relationship between

the average downstream shear rate and the definition of
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FIG. 13. Pixel intensity fluctuation rate δI (y)2 plotted against the

downstream velocity measured at the respective y coordinate. The

data color (or shade of gray) represents the depth to which that data

point corresponds.

fluctuation δI used here [Eq. (3)]. The correlation coefficient

between the two measured variables is 0.64, which is too low

to state with certainty that the relationship is linear. However,

a validated monotonic relationship between γ̇ and δI confirms

that a rearrangement of particles affects the force network a

non-negligible distance away. This has important implications

for rheology as it is the principle on which the latest nonlocal

models are based [11,12,60].

On the other hand, we observe from Fig. 12 that the force

chains fluctuate where particle velocities, and shear rates,

are zero in the static layer. It has been previously suggested

that there exists an ensemble of force network arrangements

for a given fixed packing configuration [9,61,62], and our

results imply that particle rearrangements in the flowing layer

triggers rearrangements of the force network in the static

layer.

B. Stress tensor component profiles

Considering a fully developed, steady flow that does not

change in time nor along the downstream direction x, momen-

tum balance requires

−∇σ + ρg = 0, (5)

where σ represents the flowing system stress tensor, ρ the

density, and g the acceleration of gravity. Assuming constant

and uniform density ρ, resolving the streamwise (x) and cross-

flow (z) directions and solving for σ predicts a hydrostatic

increase in pressure and shear,

σzz = (h − z)ρgcos θ f s,

σzx = (h − z)ρg sin θ f s, (6)

where h represents the height of the free surface over the

chute base and θ f s the angle made by the free surface in the

laboratory frame of reference.

The consistency in time and x direction of the density

and velocity profiles over a smooth base implies this is

indeed a steady, fully developed flow. The packing fraction

profiles (Fig. 6) suggest the density is indeed constant and
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uniform, and we furthermore assume that even if the flow were

compressible, a change in solid volume fraction makes very

little difference to the linear pressure distribution (Fig. 4 in

Barker et al. [63]). Therefore, we expect the corresponding

pressure and shear profiles to behave as predicted by Eq. (6).

To compare that model to the discrete forces measured experi-

mentally, the coarse-graining equations originally put forward

by Goldhirsch [42] and later extended by Weinhart et al. [43]

were applied to obtain continuous expressions for the four

stress tensor components. The same coarse-graining function,

Eq. (1), was used for this purpose, with wz = 3d and wx = 5d .

We calculated the stress tensor component profiles ac-

cording to Weinhart et al. [43] for each frame and then

averaged over the 500 frames extracted from each experiment.

Because the magnitudes of σzz and σzx depend only on depth

from the free surface and angle of inclination, which are

constant along the chute, all seven profiles collected along

different downstream positions collapse, for both smooth- and

rough-base experiments. In Fig. 14 we show the mean stress

component profiles in solid lines, and bound the confidence

intervals in dashed lines. The bounds of this interval are de-

termined by the standard error of averaging the seven profiles,

proving they all collapse within acceptable limits. Different

stress tensor components are drawn in different colors (shades

of gray), while the gray straight lines show the hydrostatic

gradient predicted by Eq. (6) for ρ = ρCG and measuring

h to be the average height of a spline though the highest

points of the disks on the flow top layer. Within a coarse-

graining length wz = 3d from both the base and free surface,

the lines are shown in faded colors, as the coarse-grained

results here are likely to be affected by the closeness to the

boundaries.

In the rough-base experiments, it is the static layer that

thins with distance downstream (Fig. 9) in classic superstable

heap (SSH) behavior [51]. From Fig. 8 we saw that the

flowing layer remains practically constant in thickness and

the velocity profile. It follows that the flowing layer should

experience a hydrostatic pressure increase, but scaling with

the cosine of the effective layer inclination angle 25◦ rather

than with the inclination of the chute 20◦. Figure 14(b) shows

the components of the stress tensor resolved relative to the

free surface and to the normal to that direction, having rotated

the camera frame of reference by 5◦ to match the new x̂ to the

direction of the free surface.

C. Principal stresses

Since we can obtain from experiments all four components

of the 2D internal stress tensor ¯̄σ , we can calculate the in-

plane principal stresses. These are defined as the two (for 2D

systems) pressures σ1 and σ2 that acting in a what is known

as the principal stress directions, have an analogous effect on

the system, with no shearing stresses, than the full ¯̄σ in the

original plane.

The magnitudes of the principal stresses are the eigenval-

ues of the stress tensor, and the corresponding eigenvectors

represent the directions of the axes in the principal stress

plane. The eigenvalues corresponding to the collapsed, depth-

dependent stress tensors presented in Fig. 14 are plotted

against depth from free surface in Fig. 15.

(a)

(b)
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FIG. 14. Coarse-grained 2D stress tensor component profiles

for (a) smooth-base and (b) rough-base experiments. The profiles

resulting from averaging the seven experiments measured at different

downstream locations are plotted in solid lines, while the dashed

lines delimit the standard error of he averaging. The straight gray

lines show the gradient corresponding to a hydrostatic increase in

pressure as predicted by Eq. (6) with θ f s = 20◦ for (a) and θ f s = 25◦

for (b).

It was found that the corresponding eigenvectors for the

coarse-grained stress tensor form an orthogonal basis. We

therefore report the direction of only one principal stress,

the principal orientation αp, bearing in mind that the second

direction forms a normal angle to this one. To facilitate

comparison, we calculated αp for the coarse-grained stresses

in the camera frame of reference, for experiments over both

types of topography. The principal orientation corresponding

to the principal stresses just obtained are also plotted against

depth from the free surface in Fig. 16.

Interestingly, the principal stress magnitudes are very simi-

lar in both smooth- and rough-base experiments. On the other

hand, the angle θp is lower for the smooth-base than for

the rough-base experiments, but in both cases the principal

orientation lies between the direction of gravity (90◦ to the
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FIG. 15. Magnitudes of the principal stresses for the stress ten-

sors obtained by collapsing the results of all experiments of equal

type. The dashed blue lines represent the results of experiments

performed over a smooth-base while solid red lines correspond to

rough-base experiments.

cross-flow direction ẑ) and basal shear (20◦ anticlockwise

from ẑ, see Fig. 10). These are the two body forces acting

on the flow bulk, so it seems reasonable that the main prin-

cipal stress would be directed somewhere in-between them

(35◦–50◦ anticlockwise from ẑ).

We propose that the principal orientation in these ex-

periments depends on the local relative importance between

interlayer shear and hydrostatic pressure. In the smooth-base

case, there is high slippage at the chute base and the shear

rate is smaller than in the rough-base case. Hence, shearing

forces are less important in the smooth-base case. On the

other hand, hydrostatic pressure depends only on depth from
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FIG. 16. Orientation of the system principal stresses and their

dependence with depth. The dotted and dashed-dotted blue lines rep-

resent the results of experiments performed over a smooth-base while

solid and dashed red lines correspond to rough-base experiments.

the free surface and inclination angle. Although the flowing

layer in the rough-base case has the same depth of ∼10d

as the flow over a smooth base, the superstable heap (SSH)

increases the effective angle of inclination of the flowing

layer in the former case. Therefore, in the rough-base case

shearing forces (90◦ from ẑ) are more relevant than in the

smooth-base case, and the hydrostatic pressure (20◦ from ẑ)

is less so. Thus, we infer from the larger θp in the top 10d

that the principal orientation leans toward the direction of

shear in the rough-base case more than in the smooth-base

case, due to the larger relative importance of shear in the

system.

Nevertheless, both lines in Fig. 16 follow the same trend

within the flowing layer (approximately the top 10d in both

cases). Close to the free surface the only surface force acting

on the particles is shear (hydrostatic pressure is minimal),

so the main principal stress tends toward 90◦. The velocity

profile within the flowing layers was determined to be linear,

so interlayer shear remains constant in depth within these

flows. As the hydrostatic component increases with depth,

the principal orientation leans more toward gravity (which

acts at 20◦ to the cross-flow direction ẑ). Then, shear changes

suddenly at the chute base (in the smooth-base case) as well

as in the transition between the flowing and static layers (in

the rough-base case), and so θp increases at these boundaries.

Within the static layer that forms the SSH (only visible in

the rough-base experiments) a dip in θp is observable as

shear is most relevant at the boundary with the flowing layer

(∼10d depth) and with the chute base (most visible at ∼16d

depth).

V. CONCLUSIONS

The first main result of the work described in this paper is

the successful ability of the photoelastic technique in quan-

tifying forces in dynamic systems. This paper summarizes

how the technique works and the steps taken to obtain force

magnitudes from experimental images. In addition, we allude

to different materials tested and open-source software other

researchers could refer to if they wanted to apply the tech-

nique themselves. The key is to choose the photoelastic base

material and particle dimensions such that the range of forces

that the technique measures most accurately coincides with

the force magnitudes expected within the experiment. On one

hand, the lower limit of the technique sensitivity is determined

by the material photoelastic coefficient and dimensions, as

there must be a clearly visible photoelastic response for any

force to be measured. On the other hand, the optimization

problem solved in order to calculate forces is prone to fall into

local minima rather than global minima when the forces are

large enough to raise the fringe number over N = 1. Hence,

the force that would produce a fringe pattern of order 1 is the

upper limit of the force range for which the technique is most

reliable. Furthermore, the experimental error increases with

the number of forces applied on each particle, so the technique

is more appropriate for systems with low force-chain density.

We apply the photoelastic technique to obtain innovative

experimental measurements of forces within the bulk of 2D

free-surface, gravity-driven, dry granular flows. Side-wall ef-

fects play a significant role in the kinematics of the flows
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produced, but the intrinsic relationships between flow kine-

matics and dynamics discussed here are nonetheless appli-

cable to all dry granular avalanches. In particular, by coarse

graining the results of this original experiment, we test the

extent to which such a discrete system can be modeled as a

continuum.

From a discrete point of view, at most 30% (although the

exact proportion depends on depth) of the flow constitutive

particles carry a significant load. These particles, that form

part of force chains, transport loads one or two orders of

magnitude larger than a single particle weight. Moreover,

we determined that, within the dense flow, force chains re-

arrange at a rate that follows a monotonic relationship with

the local shear rate. However, this relationship ceases to hold

for low to null velocities. Regardless of the force network

dynamics, we have shown through coarse graining that the

average stress tensor is equivalent to that of a continuous

flow, including a hydrostatic increase of pressure with depth

(Fig. 14).

Furthermore, we determined that force chains form prefer-

entially in the directions of the forces acting on the bulk. In

this case, the two external force sources are gravity and the

shear induced by the basal topography, and a larger number

of force-chain forces are directed in these two directions

(Fig. 10). From comparisons between the results from config-

urations where gravity and basal shear bear different relative

importance, we propose that the system main principal stress

is directed somewhere in-between the two, leaning closer to

the the most relevant locally.
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APPENDIX: FORCE MEASUREMENT ERROR

In order to investigate the measurement error specific to

our experimental system, we numerically produced images of

photoelastic fringe patterns for disks under z = 2, 3, and 4

concentric forces of equal magnitudes F , evenly distributed

around the disk surface. These images were then reduced to a

resolution similar to that in which the experimental disks are

observed, and a random noise of the order of the experimental

one was added to the figures. Then, the force magnitudes

in the result were resolved by PEGS and plotted against the

original F , as shown in Fig. 17.

From Fig. 17 we infer that there is a systematic error of

approximately 0.05 N for forces below 0.5 N that originates
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FIG. 17. Correlation between the real forces exerted on a photoe-

lastic disk and the measured magnitudes. This allows us to estimate

the technique force measurement error, dependent on the number of

forces acting on a disk z.

from the experimental noise. The minimum force that can

be consistently resolved by PEGS is 0.02 N, which produces

the minimum photoelastic response larger than the noise

in the inner 95% of the disk. The edge is ignored because

in the experimental images it often shows a marked intensity

difference due to the edges of the disks being inevitably

slightly rounded.

When the disk displays a large fringe number, the opti-

mization algorithm is prone to falling into local minima rather

than the global minimum. Hence, there is a maximum force

magnitude beyond which the technique becomes unreliable,

which depends on how many forces act on the disk. The

limits are approximately 2.5 N when z = 2, 1.6 N when

z = 3, and 1.2 N when z = 4. However, the forces involved in

the experiments are rarely stronger than 0.5 N, and particles

are rarely subject to more than 2 or 3 contacts that transmit

such large loads. Below forces of 0.5 N the systematic error

measured is similar for whatever z, so this value is subtracted

from all measurements.

To summarize, the sensitivity lower bound of our photoe-

lastic measurements was estimated at 0.02 N and depends

on the inherent photoelastic response of Clear Flex 50, the

thickness of the disks, and the image resolution intrinsic to

the camera. The measurement of even smaller forces could

be achieved by increasing either the disk thickness, the image

resolution, or the material photoelastic coefficient, but in our

current setup we are limited by the sensitivity lower bound of

0.02 N. Then, a systematic error of 0.05 N exists for forces

of magnitudes smaller than 0.5 N. On the other hand, the

random error of the technique can be as large as 20% between

this lower bound and a critical value that depends on the

number of forces acting on the disk. The reliability of the force

measurements drops significantly when the loads on the disks

exceed 2.5 N when z = 2, 1.6 N when z = 3, and 1.2 N when

z = 4. In our experiments, approximately 1 in 100 disks is

subject to three or four force-bearing contacts, and in these

cases two of them are usually dominant by at least an order of

magnitude.
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