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A B S T R A C T

Aiming a selective reduction of CO2 to methanol, a p-n junction semiconductor was constructed based on CuO

nanospheres (NsCuO) deposited at TiO2 nanotubes (NtTiO2). The NtTiO2/NsCuO material demonstrated smaller

charge transfer resistance, smaller flat band potential and wider optical absorption when compared with NtTiO2

and/or Ti/TiO2 nanoparticles coated by higher size particles of CuO (Ti/TiO2/CuO). The selective reduction of

dissolved CO2 to methanol was promoted at lower potential of +0.2 V and UV–vis irradiation in 0.1 mol L−1

K2SO4 electrolyte pH 8 with 57% of faradaic efficiency. Even though the performance of the nanostructured

material NtTiO2/NsCuO was similar to the non-completely nanostructured material Ti/TiO2/CuO (0.1mmol L−1

methanol), the conversion to methanol has been significantly increased when hydroxyls (0.62 mmol L−1) and

holes scavengers (0.71mmol L−1), such as p-nitrosodimethylaniline (RNO) or glucose, respectively, were added

in the supporting electrolyte. It indicates that photogenerated electron/hole pairs are spatially separated on p-n

junction electrodes, which produces effective electrons and long-life holes, influencing the products formed in

the reaction. A schematic representation of the heterojunction effect on the photoelectrocatalytic CO2 reduction

is proposed under the semiconductor and each supporting electrolyte, which improves the knowledge about the

subject.

1. Introduction

The pursuit for solution to global warming and use of fossil fuel has

demanded great interest in the conversion of CO2 to fuels [1–4]. The

recent advances in the understanding of the role of photoelec-

trocatalytic devices, semiconductors and photoelectrocatalytic pro-

cesses in the development of solar fuels from water and CO2 is reviewed

in the literature [5–9]. However, the great challenge is to design sys-

tems able to promote the capture of solar radiation and conversion of

CO2 into fuels that can be easily stored. On this basis, photoelec-

trocatalysis for CO2 reduction has gained significant attention in the last

five years due to its high efficiency and the high-value products gen-

erated [1–4,10], but it still offers lack of efficiency and low selective

reactions to just one high-value product [11].

The photoelectrocatalytic conversion of dissolved CO2 in aqueous

solution is complex. A high efficiency can be obtained for catalyst with

high ability to chemisorb and activate the CO2 and it depends of (i) the

semiconductor type used as photocathode [[3],12,13], (ii) the irregu-

larities of the surface that can display different CO2 adsorption modes

[14], (iii) the supporting electrolyte [3], (iii) the pH of the solution

[12], (iv) the applied potential [13], (v) the photoelectrocatalysis time

[15], the photoelectrocatalytic reactor design [[3],15,17,18] and

others.

Thermodynamically, the reduction of CO2 takes place faster under

semiconductor that presents conduction band edge more negative than

the redox potential for CO2 reduction and valence band edge lower than

redox potential for water oxidation [11,16,17]. Nevertheless, p-type

semiconductor commonly demands large potential, once their valence

band potentials are not positive enough to oxidize water [18].

Semiconductors based on copper and copper oxides [1,[23],19] are

good candidates for that and have shown great success for photoelec-

trocatalytic reduction of CO2 to alcohols [[23],16,20,21]. Copper

oxides have the ability to act simply as electron traps [22] and present

good platform for CO2 adsorption [23]. Cu2+ ion has an unfilled 3d

shell, making its reduction thermodynamically feasible. On the other

hand, CuO absorbs light in the visible region [24,25], presents specific

reductive characteristics [25,26] and can easily trap the electron gen-

erated on the other semiconductor surface [13,22]. But, they can show

low stability under reductive conditions and light [27].

The photoelectrocatalytic reduction of carbon dioxide is a multiple
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step process, limited for the adsorption of CO2 on the electrode surface.

The steps are based on the transfer of multiple photogenerated elec-

trons (conversion to methanol requires six electrons) and also the for-

mation of hydrogen radical relevant to produce hydrocarbon from

carbon dioxide [28]. The literature has reported that p-n junction

semiconductors can be a good alternative to enhance the photoelec-

trocatalytic performance [15,13,29–32]. The heterojunction can en-

hance the separation of electron-hole pairs, since the charge transfer

can be amplified by the Z-scheme mechanism [17,32], facilitating these

multiple steps.

The arrangements of copper, copper oxides and TiO2 have been

investigated as effective way to improve the photoreduction of CO2. A

narrow band gaps (Ebg) and sufficient Fermi levels (Ef) are capable to

reduce CO2 to CH3OH (E0∼−0.4 V vs NHE) in the CuO semiconductor

(ECB∼−1.75∼ and EVB∼ 0.25 V vs NHE) [13]. The photoactivated

electron in the TiO2 conduction band (CB) (ECB∼−0.25 V and

EVB∼ 3.0 vs NHE) is not able to reduce CO2–CH3OH. Because of that,

the coupling of two semiconductors (p and n-type) can minimize the

recombination due the interaction with the electrons generated in the

TiO2 and holes generated in the valence band (VB) of CuO, a typically z-

scheme mechanism [13,17,32]. In addition, holes generated in the VB

of TiO2 perform the water oxidation to H%, which is important to

conversion of CO2 into hydrocarbons and fuels. This TiO2 and CuO

union can increase the shift of light absorption to the visible light region

(EbgCuO∼ 1.7 eV and EbgTiO2∼ 3.2 eV) [13,33] and improve the stabi-

lity of the CuO catalyst [13,20,34].

Another effect that has presented photoelectrocatalytic upgrade is

the use of nanostructured materials [31,17,35]. Among the several

possibilities of nanostructures, nanotubes are shown to be the most

promisor semiconductor type due to the large surface area and their

good electronic transport of the photogenerated electron/hole pairs,

reducing the recombination and increasing the efficiency in the process

[36,37]. The literature also reports that nanoparticulated films de-

posited on semiconductor surface can improve the kinetic of holes re-

action with electrolyte (due to higher penetration of electrolyte),

change the material conductivity and also change the adsorption of

analyte on the substrate [38,39].

The aim of the present work is to compare the effect of CuO na-

nospheres deposited at nanotubes TiO2 electrode prepared by anodi-

zation with a non-nanostructured material, to improve photoelec-

trocatalytic performance in the selective conversion of CO2 to methanol

at low bias potentials (+0.20 V vs. Ag/AgCl for instance) and to un-

derstand the mechanism involved in the system. The heterojunction

involving catalyst nanoparticle changed charge transfer resistance and

separation efficiency at the contact interface semiconductor electrolyte

when compared to composites of Ti/TiO2/CuO without a complete

nanostructure. These effects are supported by EIS, photocurrent voltage

and also by the improvement of methanol formation analyzed by

chromatographic techniques.

2. Experimental

2.1. Preparation of CuO nanospheres-decorated TiO2 nanotubes electrode

(NtTiO2/NsCuO)

TiO2 nanotube arrays electrode was prepared by electrochemical

anodization in aqueous solution [40]. A titanium plate with 4.0 cm2

was polished using abrasive papers of successively finer roughness and

then cleaned by applying three 15min steps in sonication with acetone,

isopropanol and ultrapure water. The cleaned plate was dried in a N2

stream. Electrochemical anodization was performed in a two-electrode

cell using a ruthenium foil as the counter electrode and 1.0 mol L−1

NaH2PO4+0.3wt.% HF as the supporting electrolyte. The applied

potential was initially ramped from 0 to 20 V at 2 Vmin−1 and then

kept constant at 20 V for 2 h. After the anodization, the electrode was

cleaned with ultrapure water, dried with a N2 stream and annealed at

450 °C for 2 h.

After annealing, the TiO2 nanotubes were decorated with CuO na-

nospheres by dip coating using an adapted methodology [41]. The

decorated semiconductor was obtained following two depositions of

copper oxide by dip coating. The solution used for the dip coating was

prepared with dibasic copper carbonate (8.4× 10−2mol L−1 of metal)

as a copper oxide precursor, citric acid and ethylene glycol in a metal

molar ratio of 1:4:16, respectively. The semiconductor was annealed

after each deposition at 450 °C for 2 h.

The Ti/TiO2/CuO semiconductor without nanostructure was ob-

tained by dip coating of six layer with copper oxide and titanium oxide

precursors following by annealing after each deposition [13,41]. This

material results of characterization and CO2 reduction under different

potential and supporting electrolytes was publish recently by the au-

thors [13]. The Ti/TiO2/CuO electrode presents 10% in weight of CuO

semiconductor [13], three times higher than is coating in the NtTiO2/

NsCuO.

2.2. Characterization of (NtTiO2/NsCuO)

The prepared semiconductor was characterized structurally and

morphologically by X-ray diffraction (XRD) on a Siemens D5000 dif-

fractometer with Cu Kα radiation and Field Emission Gun-Scanning

Electron Microscopes (FEG-SEM) on a JEOL 7500F Microscope coupled

to energy-dispersive X-ray spectroscopy analysis (EDS). An UV/Vis/NIR

spectrometer (PerkinElmer Lambda 1050) with an Integrating Sphere-

150mm UV/Vis/NIR (InGaAs) module for diffuse reflectance mea-

surements was used to obtain the optical band gap.

The electronic charge transfer was analyzed by electrochemical

impedance spectroscopy (EIS) in an Autolab PGSTAT 302N potentiostat

with Nova 1.11.2 software (Metrohm Autolab B.V.). The measurements

were performed using a Ag/AgCl reference electrode and a Pt counter

electrode in 5.0mmol L−1 Fe(CN)6
3−/4− prepared in 0.1mol L−1 KCl

as supporting electrolyte. The frequency employed range from 10 kHz

to 0.03 Hz, with a 5mV rms sinusoidal modulation at 0.22 V.

The photocurrent response was evaluated by linear sweep voltam-

metry in 0.1 mol L−1 NaHCO3 at pH 8 with and without CO2 using at

scan rate of 0.01 V s−1 using an Autolab PGSTAT 302.

2.3. CO2 Reduction by photoelectrocatalysis

The photoelectrocatalytic reduction of CO2 was performed in a two

compartments reactor of 200mL in each compartment (Fig. 1), sepa-

rated by a nafion® proton exchange membrane (6). An electrode of

NtTiO2/NsCuO acting as photocathode (working electrode) (1) was

positioned in a compartment receiving the incidence of light system

(UV–vis light from a commercial 125W high pressure mercury lamp

without the bulb with I= 9.23Wm−2) through a quartz window (7).

An Ag/AgCl reference electrode (2) was also inserted in the same

compartment where, CO2 was also bubbled (1.0 mLmin−1) (3) con-

tinuously during 45min to reach saturation and maintained during all

the experiment. A Pt grid was used as a counter electrode (4) and the

Fig. 1. Scheme of the two compartments photoelectrocatalytic reactor used for CO2 re-

duction. 1) photocathode, 2) reference electrode (Ag/AgCl), 3) CO2 bubbling, 4) counter

electrode (Pt grid), 5) gas bubbling, 6) nafion® proton exchange membrane and, 7)

UV–vis light incidence by a quartz window.
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solution of the counter electrode compartment cell was also the same

that in the working compartment, but it was deaerated with N2 (5). The

CO2 reduction was performed under 0.1mol L−1 K2SO4 solution pH 8,

0.1 mol L−1 K2SO4 with 0.05mmol L−1 p-nitrosodimethylaniline

(RNO) solution pH 8 and, 0.1mol L−1 K2SO4 with 10.0mmol L−1 glu-

cose solution pH 8 as the supporting electrolytes. The photoelec-

trocatalytic reduction of CO2 was carried out during 180min and ali-

quots of the catholyte and anolyte were removed and analyzed after 15,

30, 60, 120 and 180min.

2.4. Analysis of CO2 reduction products

Methanol was analyzed by gas chromatography on a Model CG-

2010 Schimadzu instrument coupled with a flame ionization detector

(CG-FID) employing a solid-phase micro-extraction technique (SPME)

[3]. For this purpose, samples of 0.5mL of the photoelectrolyzed so-

lution was transferred to a sealed container (1.5 mL) and submitted to a

heated bath for 7min at 65 °C. Afterwards, the fiber (75 μm Carboxen/

PDMS, SUPELCO) was exposed to the container vapors for 5min and

the fiber was directly injected into the gas chromatograph. The chro-

matographic column employed was a Stabilwax RESTEC of 30m length,

0.25mm internal diameter and 25mm film thickness. N2 was used as

the carrier gas at a 1.0 mLmin−1
flow rate. The temperature of the

injector was maintained at 250 °C and the detector at 260 °C in splitless

mode. The heating ramp used was: 40 °C hitting at 2 °C min−1 until

46 °C and 45 °Cmin−1 until 170 °C for 3min. An analytical curve was

constructed with linear relationship from 0.2 μmol L−1 to 10mmol L−1

for methanol. The determination coefficients and quantification limits

were 0.9723 and 0.2 μmol L−1, respectively.

Ethanol (C2H5OH) and acetone (CH3COCH3) were analyzed by the

same CG-FID methodology. Formic acid (HCOOH) and acetic acid

(CH3COOH) were analyzed by liquid chromatography coupled to a

diode-array detector (HPLC) on a Model 10AVP Shimadzu equipped

with a Rezex ROA-Organic Acid H+ (8%) column flowing the 210 nm

wavelength. The mobile phase was 2.5 mmol L−1 H2SO4 at flow rate of

0.5 mLmin−1 under room temperature. Formaldehyde (HCOH) and

acetaldehyde (CH3COH) were analyzed by HPLC using methodology

described in our previous work [12].

The OH production was followed by using 0.05mmol L−1 RNO so-

lution (Sigma-Aldrich, 97%) as bleaching reaction, once RNO is a well-

known OH radical trapping [42]. The RNO decay was monitored by

UV–vis spectrophotometry analysis (Agilent, Cary 60) at 440 nm.

3. Results and discussion

3.1. Characterization of NtTiO2 decorated by NsCuO

Fig. 2 illustrates the FEG-SEM image of TiO2 nanotubes (NtTiO2) top

view before modification (Fig. 2a) and after decoration with CuO na-

nospheres (Fig. 2b). Self-organized TiO2 nanotubes prepared using

aqueous methodology are coated on Ti plate with an average diameter

of 90 nm, wall thickness of 20 nm and medium length of 900 nm

[42,43]. Deposits of CuO nanospheres of average size of 39 nm were

well-distributed on the nanotube wall, as shown in Fig. 2b.

XRD and EDS (Fig. 3a and b, respectively) confirm the occurrence of

these deposits of CuO. The crystallinity of the obtained material is

confirmed by the defined peaks at 2θ=25.3, 54.2, 70.6 and 92.8° at-

tributed to anatase phase of TiO2 (A), 2θ=40.2° and 76.2° attributed

by the presence of Ti substrate (T) and 2θ=35.4 and 82.6° attributed

by occurrence of CuO (C), respectively. The EDS analysis (Fig. 3b)

confirms the presence of Cu (0.8, 8.0 and 8.8 keV), O (0.4 keV) and Ti

(0.3, 4.5 and 4.9 keV), constituents of NtTiO2/NsCuO.

Fig. 4a compares the diffuse reflectance spectra (DRS) recorded for

NtTiO2 and NtTiO2/NsCuO electrodes. Deposits of CuO nanospheres

promoted a slight decrease in the absorbance at wavelength (λ) lower

than 350 nm, but the light absorption increased the absorption intensity

at visible light (λ > 420 nm). The results confirm that heterojunction

of n-type TiO2 nanotubes and p-type CuO nanospheres semiconductors

can wider the optical absorption of the new material [20,28].

The band gap energy estimated for both electrodes (insert of Fig. 4a)

using kubelka-Munk equation [44] indicated that CuO nanosphere

(Ebg∼ 1.4 Ev [45,46]) deposited on TiO2 nanotubes surfaces

(Ebg∼ 3.0 Ev [47–49]) shifted the band gap energy to approximately

2.3 eV. This indicates that probably decoration of TiO2 nanotubes by

CuO nanoparticles could introduces new acceptor level in the band gap

as intermediate states, making it more efficient as electron trap [22]. In

addition, there are loss of transparency in the new material when ir-

radiated by visible light [50–52], which can improve the photoelec-

trocatalytic response when irradiated by a commercial lamp

The effect of applied potential on photocurrent curves of Iph vs. E

(Fig. 4b) were recorded at scan rate of 10mV s−1 in 0.1mol L−1

NaHCO3 pH 8 saturated with CO2 for the NtTiO2/NsCuO electrode in

the dark (curve I) and UV–vis irradiation (curve III). For comparison,

the same experiment was carried out for Ti/TiO2/CuO semiconductor,

where the TiO2 are deposited as nanoparticles and CuO has a dimension

of 300 nm (curve II) [13]. Under dark, NtTiO2/NsCuO electrode (curve

I) presented no current flow at anodic potential and the current flow at

potentials more negative than −1.0 V is associated with hydrogen

evolution [12]. However, under UV–vis irradiation the curves of Iph vs.

Fig. 2. FEG-SEM image of the top view of (a) TiO2 nanotubes without modification and (b) TiO2 nanotubes with copper II oxide nanoparticles.
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E of NtTiO2/NsCuO electrode (curve III) presented a typical behavior of

a p-n junction electrode. A high anodic current density is observed at

potential higher than −0.1 V vs Ag/AgCl reaching a current of 1.5 mA

at +0.2 V [[13],12,13]. This current is about 10 times higher than the

Ti/TiO2/CuO, indicating that the nanotubes and the size of the nano-

particle facilitate the separation of photogenerated charges and inter-

facial transfer of electron. These behavior is an indicative that could be

possible to reduce CO2 at bias potential so low as +0.2 V vs Ag/AgCl. In

addition, at negative potential is observed a shift of 200mV for CO2

reduction at NtTiO2/NsCuO in relation to Ti/TiO2/CuO electrode. It is

an indicative that electrons are photogenerated on irradiated NtTiO2/

NsCuO, that are rapidly trapped by adsorbed CO2 at CuO nanoparticles

[33].

In order to evaluate how the particle size interferes in the interfacial

charge transfer resistance (RCT), electrochemical impedance spectro-

scopy (EIS) measurements (Fig. 5a) were carried out in

5.0×10−3mol L−1 Fe(CN)6
3−/4− redox probe (0.1 mol L−1 KCl) for

the semiconductors NtTiO2/NsCuO (black curve) and Ti/TiO2/CuO (red

curve). For comparison, it was also recorded EIS for NtTiO2 without any

modification (blue curve). Fig. 5a shows the Nyquist plots, where the

diameter of the semicircle obtained is related to electrons transfers and

separation of the electron/hole pairs generated at the electrode

interface (semiconductor/electrolyte) [53,54]. The insert in the Fig. 5a

compares the reduction in the charge transfer resistance for the na-

nostructured electrode NtTiO2/NsCuO, for Ti/TiO2/CuO semiconductor

and for NtTiO2 without modification. The semicircle diameter is much

smaller for heterojunctions using TiO2 nanotubes and CuO nanospheres

coatings, indicating that the separation of photogenerated charges is

facilitated in the Schottky barriers.

The value of RCT estimated for the nanostructured NtTiO2/NsCuO

semiconductor was 1.34 KΩ, while for the semiconductor with the same

oxides, but non-completely nanostructured (Ti/TiO2/CuO), the elec-

trical resistance change was 905 KΩ, and for the NtTiO2 without

modification was 11.3 MΩ. The value of charge transfer resistance for

the heterojunction between copper oxide nanospheres and TiO2 nano-

tubes is decreased when compared with NtTiO2 and Ti/TiO2/CuO,

proving that the better performance is obtained for the completely

nanostructured material.

To a better understanding of the effect of NsCuO on the performance

of composite, potential-dependent capacity measurements were re-

corded for NtTiO2/NsCuO and NtTiO2 electrodes in 0.1mol L−1 phos-

phate buffer solution pH 7 at 10 Hz, as shown in Fig. 5b. The flat band

potential (Ufb) and the carrier’s densities (ND) were calculated using the

Mott-Schottky plots by the equation:

Fig. 3. (a) XRD diffractograms and (b) EDS of the TiO2 na-

notubes decorated with two dip coating layers of CuO nano-

spheres semiconductor.

Fig. 4. (a) Diffuse reflectance analysis of TiO2 nanotubes

(black line) and NtTiO2/NsCuO (red line) with the insert of

band gap for TiO2 nanotubes (black line) and NtTiO2/NsCuO

(red line); b) photocurrent vs. potential of the NtTiO2/NsCuO

electrode in the dark (I - black curve) and under UV-Vis light

(III - red curve), compared with Ti/TiO2/CuO electrode under

UV-Vis light (II - blue curve), under supporting electrolyte

saturated with CO2 in all of the curves. (For interpretation of

the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 5. a) EIS measurements in 5.0× 10−3 mol L−1 Fe

(CN)6
3−/4− redox probe (0.1 mol L−1 KCl) for the semi-

conductors NtTiO2/NsCuO (black curve), Ti/TiO2/CuO (red

curve) and NtTiO2 (blue curve). Figure insert: Amplification

of Nyquist plot; b) C−2 vs. E relation at 10 Hz in 0.1 mol L−1

phosphate buffer solution pH7 for the semiconductors

NtTiO2/NsCuO (black curve) and NtTiO2 (blue curve). (For

interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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= − −− ( )( )C εε eN E E kT
e

2
SC D fb
2

0 (1)

where CSC is the differential capacitance of the space charge layer; ε is

the dieletric constant, in the anatase case the value applied was 48; ε0 is

the permittivity in the vacuum (8.86× 10−14 F cm−1); e is the ele-

mentary electron charge (1.6× 10−19 C); U is the applied bias poten-

tial; K is the Boltzmann constant and T is the temperature [55,56].

The flat band potential (Efb) for both semiconductors were obtained

from the intercept on the V axis of C−2 vs. V plot (generating the re-

lation Efb=E – kT/e) (Fig. 5b). The Efb for NtTiO2 was 0.46 V, whereas

after insertion of CuO nanosphere there was a decrease of 200mV. The

results indicated that in a heterojunction electrode probably the Z-

scheme heterojunctions could be preponderant and the electrons pho-

togenerated under irradiation in the TiO2 semiconductor can be driven

to the CuO resulting in significant synergistic effects able to improve the

separation of charge and the performance in relation to the CO2 re-

duction.

The number of carrier’s density was also calculated using the linear

region slope of Mott-Schottky plot (ND=2/ε.ε0.e.slope) [56]. The ND

obtained by the TiO2 nanotubes without modification was 2.08× 1018

while for the NtTiO2/NsCuO the ND was 7.12×1018. In other words,

the number of carrier’s density is more than three times higher when

the electrode is modified (NtTiO2/NsCuO). Thus, the results indicate

that the modification of NtTiO2 with CuO nanospheres reduce the

material resistance, improve the surface charge transfer and also the

Fermi energy (based on Efb) and, therefore, could be a good candidate

to be applied in the CO2 reduction.

3.2. CO2 reduction at NtTiO2/NsCuO electrode

Taking into consideration that at a negative potential could occur

the reduction of CuO nanospheres to metallic copper [26,57,58], and

that Efb of the NtTiO2/NsCuO is 0.26 V, further photoelectrocatalytic

experiments to promote reduction of CO2 were carried out in

0.1 mol L−1 K2SO4 solution pH 8 saturated by CO2 gas, applying a po-

tential of +0.2 V and UV–vis irradiation. Fig. 6a compares the amount

of methanol formed during the time under NtTiO2 electrode and NtTiO2

modified with CuO nanospheres. Fig. 5b shows the methanol con-

centration formed after 180min of photoelectrocatalysis for the NtTiO2,

NtTiO2/NsCuO and Ti/TiO2/CuO semiconductors.

At both electrodes, NtTiO2/NsCuO and NtTiO2, the photoelec-

trocatalytic conversion of CO2 did not form measurable products, such

as formic acid, acetic acid, formaldehyde, acetaldehyde, ethanol, pro-

panol and acetone, analyzed in this work. In addition, the same reaction

was performed by applying photocatalysis, without potential con-

tribution, and it was not possible to quantify any of the products ana-

lyzed, even methanol. These results prove the contribution of the ap-

plied potential to the photocatalysis, as also observed by others authors

[29,59–61].

The CO2 reduction under potential of +0.2 V and UV–vis irradiation

during 180min of photoelectrocatalysis reached 0.1mmol L−1 of me-

thanol using NtTiO2/NsCuO semiconductor, with 57% of faradaic effi-

ciency (Fig. 6a, red curve). The methanol formation under nanotubes of

TiO2 without modification (Fig. 6a, black curve) reach less than

0.02mmol L−1, illustrating the importance of CuO nanospheres coating

on CO2 conversion. The process is based on the photogenerated elec-

trons on the TiO2 surface being trapped by the CuO, where the proper

reduction reaction takes place [13].

The transfer mechanism of the NtTiO2/NsCuO is initialized by the

photons with energy higher than the band gap energy (Eg), which are

absorved by the semiconductor (Fig. 7). The electrons with this energy

are driven from the valence band (VB) to the conduction band (CB) of

the TiO2 nanotubes and CuO nanospheres, generating holes in the VB of

both semiconductors. The electrons in the TiO2CB are captured by holes

generated in the CuOVB, based on a Z-scheme mechanism. Thus, more

electrons in the conduction band of CuO are free to react with electron

acceptors (CO2 in this case). The kinetic of reaction between holes and

electrolyte (water) at NtTiO2 is faster, generating hydrogen radical, as

demonstrated in the Fig. 7. Thus, the efficiency of the CuO nanoparticle

on the heterojunction composite is limited by (i) the kinetic of electron

transfer in the interface, (ii) electron/hole recombination in the junc-

tion TiO2 and CuO and (iii) the fast and efficient consumption of the

hole presented in the n-type TiO2 nanotubes [13,33,62], essential to

form hydrocarbon.

Once EIS proved the presence of an improvement in the electrons

transfers for NtTiO2/NsCuO semiconductor, it suggests that, in a na-

nostructured p-n heterojunction electrode, the CO2 conversion should

be highly efficient due to a faster electron transfer. In addition, a more

efficient hole is also operating, where hydrogen radicals are formed to

generate methanol. Despite an improvement in the CO2 reduction under

NtTiO2/NsCuO compared with NtTiO2 without modification, the

amount of methanol generated using the nanostructured NtTiO2/

NsCuO semiconductor and the Ti/TiO2/CuO was the same, around

Fig. 6. a) Methanol formation during the time of photoelec-

trocatalysis under NtTiO2 (black line) and NtTiO2/NsCuO

(red line) in 0.1 mol L−1 K2SO4 supporting electrolyte ap-

plying +0.20 V and UV–vis light; b) comparison of methanol

concentration formed for the NtTiO2, NtTiO2/NsCuO and Ti/

TiO2/CuO semiconductors after 3 h of reaction. (For inter-

pretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 7. Schematic representation of the charge-transfer mechanism in p-n junction

NtTiO2/NsCuO semiconductor under potential and UV–vis irradiation.
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0.1 mmol L−1 (Fig. 6b). There was no improvement in the catalytic

process as it was expected. Hodes and coworkers [38] postulated that

the efficiency exhibited by nanocrystals depends on the difference be-

tween electron and hole transfer into the supporting electrolyte.

Therefore, there are two hypotheses for the low methanol production:

(i) a large electron-hole pair recombination on the nanostructured

semiconductor or (ii) a fast and efficient consumption of the hole pre-

sented in the n-type TiO2 nanotubes by the product.

Once the photoelectrocatalysis proved to present a reduced charge

recombination, promoting fast electron transfer to adsorbed CO2, while

at the same time maximizing the yield [[63],4,29,59], and the NtTiO2

presents a very long photohole lifetime on the order of ms-s under

conditions where water oxidation takes place [63], the hypothesis of

the nanostructured heterojunction provide not just a more efficient

electron transfer to CO2, but also, a more efficient hole that is oxidizing

the methanol generated seems more appropriated.

Taking in consideration that more efficient holes are operating in

the NtTiO2/NsCuO surface and that methanol is a known hole sca-

venger [64,65], reaching a hole trapping efficiency for TiO2 semi-

conductor around 0.2 [65], the photoelectrocatalysis was carried out in

the presence of glucose and p-nitrosodimethylaniline (RNO) as holes

and OH scavenger, respectively [66–68]. Fig. 8a presents the photo-

electrocatalytic reduction of CO2 along the time using NtTiO2/NpCuO

carried out at in 0.1mol L−1 K2SO4 under Eapp=+0.2 V and UV–vis

irradiation (curve I) and with addition of 0.05mmol L−1 RNO (curve II)

and 10.0mmol L−1 glucose (curve III) in the supporting electrolyte.

The methanol formation increased six times when photoelec-

trocatalysis is carried out in the presence of hydroxyl radical scavenger

(curve II). Therefore, according to these experiments, part of the me-

thanol generated by the CO2 reduction can be reoxidized to CO2 and

water if the product keeps in contact with OH species, due to the im-

provement in the charge transfer. The presence of OH species is con-

firmed in the Fig. 8b by the results of RNO discoloration (proportional

to hydroxyl generation [66,67,69]) concomitantly to an experiment of

CO2 reduction on the heterojunction NtTiO2/NsCuO. The results in-

dicate that radicals are formed in the compartment of the working

electrode, diagnosed by the promptly discoloration of the reagent

(Fig. 8b, curve II) at a scan rate of −0.017min−1. The analysis of the

electrolyte presented in the counter electrode compartment indicates

that no hydroxyl radicals are formed in the counter compartment

during the experiment (Fig. 8b, curve I).

The same reaction was performed at the same experimental condi-

tions for the non-nanostructured electrode (Ti/TiO2/CuO) in

0.1 mol L−1 K2SO4 with 0.05mmol L−1 RNO solution pH 8. RNO dis-

coloration was evaluated during 180min of photoelectrolysis and also

the simultanous methanol formation. The rate of RNO discoloration was

−0.005min−1, which is more than 3 times slower than at NtTiO2/

NsCuO electrode. The discoloration is proportional to the hydroxyl

radicals formed in the reaction, so it is possible to affirm that under the

non-nanostructured electrode there is less formation of the hydroxyl

radicals. No discoloration was observed in the counter electrode also

using the non-nanostructured semiconductor.

The methanol formation was analyzed after the reaction under

0.1 mol L−1 K2SO4 with 0.05mmol L−1 RNO solution pH 8, and it was

observed no significative improvement in the product concentration

generated, the value reaches the same amount obtained in the reaction

without RNO, around 0.1mmol L−1. In addition, the reaction was not

selective to methanol, also small amount of ethanol and acetone were

observed, in the same way that it was obtained in our previous study

[13]. The behavior could be indicative that lower amount of hydroxyl

radical generation does not interfere in the CO2 reduction using the

non-nanostructured electrode. This reinforces the evidence that under a

complete nanostructured electrode, there is an efficient electron and

hole separation, with fast charge transfer, but also a fast and efficient

competitive consumption of the products.

Thus, the results are indicative that in the heterojunction electrode

nanostructured (p-n type junction) electrons and holes are spatially

separated owning a long lifetime and driven to the surface in agreement

with charge affinity. Electrons are trapped in the reduction of CO2

adsorbed preferentially on CuO surface (p-type semiconductor), but

also the holes are simultaneously formed in the TiO2 semiconductor

surface, which are able to oxidase not only water, but the methanol

generated as well, decreasing the reaction efficiency.

The methanol generated in the solution could be oxidized not only

indirectly by OH species, but also directly by the holes on the NtTiO2

surface, once it is known as hole scavenger [64,65]. Higher methanol

formation was obtained in the photoelectrocatalytic CO2 reduction with

glucose in solution (Fig. 8a, curve III) yielding 0.71mmol L−1 after 3 h,

indicating that glucose, acting as a trap for holes, prevents the OH

formation and consequently the oxidation of the product by both, hole

and/or hydroxyl species, generating an increase of 13% in the methanol

production, comparing with the reaction with RNO. The H species can

be provided by the glucose oxidation or/and even by the supporting

electrolyte. Furthermore, the H species are able to react with the CO2
−

species and generate methanol without any type of product oxidation.

The reactions involved in this study are explained in the chemical Eq.

(1)–(7).

+ → + → +− ∙−Cu O e Cu O CO Cu O COII I II
2 2 (1)

+ → ++ + ∙h H O H OH2 (2)

+ + → +∙− + −CO H e CH OH H O6 52 3 2 (3)

+ → +⋅ +CH OH OH or h CO H O( )3 2 2 (4)

− − + → − −∙ ∙CH N Ph NO HO CH N Ph N OH O( ) ( ) ( )3 2 3 2 (5)

+ → ++ ∙ +C H O h C H O H6 12 6 6 11 6 (6)

→ + +− + −OH O H e2 2 42 (7)

The use of heterojunction NtTiO2/NsCuO promotes a spatial charge

carrier’s separation and CuO has the capacity of trapping the electrons

promoted to the conduction band of the TiO2 nanotubes. The hole and

electrons become specially separated, which provides to both a long

Fig. 8. a) CO2 conversion into methanol at different times

and applying photoelectrocatalysis at 0.2 V using 0.1 mol L−1

K2SO4 solution pH 8 (I), 0.1 mol L−1 K2SO4 and

0.05mmol L−1 RNO solution pH 8 (II), and 0.1 mol L−1

K2SO4 and 10.0mmol L−1 glucose solution pH 8 (III) as the

supporting electrolyte; b) production rate of the steady state

hydroxyl radical during photoelectrocatalytic CO2 reduction

at NtTiO2/NsCuO electrode in 0.1mol L−1 K2SO4 with

0.05mmol L−1 RNO solution pH 8 in the counter compart-

ment (I) and working electrode (II).
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lifetime, and NsCuO begin to be a charged surface, where the CO2 will

adsorb amplifying the reduction to CO2
− as intermediate [13]. This one

electron reduction step is the thermodynamic limit to form the inter-

mediate and further subsequent reductions [70].

4. Conclusions

In this work is demonstrated that nanostructured NtTiO2/NsCuO

electrodes were successfully constructed by anodization and dip-

coating. The semiconductor with CuO nanoparticles dispersed on the

TiO2 nanotubes showed a typical heterojunction (p-n type) properties.

It was verified by the amplification in the semiconductor response

under UV–vis light, higher charge carrier’s separations, lower charge

transfer resistance, lower flat band potential and good photoactivity

behavior. The nanostructured NtTiO2/NsCuO electrode presented a

good response for CO2 reduction under UV–vis light and low potential

such as +0.2 V. The same reaction was performed by adding RNO to

the supporting electrolyte and the methanol formation was six times

higher, leading to the conclusion that part of the product generated by

the CO2 reduction can be reoxidized to CO2 and water if the product is

still in contact with OH species. Maximum conversion was obtained in

0.1 mol L−1 K2SO4 pH 8 containing 10.0 mmol L−1 glucose, due to the

fact that no OH species could be formed in the presence of glucose, and

consequently, non-formed products were oxidized in this case, gen-

erating 0.71mmol L−1 methanol with great selectivity in relation to

ethanol, acetone, formaldehyde, acetaldehyde, formic acid or acetic

acid. All the experiments presented in this paper were conducted with

the same prepared semiconductor, showing a stability over of 27 h of

reaction under potential and light incidence.
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