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ABSTRACT 

Three-dimensional integration techniques have become increasingly popular to meet the ever 

rising demand of high capacity and reduced package size in microelectronics devices. Through 

Silicon Vias (TSVs) offer an efficient method to achieve 3D packaging with shorter 

interconnection length and higher interconnect density relative to conventional wire bonding. 

Wet electrochemical etching is a simple technique which may be used to create deep structures 

in silicon and is relatively low cost compared with Reactive Ion Etching or Laser drilling. 

Historically, a primary challenge is passivating TSV (macropore, microstructure) sidewalls 

against etching at sidewall thickness greater than twice the depletion region width. Lehmann et al 

created macropores in n-type silicon (40 Ω-cm) with sidewall thickness ~ six times depletion 

region width, however the wall surface smoothness differed from the macropores passivated by 

the depletion region. In this research, an attempt was made to create isolated (sidewall thickness 

= ∞ times the depletion region width) microstructures in patterned n-type silicon (100). For the 

first time, high aspect ratio (~5:1) deep microstructures with non-porous sidewalls at isolated 

pitches (>100 µm) are demonstrated using frontside illumination with photoelectrochemical 

etching. Further, the microstructure aspect ratio is observed to increase with etch duration. While 

literature on backside illumination illustrates porous sidewalls at isolated pitches, results from 

this study show frontside illumination can be used to create non-porous microstructures at large 

pitches. The microstructure etch rate is a function of light intensity and supporting electrolyte 

composition whereas the microstructure sidewall etching is demonstrated to be a function of 

applied anodic bias. Anodic bias controls the depletion region width which governs the 

dominance of drift and diffusion currents. Isolated microstructures are obtained at a low anodic 

bias where silicon dissolution is controlled by the diffusion current. The microstructure surface 
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smoothness is affected by incident light wavelength; sidewall roughness is minimized by 

conducting the dissolution reaction with photons having shallower absorption depth in silicon. 

The work shows photoelectrochemical etching of isolated, anisotropic, high aspect ratio 

microstructures is possible using frontside illumination with low wavelength light at low anodic 

bias. 
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1 INTRODUCTION 

For more than four decades the semiconductor process development has followed Moore‟s 

law, however this law faces limitations as technology approaches atomic dimensions. 

Moore‟s law predicts the number of transistors in a microprocessor will approximately 

double every two years (Moore 1965). Increase in the number of transistors in a small area 

leads to problems involving power consumption, and transmission speed in 2D inteconnected 

systems. „More than Moore‟ law suggests 3D integration schemes can resolve the large scale 

integration issue with 2D packaging using vertical interconnection schemes (Saadaoui, Wien 

et al. 2008). 3D interconnections increase the functionality of the microprocessors by 

decreasing distance between the transistors. 3D Interconnection is realized by System in 

Package (SiP) and Through Silicon Vias (TSVs) (Figure 1.1). SiP connects the die using wire 

bond or solder bump technology. Unlike SiP, TSVs create interconnections through the body 

of the die thereby decreasing the overall device size. TSV combines advantages of both 

System on Chip (SoC – 2D packaging) and SiP to deliver devices with high speed and 

reliability, and smaller size and low power consumption (SEMATECH).  

Figure 1.1. 3D Packaging Schematic. 
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TSVs are high aspect ratio anisotropic structures developed in silicon (Si). These structures 

are backfilled with highly conductive metal for vertical interconnection (Figure 1.2). „Deep 

Reactive-Ion Etching‟ (DRIE) process is widely adopted by semiconductor industries to form 

TSVs. Though DRIE is currently best foreseeable choice for TSV fabrication in 3D 

interconnects, this technique is still drawn back with some undesirable attributes such as 

scalloped sidewalls, greenhouse gas emission, increased production cost, low throughput, and 

low etch rates in deep structures. On the other hand, wet electrochemical etching is a simple, 

and low cost process to create TSVs. The electrochemical etching process has lower energy 

requirement compared to DRIE. Use of HF and its waste disposal is more controllable and 

environment-friendly than SF6. Hence, wet electrochemical etching can prove to be viable 

solution for the problems related to cost and environmental pollution posed by DRIE. 

In 3D interconnection, devices are electrically connected by filling TSVs with conductive 

material. Si processing temperature is high and while cooling, rate of contraction of copper 

filled TSVs is faster than the surrounding Si. The difference in the silicon and copper cooling 

Figure 1.2. Copper filled TSVs. Reference Van Olmen et al., “3D Stacked IC Demonstration 
using a Through Silicon Via First Approach”, IEEE Conference Proceedings publication (© 
2008 IEEE). 
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rate leads to mechanical stress in bulk Si around the TSVs. Stress hinders the device 

performance and can even result in mechanical failure (Lu, Xuefeng et al. 2009). The stress 

developed in Si can be alleviated by locating the TSVs at larger pitches (100-500 µm). A 

sidewall thickness of 38-40 µm between adjacent TSVs is demonstrated via wet 

electrochemical etching process (Lehmann and Ronnebeck 1999). 

Wet photoelectrochemical dissolution of n-type Si can be achieved by both frontside and 

backside illumination.  During frontside illumination, charge carriers are generated near 

silicon-electrolyte surface whereas backside illumination gives rise to charge carriers in bulk 

silicon. It is found that trench growth is promoted only when the charge carriers are present 

in the bulk and near-surface charge carriers lead to lateral expansion of the trenches 

(Lehmann and Foll 1990). This led to backside illumination being preferred over frontside 

illumination for creation of deep trenches. While this argument is valid for tight pitches, we 

run into the problem of side wall etching as we move to isolated pitches. When the pattern to 

be etched has wall thickness greater than twice depletion region width, presence of holes in 

the bulk silicon will lead to side-wall branching. Near-surface holes generated with frontside 

illumination can alleviate the problem of sidewall branching. In this work, we deduce the 

conditions to fabricate anisotropic, high aspect ratio, isolated TSVs via wet 

photoelectrochemical etching using frontside illumination. Anodic bias applied for the 

electrochemical dissolution and wavelength of the illumination source form key parameters 

for fabricating isolated, high aspect ratio TSVs. 

In the further sections of this thesis we will refer to TSVs as microstructures (vias, trenches, 

spirals, etc.) due to their wide range of application not only in microelectronics but also in 

micro-electro-mechanical systems, microfluidics, and photovoltaics. 
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2 BACKGROUND AND LITERATURE SURVEY 

2.1 Background and Band Structure of Silicon Electrolyte Interface 

Silicon (Si) may be classified into n-type or p-type based on the dopant introduced. Addition of 

group V elements, namely, Phosphorus, Antimony or Arsenic in Si provides excess electrons 

hence, named n-type; while doping silicon with group III element such as Boron, causes it to be 

p-type. The electronic structure of Si is understood in terms of energy bands composed of atomic 

orbitals of the individual atoms. Free electrons lie in the conduction band and holes form 

medium for electrical conduction in the valence band. Band gap is the energy difference between 

the conduction band and valence band. Band gap of silicon at room temperature is 1.12 eV. If Si 

is externally supplied with energy equivalent to the band gap energy electron hole pairs can be 

generated. As the external energy exceeds the band gap energy, an electron bound to the Si 

lattice acquires enough energy to break the covalent bond and be a part of the conduction band. 

This creates a vacancy – hole in the valence band of Si. Thus, the band structure of Si is 

comprised of higher electron energy conduction band and lower electron energy valence band. 

The change in the Gibbs energy of a charged particle in a system of charged particles is defined 

as the electrochemical potential of that system (Sato 1998). The electrochemical potential of a 

semiconductor (charged particles = electrons) is known as the Fermi energy. At absolute zero, 

Fermi level is designated as the energy level where no electrons in the material will have the 

energy to rise above this level. Electrons with greater energy than Fermi energy may be available 

for conduction; electrons with less energy are bound to the crystal structure. Position of the 

Fermi level varies with the type and amount of active dopant introduced. For an electrolyte, the 

redox potential is the electrochemical potential. When a semiconductor-electrolyte interface is at 

equilibrium, the electrochemical potentials of the two phases are equal. The redox potential of 
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most electrolytes lies in between the band gap of the semiconductor that is in between bottom of 

the conduction band and top of the valence band. For a moderately doped (dopant concentration 

< 1017cm-3) n-type semiconductor, the fermi energy level is very close to the conduction band. 

For equilibrium to be established between two phases, electrons from n-type semiconductor are 

transferred into the electrolyte. Positive donor ions are left behind to some finite distance within 

semiconductor starting from the interface. This is reflected by the upward band bending at the 

interface. Charge transfer depends on the relative position of the Fermi level and the redox 

potential. Figure 2.1 illustrates the relative position of the Fermi level with respect to the 

electrolyte redox potential on application of an external bias. With n-type Si electrode, when a 

forward bias is applied, the Fermi energy is raised further higher as compared to zero bias 

equilibrium condition and electrons are transferred into the solution. An electron accumulation 

layer is formed if the surface reaction is slow or negligible, thus, bands bend downwards. 

Alternately, application of a positive potential to n-type semiconductor with respect to 

equilibrium potential causes electron flow from the electrolyte into the semiconductor due to 

formation of space charge region (Więckowski 1999) also known as depletion region.  

Figure 2.1. Energy band diagram at n-type silicon-electrolyte interface at (a) zero bias, (b) 
forward bias, and (c) reverse bias. 
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The energy band model gives the number of allowed states for an electron in each band. The 

number of states in the conduction and the valence band is given by the following equations: 

𝑔𝐶 𝐸 =  
𝑚𝑛∗  2𝑚𝑛∗ (𝐸−𝐸𝐶 )𝜋2 .ђ3

, for 𝐸 ≥ 𝐸𝐶      (2.1) 

𝑔𝑉 𝐸 =  
𝑚𝑝∗  2𝑚𝑝∗ (𝐸𝑉 −𝐸)𝜋2 .ђ3

, for 𝐸 ≤ 𝐸𝑉     (2.2) 

 

Where, gC(E) and gV(E) are the density of states of conduction band and valence band, 

respectively, mn
* and mp

* are the electron effective mass and the hole effective mass, 

respectively, EC and EV are the minimum conduction band energy and maximum valence band 

energy, respectively and ђ = h/2π where, h is Plank‟s constant. The gap between the conduction 

band and the valence band is known as the forbidden energy gap. There are no energy states for 

the electron to occupy in the forbidden gap in an intrinsic semiconductor. Allowed energy states 

are created in the forbidden band when dopants are introduced in the semiconductor (Pierret 

1996). 

The allowed energy states in proximity to the material‟s surface are known as surface states 

(Interfacial traps or interface states). These energy states are localized (Pierret 1996). Si when 

exposed to air forms a native oxide layer on its surface. Presence of an oxide layer leads to 

excessive surface states in the form of dangling bonds giving rise to more electron-hole 

recombination centers. The surface oxide can be dissolved in HF and leaving the Si surface with 

H-terminated bonds. A lower density of surface states is reported with H-terminated silicon 

(Many, Wolovelsky et al. 1993; Savir, Many et al. 1995). The surface states charge and 

discharge based on the applied bias (Pierret 1996) and consequently influence the 

electrochemical dissolution process. 
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2.2 Alternative Techniques to Create Deep Microstructures in Silicon 

The major techniques being studied to realize deep microstructures in Si are Alkaline etching, 

Deep Reactive Ion Etching (DRIE), Laser Drilling and Wet electrochemical etching.  

 Alkaline etching:  

Si can be anisotropically etched using KOH, NaOH, LiOH, ethylene diamine, and TMAH. KOH 

etching is commonly used to etch Si. The alkaline etchants etch the different crystals planes of Si 

with considerably different etch rates. The ratio of etch rate of Si(100) to Si(111) is 400 and that 

for Si(110) to Si(111) is 600 (Gad-el-Hak 2005). The etch rate variation with the crystallographic 

orientation causes anisotropy.  When monocrystalline Si is subjected to alkaline etching at the 

(100) plane, inverted pyramid shaped structures are obtained as shown in Figure 2.2. Alkaline 

etching etches n-type and p-type silicon, also the etch profile remains constant for a given 

crystalline plane. Further, the alkaline etch profile is independent of the resistivity of the Si 

substrate. However, the major disadvantages of KOH etching is low aspect ratio and slanted 

sidewalls (sidewalls make an angle of 54.74º with the horizontal plane) (Barycka and Zubel 

1995).  

Figure 2.2. SEM image showing the top view of a KOH pit in Si (100). 
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 DRIE - Bosch Process: 

Conventional deep etching process for Si is a dry process using high density Inductively Coupled 

Plasma (ICP) etching systems. Bosch process consists of steps that alternate between reaction 

and passivation mechanisms. Commonly used dry etching gases are SF6, NF3 and CF4. 

Passivation mechanism was initially developed as polymer deposition like CHF3, C4F8 and Ar, 

(Franz Laermer 2002) and recently, hydrogen and oxygen (Sammak, Azimi et al. 2007; Sammak, 

Azimi et al. 2007) have been reported for the same purpose. Anisotropy of the structure is 

dependent on the etching and passivating gas flow rates and passivating time. A small deviation 

from optimal conditions leads to polymer deposition or isotropic etching (Blaw, Zijlstra et al. 

2001).  Advantages of the Bosch process are high aspect ratio TSV, stable repeatable etch 

profile, high etch selectivity and high etch rate (Wu, Kumar et al. 2010). Due to the alternating 

reaction-passivation mechanisms applied in DRIE scallops are formed on the sidewalls (Figure 

2.3). These are not desired while metal filling. Also, the etchants mainly used are SF6 and CF4; 

Figure 2.3. Through Silicon Via using DRIE technique, showing scalloped sidewalls. Reference 
Zhang et al., “Design, fabrication and electrical characterization of TSV”, IEEE Conference 
Proceedings, Reprinted with permission from IEEE, (© 2010 IEEE). 
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SF6 in particular is a highly potent greenhouse gas with 22,900 times more damaging effect than 

CO2, while being stable in the atmosphere for 3,200 years, fluorocarbons are extremely toxic and 

bear a high cost. Many environmental and health issues like depletion of ozone layer and 

greenhouse effects are due to the existence of these compounds in the atmosphere. Besides these 

disadvantages, use of DRIE tool requires high energy that increases with production rate. Thus, 

the production cost escalates due to chemical costs as well as well as the energy requirements. 

Also, the etch rates attained depend on loading (exposed area) and aspect ratio. Large exposed 

area and deep features lead to slower vertical etch rate (Jansen, Gardeniers et al. 1996; M.Puech 

2002). Major concern for industries using DRIE is incurred cost. The DRIE tool is complicated 

and the energy requirement scales with the production. Wet electrochemical etching systems on 

the contrary are comprised of simple reactor set up and inexpensive wet etching chemicals. 

 Laser drilling: 

Microstructures (Through Silicon Vias) can be formed in Si using Ultra Violet (UV) Laser 

drilling technique. Drilling is achieved with very high power density lasers. Etch depth attained 

depends on the number of shots. High etch rate per shot is achieved when microstructure 

diameter is small and the number of microstructures to be etched is less than 100 (Denda 2007). 

Figure 2.4. Microstructures in Si by Laser Drilling. Reference Rodin et al., “High Throughput 
Low CoO Industrial Laser Drilling Tool”, Angel Business Communications. Reprinted with 
permission from EuroAsia Magazine. 
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4-20 µm/shot has been achieved using the laser ablation technique (Forsman, Lundgren et al. 

2007; Rodin, Callaghan et al. 2008). The microstructure diameter is decided by aperture size on 

the Laser drilling equipment. This eliminates the requirement of expensive patterning steps that 

include Lithography and Reactive Ion etching (Sekiguchi, Numata et al. 2006). Tapered or U-

shaped microstructures are obtained by laser ablation process (Figure 2.4) (Sekiguchi, Numata et 

al. 2006; Rodin, Callaghan et al. 2008). Laser drilling has some disadvantages that prohibit its 

wide scale industrial application. Whenever deep microstructures are created in Si during Back 

End of the Line (BEOL), silicon is placed on Aluminum wired substrate. Continuous laser action 

etches the underlying aluminum film (Denda 2007) leading to loss in device conductivity. The 

other concern is the excessive heat generated during the laser drilling process. Long exposure 

time leads to transmission of the heat generated to adjacent locations, and deters performance of 

the active devices. Also, it is difficult to remove condensed Si deposited on the microstructure 

walls after the drilling process. 

Melt component, re-deposited material and thermal load on microstructures prevail even at 

extremely small laser pulse duration (50 ns). High energy laser and plasma exert tremendous 

pressure on silicon. This pressure increases mechanical load on Si decreasing overall process 

accuracy (Luft, Franz et al. 1996). Microstructure location and number depend on the laser 

drilling equipment positioning, making the process not suitable for high density input/output 

products.  

 Wet photoelectrochemical etching: 

Wet photoelectrochemical etching has the following advantages, 

 All exposed regions are simultaneously etched. 

 Experimental set up is simple and cost effective. 
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 Chemical (HF) waste management is easier as compared to green house gases emitted by 

DRIE process. 

 Microstructure sidewalls are free of condensed silicon residue. 

 No thermal effects are generated as extremely low light intensity light source is required 

for the process. 

 Etch rate attained increases with diameter unlike Laser or DRIE process. 

2.3 Classification of Electrochemically Etched Silicon 

The structures created in Si by wet electrochemical etching using a fluoride source are classified 

based on their size. According to the IUPAC (International Union of Pure and Applied 

Chemistry) convention pores are classified into 3 categories based on their pore diameter; < 2 nm 

– micropores, 2 nm to 50 nm – mesopores, > 50 nm – macropores (Foll, Christophersen et al. 

2002). In general, the term macropore is used for structures with diameter < 10 µm (Lehmann 

and Ronnebeck 1999; Al Rifai, Christophersen et al. 2000) but this terminology is not strictly 

followed. Larger pores or structures formed by merging of adjacent pores are called vias, 

trenches, or microstructures (Tao and Esashi 2005). Further, the surface of some of these 

structures are covered with filament like porous Si known as microporous Si (Zhang 2004) or 

nanoporous Si (Albuyaron, Bastide et al. 1993). 

2.4 Mechanism of Silicon Etching 

Si can be etched chemically and electrochemically using Hydrofluoric acid (HF). Since chemical 

etch rate of Si in HF solution is 0.3 Å/min (Hu and Kerr 1967; Peter, Riley et al. 1995), 

electrochemical dissolution is a must. Electron acceptors promote Si dissolution in acidic HF 

solution. In the absence of any other chemical oxidizer (electron acceptor), Si is forced to behave 

as an electron acceptor by applying a positive bias to the Si substrate. An electron can be injected 
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in the conduction band of Si by providing energy greater than the band gap of Si or by hole 

recombination. Hole recombination process for electron transfer from the electrolyte occurs at 

energy lower than the band gap energy, hence, forms the first step of the etching reaction 

Figure 2.5. Modified Gerischer mechanism for Si etching in acidic fluoride solutions. Reprinted 
from Elsevier (Surface Science), Vol no 603, Kolasinski, Etching of silicon in fluoride solutions, 
No of pages 8, Copyright (2009), with permission from Elsevier. 
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(Lehmann and Gosele 1992). Holes in Si valence band represent a missing electron in the 

covalent bond between the Si atoms in the crystal. As the electron from the bonding orbital is 

removed the bond strength decreases. Thus, the presence of holes in valence band attracts a 

nucleophilic attack by weakening adjacent covalent bonds (Gerische.H and Mindt 1968). The 

application of an anodic bias leads to accumulation of holes at the silicon-electrolyte interface. Si 

immediately forms a native oxide layer when exposed to air. This native oxide can be dissolved 

in HF or any other fluoride source (Woodruff, Ratchford et al. 2007). Hydrogen-terminated 

silicon (Si-H) surface is obtained on dissolving this native oxide layer with a fluoride source. Si 

surface is not Fluorine-terminated because Si-F is a highly polar covalent bond. This high 

polarity of the Si-F bond weakens Si-Si backbonds and makes them prone to further chemical 

attack. Hence, Si-H bond which is close to a non-polar bond keeps Si in the crystal stable to 

further attack and thereby resulting in stable termination (Kolasinski 2009).  

The Modified Gerischer mechanism for electrochemical etching of Si with an aqueous fluoride 

source is described by Kolasinski. Photon absorption during photoelectrochemical dissolution 

creates holes in the valence band of Si by transferring an electron into conduction band. Holes 

present in bulk Si are brought to silicon-electrolyte interface on application of an anodic bias. 

Substitution of H with F takes place since sticking coefficient of F-(aq) is increased by a large 

margin due to presence of holes at the interface. An electron is transported to the conduction 

band of silicon during this substitution. Thus, for every injected photon, two electrons are 

injected into the conduction band of Si leading to current doubling. Once Si-F bond is formed, 

polar nature of the bond weakens Si backbonds. HF or HF2
- chemically attack the Si backbonds 

leading to dissolution. If the backbonds are attacked with F- or OH- present in electrolyte, two 
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additional electrons are injected into the conduction band of Si till a soluble SiF6
2- species is 

formed. Thus, hydrogen abstraction or deprotonation by F- or OH- leads to current quadrupling. 

Over-all mechanism for silicon dissolution is as follows, 

Si + 6HF + h+ → SiF6
2− +  4H+ +  H2 + e−   ………………………………………………(1) 

Si + 6HF + h+ → SiF6
2− +  6H+ + 3e− ……………………………………………………..(2) 

 

In both reactions (1) and (2), ℎ+ represents a hole in the valence band by photon absorption and 

an electron being injected into conduction band. Reaction (1) represents the over-all reaction for 

a current doubling process, whereas reaction (2) denotes a current quadrupling system. 

(Kolasinski 2009).  

Studies on the mechanism of Si dissolution by aq. HF solutions suggest hole formation rate in Si 

and hole transport to the silicon-electrolyte interface remain as rate limiting steps for the overall 

Si dissolution reaction (Koker and Kolasinski 2001; Kolasinski 2003; Kolasinski 2009). 

2.5 Hole Generation in n-Type Si 

From the modified Gerischer mechanism of Si etching by Kolasinski, it is clear that (positive 

charge carriers) holes in Si valence band are essential for wet electrochemical dissolution in the 

presence of a fluoride source. Electrons being majority charge carriers in n-type Si, wet 

electrochemical etching cannot be carried out without additional steps to generate the holes; 

which are the following methods: 

 Increasing thermal energy – if temperature of n-type Si is increased, holes are generated in 

small numbers due to covalent bond breaking by thermal energy supplied. 

 Applying Breakdown field – if anodic bias is increased till n-type Si breakdown field 

strength (3x105 V/cm) is reached, large currents start flowing through the circuit. These 
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currents are due to avalanche multiplication causing Si dissolution. For Si with sharp pore 

tips, a lower anodic bias can create a field equivalent to 3x105 V/cm (Lehmann 1993).  

 Including oxidizers in electrolyte – Strong oxidants like H2O2 in combination with HF can 

lead to porous Si formation in n-type Si (Bao, Jiao et al. 2007; Bao, Jiao et al. 2007). High 

anodic bias of 12-100 V is applied to initiate the etching process and obtain reasonable 

number of pores. Macropores obtained via this technique, showed no sidewall porosity at 

wall thickness less than twice depletion region width. Also, while using oxidizers, pore 

surface is covered with thin microporous layer. Similar, microporous layer is observed in our 

results obtained via photoelectrochemical etching with no oxidizer. Etch rate achieved via 

addition of oxidizers is around 30 µm/min (extremely high) (Bao, Jiao et al. 2007). 

 Diffusing p-type impurity at backside of high resistivity n-type Si – p+ layer with a dopant 

concentration, in the range of 2x1020/cm3 is diffused at the backside of n-type Si. This 

process creates a p-n junction at the backside of Si. Holes generated due to p-type impurity, 

diffuse through the n-type bulk and reach silicon-electrolyte interface on application of an 

anodic bias. Etch rates obtained by this process range from 0.275 to 0.425 µm for a resistivity 

of 3.8-5.5 kΩ-cm n-type Si. Anisotropy is achieved due to sidewall passivation by depletion 

region. In low resistivity n-type Si lifetime of charge carriers in bulk silicon is reduced by 

high temperature processes such as diffusion, ion implantation and further annealing, limiting 

this technique to higher resistivities (Badel, Linnros et al. 2003). 

 Applying magnetic field – High aspect ratio porous Si can be obtained on n-type Si without 

illumination by applying magnetic field. In Hall-effect assistance technique an inversion 

layer is created at silicon-electrolyte interface by Lorentz force due to which holes essential 
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for electrolytic dissolution are created. Grouped wire like structures instead of rigid 

macroporous structures are obtained by this technique (Lin, Tsai et al. 2007). 

 Illumination – Photons from incident light when absorbed create holes in Si. The criterion for 

photon absorption is photon energy of the incident light must be greater than or equal to band 

gap of Si (1.12eV).  

E = h.c/λ     (2.3) 

Light with wavelength less than 1.1 µm (From Equation 2.3) is suitable for creating minority 

charge carriers (holes) in n-type silicon. Porous Si thin films are produced by irradiation with 

UV, visible, or infrared lasers on n-type Si using HF solution. This technique is named 

photoelectrochemical etching of Si even though Si is not connected to external power supply 

and the electric field is due to band bending. Term „electrochemical‟ is used to indicate a 

charge transfer based chemical dissolution, while the term „photo‟ means the process 

initiated by irradiation with laser. Porous Si films are obtained at 0.5-5 W/cm2 laser 

fluencies. On dissolution, a Gaussian shaped pit is obtained and the pit has two interfaces; 

solution/por-Si at the top and por-Si/c-Si at the bottom.  Depth of the pit and porous silicon 

are a function of incident light intensity. At 550 mW/cm2 and with 48% aq. HF, the pit etch 

rate prior to por-Si removal is approximately 0.0245 µm/min (Koker and Kolasinski 2000; 

Koker and Kolasinski 2001) which is less than an order of magnitude as compared to our 

results from external anodic bias application. Only at 1000 W/cm2 or greater laser intensities 

(Argon-beam laser (514.5nm)) (Lim, Brock et al. 1992), etch rates comparable to that 

obtained during photoelectrochemical etching (applying external bias) are observed.  

Another widely studied technique for etching n-type Si is wet photoelectrochemical etching of Si 

where an external bias is applied to induce electrochemical etching and a light source (photon 
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energy > band gap) forms the minority charge carrier (hole) generation source. Holes can be 

created from backside of silicon-electrolyte interface or frontside that is at the silicon-electrolyte 

interface. These two techniques will be discussed in detail under sections 2.7 and 2.8. 

2.6 Charge Transfer Mechanisms 

The charge transfer mechanisms in Si are diffusion, drift and tunneling. Dominance of each 

component depends on the resistivity (dopant concentration) of Si. 

Diffusion currents arise due to concentration gradient of holes. Diffusion is the dominant pore 

formation mechanism at high resistivities (Lehmann 1993).  

Drift occurs when mean free path of holes exceeds depletion region width, holes with sufficient 

energy can traverse potential barrier and cross the depletion region. For high dopant densities (> 

1016/cm3 obtained experimentally), the depletion region width drastically reduces. Thus, instead 

of diffusion, drift dominates the charge transfer. In this case, although the depletion region width 

might differ in pits and planar regions, current remains same everywhere and consequently, no 

pore formation is seen. Charge carrier drift gives rise to isotropic etching process (Lehmann 

1993).  

Tunneling occurs at very high dopant densities (>1018/cm3). It is dependent on depletion region 

width which is in nanometer range and, mesoporous layer is obtained on the surface (Lehmann 

1993). Therefore, macropore formation is not expected with highly doped Si. 

2.7 Wet Photoelectrochemical Etching Using Backside Illumination 

From band bending diagram Figure 2.1, n-type Si is under depletion during anodization. In n-

type Si holes are minority charge carriers, at equilibrium, the hole concentration is lower than 

electron concentration. On illumination ionized n-type dopants, electrons and holes form the 

three types of charges in n-type Si. In the bulk, holes recombine with the electrons and charge 



18 

 

neutrality occurs. Recombination is a function of the hole diffusion length. Hence, Lehmann et al 

believe depletion region is not the cause of passivating pore walls of n-type Si, instead the hole 

diffusion length forms a major factor for passivating the pore walls during backside illumination 

(Lehmann and Ronnebeck 1999). Contrary to the above theory, several researchers have 

observed formation of sidewall pores as wall thickness exceeds twice the depletion region width 

(Tao and Esashi 2005; Astrova and Fedulova 2009; Guozheng, Shencheng et al. 2010). This was 

in agreement with the theory proposed by space-charge model. According to this model, n-type 

silicon-electrolyte interface is similar to p-n one-sided step junction. Large potential drop is 

observed across the depletion region. As reverse bias voltage is reduced, depletion width 

decreases leading to increased hole diffusion in between the pore walls (Figure 2.6). Relation 

between the depletion region width and the applied bias is expressed as follows: 

Figure 2.6.  Macropore formation with back side illumination abiding Depletion Region model. 
Reference Tao et al., “Macroporous silicon-based deep anisotropic etching” J.  Micromech. 
Microeng. 15 (2005) 764-770. (Reprinted with permission from IOP  Science.) 
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WDR =  2.ε0.εSi .Veff

q.ND
      (2.4) 

Where, Veff = Vbi − Vapp       (2.5)       

where, WDR is the depletion region width, ε0 is the permittivity of free space, εSi is relative 

permittivity of Si, Vbi is the built-in potential of Si, Vapp is the applied potential, q is the 

elementary charge, ND is the donor concentration, k is the Boltzmann’s constant, T is the 

temperature in Kelvin and ni is the intrinsic concentration (Wehrspohn, Schweizer et al. 2007).  

n-type patterned Si (100) substrates having a resistivity of 5-15 Ω-cm are photoelectrochemically 

etched with HF using backside illumination to obtain macropores.  Non-porous sidewalls are 

obtained based on pitch and the current density and it is established that the average distance 

between pores in a row depends on the period of seed grooves (patterned area etched chemically 

with KOH), current density and Si resistivity. 

Also, to obtain smooth sidewalls an approximate relationship between pitch and silicon 

resistivity (ρ) was deduced: 

Average distance between macropores (µm) ~ 2 𝜌(𝛺 − 𝑐𝑚)      (2.6) 

Figure 2.7. n-type Si (100) 5-15 Ω-cm with wall thickness ~ 4µm showing microporous walls. 
Reference Astrova et al., “Formation of deep periodic trenches in photo-electrochemical etching 
of n-type silicon” J.  Micromech. Microeng. 19 (2009) 095009 (11pp). (Reprinted with 
permission from IOP Science.) 
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Smooth sidewalls are obtained when distance between macropores of patterned array is close to 

the average distance between self organized macropore array (Astrova and Fedulova 2009). 

Growth of pores on n-type Si with different resistivities and potential can be observed from 

Figure 2.8 from where it is concluded real distance between adjacent pores on an unpatterned 

substrate did not always adhere to the space-charge model (Al Rifai, Christophersen et al. 2000). 

Space-charge model suggested average distance between the adjacent pores is twice depletion 

region width. Substrates with low dopant concentration (resistivities greater than 5 Ω-cm) 

showed results consistent with the space-charge model; however, for samples with low resistivity 

or low applied bias, wall thickness between the adjacent macropores is more than predicted by 

Figure 2.8. Pore distance vs. etching potential normalized to the space-charge model. Reference 
Al Rifai et al., “Dependence of macropore formation in n-Si on Potential, Temperature and 
Doping”, Journal of The Electrochemical Society, 147 (2) 627-635 (2000). (“Reproduced by 
permission of The Electrochemical Society.”) 
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the space-charge model (Al Rifai, Christophersen et al. 2000). Our work focuses on 10-20 Ω-cm 

n-type Si for use in microelectronics; therefore, macropore formation would be in agreement 

with the space-charge model, for hole generation by backside illumination. 

The depletion region formed at electrode-electrolyte interface is depleted of mobile charge 

carriers leaving behind immobile donor ions. On application of an external bias, there is a change 

in the gap between Si Fermi energy and electrolyte chemical potential. Therefore, the depletion 

region width varies with the applied bias. Pore geometry also has an effect on the depletion 

region. For a conical pore, the depletion region width is less than for planar surface and this 

width is minimum at the pore tip. Under forward bias and under no bias there are few holes in 

the depletion region. On applying a reverse bias, holes tend to diffuse from higher concentration 

(bulk) region to lower concentration region and give rise to diffusion current.  

Several researchers have created 100-500 µm deep macropores in n-type Si(100) via 

photoelectrochemical etching by generating minority charge carriers using backside illumination 

(Lehmann and Foll 1990; W., J. et al. 1995; Barillaro, Nannini et al. 2002; Barillaro, Bruschi et 

al. 2005; Tao and Esashi 2005; Kim, Kim et al. 2006; Guozheng, Shencheng et al. 2008; Astrova 

and Fedulova 2009; Li, Seo et al. 2009; Zhao, Guo et al. 2010). Barillaro et al. demonstrated 

structures ranging from vertical vias, trenches, spirals and other complicated patterns on n-type 

Si with resistivity 2.4-4 Ω-cm by selecting appropriate seed (mask) for photoelectrochemical 

etching. The structures formed showed sidewall etching for variations in pitch, seed diameter and 

Si resistivity. (Lehmann and Foll 1990; Barillaro, Nannini et al. 2002; Barillaro, Bruschi et al. 

2005; Tao and Esashi 2005; Astrova and Fedulova 2009). Astrova et al formulated an 

approximate relationship (Equation 2.6) between the pitch and Si resistivity. This formulation 
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was based on the pitch obtained with self organized macropores. Equation 2.6 is useful to select 

an appropriate mask in order to create anisotropic structures (Astrova and Fedulova 2009).  

Understanding constraints for fabricating macropores at isolated locations in Si, microstructures 

are obtained in low doped silicon (100) (>1 Ω-cm) by creating macroporous Si using backside 

illumination followed by chemically dissolving the macroporous Si in Tetramethylammonium 

hydroxide (TMAH). Tao et al. observed sidewall etching at corner rows of patterned array to be 

more pronounced at high applied bias and low resistivity substrates. 50µm and 175 µm lateral 

overetch is reported at 2V for 1000 Ω-cm and 5-8 Ω-cm, respectively (Tao and Esashi 2005). 

Although, 300 µm deep microstructures with vertical walls are fabricated, these structures had 

large opening diameter (> 100 µm).  

Thus, operating at sidewall thickness greater than depletion region width leads to sidewall 

etching and poses a challenge to obtain isolated, high aspect ratio microstructures. 

2.8 Wet Photoelectrochemical Etching Using Frontside Illumination 

Frontside illumination means to illuminate silicon-electrolyte interface; to create minority charge 

carriers at the Si surface in contact with the electrolyte.  

Lehmann and Foll demonstrated Si dissolution with no external bias using both frontside and 

backside illumination of blank n-type silicon. They believe, during front side illumination charge 

carriers are generated near the surface whereas backside illumination gives rise to charge carriers 

in bulk. Depth of the trench is promoted only when the charge carriers are present in the bulk 

while near-surface charge carriers lead to lateral expansion of the trenches. And hence, back side 

illumination is preferred over front side illumination for creation of deep trenches (Lehmann and 

Foll 1990). While this argument is valid for tight pitches, we run into the problem of sidewall 

etching as we work with patterns that are located at a wall thickness much greater than twice the 
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depletion region width. When patterns to be etched have wall thickness greater than twice the 

depletion region width, presence of holes in bulk silicon will lead to sidewall etching (porous 

sidewalls). Frontside illumination might work to create isolated anisotropic microstructures since 

the holes are generated near silicon-electrolyte surface. Conical TSVs are obtained in frontside 

illumination, since vertical etch rate is more than lateral expansion rate.  

During photoelectrochemical etching with frontside illumination, two layers of porous Si are 

obtained. The top layer consists of porous Si film (Levyclement, Lagoubi et al. 1993; 

Levyclement, Lagoubi et al. 1994). This film shows a tangled network of Si wire like structures. 

It is observed that this microporous or nanoporous layer has structures of various sizes and it 

varies from amorphous to crystalline silicon in the same layer. Amorphous-like porous structure 

may be generated due to diffusion current by photo-carriers generated beyond depletion layer 

(Arita 1978). Our results with lower wavelength photon source are in agreement with the theory 

by Arita. Explanation to the formation of microporous crystalline silicon is based on the residual 

stress (Levyclement, Lagoubi et al. 1994). It is suggested macroporous silicon shattered into fine 

filaments due to the residual stress. The pattern of shattered structure is analogous to a comb-like 

structure where the teeth are separated by an oxide layer. -Si-Si- bonds form the filament and -

Si-O- bonds form the gap in contact with the electrolyte (Galun, Tenne et al. 1993; Levyclement, 

Lagoubi et al. 1994). Underneath the nanoporous or microporous layer, a macroporous layer 

formed out of micron sized pores is observed. Work by Levy clement et al. on low doped (Nd = 

1015/cm3) n-type Si shows total etch pit depth as well as the nanoporous and macroporous layer 

depth to increase with an increased applied charge density (Levyclement, Lagoubi et al. 1994).  

During photoelectrochemical etching with frontside illumination the total depth of the etch pit 

increases with anodization time. With frontside illumination using a 50 W Tungsten-Halogen 
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lamp, and HF/ethanol as electrolyte on 1-3 Ω-cm Si, pore diameter increases with anodization 

time. Dissolution in lateral direction along with an etch in principal axial direction is viewed; 

although maximum etch rate is in the axial <100> direction. Presence of a dihydride Si surface at 

KOH pit bottom causes steric hindrance, leading to a higher stress at the bottom of KOH pit 

(Outemzabet, Gabouze et al. 2005). Hence, chemical reactivity is more at the KOH pit bottom in 

the <100> direction.  Lateral expansion is attributed to photon absorption at sidewalls during 

frontside illumination.  Lateral etching is maximum at the pore top and adjacent pores tend to 

merge with time convincing that the sidewalls are not passivated by depletion region during 

photoelectrochemical etching with frontside illumination. Pore propagation rate into bulk is 

Figure 2.9. Integrated infrared absorption as a function of applied potential for p-type Si (100). 
Reference Outemzabet et al., “Random macropore formation in n-type silicon under front side 
illumination: correlation with anisotropic etching”, Phys. Stat. Sol. (c) 2, No. 9, 3394–3398 
(2005). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. 
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slower than backside illumination, since, the holes generated close to the surface induce lateral 

etching and do not contribute towards vertical dissolution. 

Researchers have proved n-type and p-type Si different in their electronic property, nevertheless, 

their chemistry remains similar (Gerischer and Lubke 1987; Lehmann 1993). Figure 2.9 shows 

infrared absorption as a function of applied potential on p-type Si (100) illustrating dominance of 

-OH bonds at low anodic as compared to Si-H and Si-O bonds. Si-O bonds increase as with 

increasing potential. Presence of an oxide layer promotes local reactivity at kink sites (Gerischer 

and Lubke 1987). Hence, at high applied bias, more nucleation sites are observed because of 

excessive hole concentration leading to dissolution in different directions. It is found macropore 

growth in <100> direction becomes constant once the nucleation period is over, however the 

diameter of the pores increases with time (Outemzabet, Gabouze et al. 2005). 

2.9 Electrolyte Selection  

The criterion for the electrolyte selection is primarily based on achieving a higher etch rate. 

Mixtures of HF with other solvents form the electrolyte for Si wet electrochemical etching. 

Although the electrolyte composition is not specifically created for sidewall passivation, it plays 

a major role in increasing the overall Si dissolution rate (Lehmann and Ronnebeck 1999). 

Electrolytes used in Si anodization can be classified into several categories such as aqueous, 

organic and ionic. 

Aqueous electrolytes are mixtures of HF and water, but can also contain fluorine containing salts 

(tetrafluoroborate) (Flake, Rieger et al. 1999), organic alcohol additives such as ethyl alcohol, 

(Barillaro, Bruschi et al. 2005; Li, Seo et al. 2009) and Isopropyl alcohol (Bhattacharya, Rani et 

al. 2005; Harraz, Kamada et al. 2005), pH adjusters (Ammonium fluoride), and surface tension 

reducing agents (Triton X-100, Mirasol). Surfactants help remove the H2 bubbles off the pore 
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walls and improve HF contact with Si surface, thereby increasing the etch rate (Lehmann and 

Foll 1990; W., J. et al. 1995; Guozheng, Shencheng et al. 2010).  

Organic electrolytes contain organic solvents such as Acetonitrile (Flake, Rieger et al. 1999), 

Dimethylformamide, Dimethylsulfoxide mixed with HF and water (Lust and Levy-Clement 

2002).  

Room temperature ionic liquids such as 1-ethyl-3-methylimidazolium EMIm(FH)2.3F with high 

conductivity form the fluoride source to create porous Si (Raz, Shmueli et al. 2010).  

Kim et al. observed that sidewall porosity is a strong function of depletion region width and 

different additives and electrolytes show no effect in passivating the sidewalls. However, 

electrolyte composition has a strong impact on the etch rate (Kim, Kim et al. 2006). 

2.10 Overetching  

Overetching at macropore array edge prohibits an exact translation of etch mask onto Si during 

wet electrochemical etching.  Figure 2.10 illustrates overetching due to excess stress, carrier 

transport, and sidewall branching. Stress induced overetching results in small depth macropore 

Figure 2.10. Overetching at macropore array edge. Reference Tao et al., “Macroporous silicon-
based deep anisotropic etching” J.  Micromech. Microeng. 15 (2005) 764-770. (Reprinted with 
permission from IOP  Science.) 
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formation at the corner of the patterned area because of preferential carrier concentration at 

stressed regions. Transport of carriers from the bulk to the masked area leads to carrier transport 

based and sidewall branching based overetching (Tao and Esashi 2005). Stress induced 

overetching is observed at every opening in the patterned area during front side illumination. 

2.11 Wavelength of Irradiation Source 

During wet photoelectrochemical etching of n-type Si, light source irradiating the Si surface 

must possess a photon energy equivalent or greater than band gap energy of Si. Si can absorb 

photons with wavelengths less than 1108 nm (Equation 2.3). The photon absorption depth in Si 

is a function of the incident photon energy. Higher wavelength light is absorbed deeper in Si as 

compared to lower wavelength light. Thus, it is feasible to create minority charge carriers (holes) 

within the depletion region of Si as well as beyond the depletion region width. When light with 

higher wavelengths were used in combination with backside illumination, the penetration depth 

in Si being higher or of the same magnitude as that of the thickness of the wafer, holes are 

induced in the frontal surface at the silicon-electrolyte interface. Holes formed at the silicon-

electrolyte interface create trenches covered with porous silicon (Guozheng, Shencheng et al. 

2008). 
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3  MATERIALS AND EXPERIMENTAL PROCEDURE 

3.1 Substrate Preparation 

Blank n-type (phosphorus doped) silicon (100) wafers (n-type Si) were obtained from Montco 

Silicon Technologies, CA. n-type Si wafers were deposited with 1 micron thick low stress silicon 

nitride by LPCVD process at Microelectronics Research Center in Georgia Institute of 

Technology. 20 nm Chromium and 50 nm Gold layer were deposited on silicon nitride via e-

beam evaporation technique (Temescal BJD-1800 E-Beam Deposition System) at Center for 

Advanced Microstructures and Devices (CAMD). Gold serves in blocking the incident light from 

entering silicon in undesired locations. Chromium is an adhesion promoter between silicon 

nitride and gold. Photolithography and subsequent developing steps including Reactive Ion 

Etching (RIE) were performed at CAMD. Photolithography was used to pattern the Si wafers 

with desired pitch and pattern area. Photoresist SC-1827 (positive photoresist) was spin coated 

on Cr-Au deposited 4” Si wafers using spin coater (Headway Research PWM101 Light Duty 

Photoresist Spinner). Photoresist was soft baked at 90ºC for 30 minutes and then exposed to 100 

mW/cm2 UV light for 15 seconds with an appropriate photomask using Lithography tool (Oriel 

UV Exposure Station with Aligner). During development, Cr was removed by Chrome etchant, 

gold was dissolved using gold etchant, and the exposed photoresist was dissolved in 351 

Figure 3.1. Patterned substrate for subsequent photo-electrochemical etching. 

http://www.camd.lsu.edu/microfabrication/equipment/spinners.htm
http://www.camd.lsu.edu/microfabrication/equipment/spinners.htm
http://www.camd.lsu.edu/microfabrication/equipment/orieluv.htm
http://www.camd.lsu.edu/microfabrication/equipment/orieluv.htm
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developer. On developing, the wafer was hard baked at 90ºC for 30 minutes and silicon nitride 

was etched using Reactive Ion etching technique (Oxford PlasmaLab 100 ICP-DRIE System). 

Remnant photoresist was dissolved in acetone. Inverted pyramidal pits were created by 

chemically etching exposed Si with 86.2 volume% Potassium Hydroxide solution (30%) (KOH, 

Fischer Scientific, USA) and 13.8 volume% Isopropyl alcohol (IPA (ACS grade), Mallinckrodt 

Baker, USA). KOH was initially heated to 70°C followed by IPA addition, on attaining 70°C Si 

substrates were immersed completely in the solution and the temperature was maintained 

between 70- 77°C for 4-10 minutes depending on the area to be etched. KOH etched wafers were 

further subjected to photoelectrochemical etching. (Note: For the experiments with p-type Si 

(Boron doped) (Montco Silicon Technologies, CA), metal layers (chromium and gold) are not 

necessary and illumination source is not required) 

Dense and isolated patterns can be created on Si using lithography. In the Figure 3.2, xTP and xLP 

are the wall thickness of tightly pitched and loosely pitched structures, respectively. The wall 

thickness is classified as tightly pitched or loosely pitched relative to the depletion region width 

(WDR); xTP  ≤ 2.WDR  (dense pattern – Figure 3.2a) and xLP > WDR (isolated pattern – Figure 3.2b).  

Figure 3.2. Pattern created by Lithography; (a) dense, (b) isolated. 
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3.2 Photoelectrochemical Etching Experimental Set-up 

Si substrate was dipped in ethyl alcohol (Fischer Scientific, USA) for 1- 2 minutes and rinsed 

with DI water. This was succeeded by a 10% Hydrofluoric acid (HF, Sigma Aldrich, USA) dip 

to remove the native oxide followed by rinsing with water and drying in air. Schematic for 

photoelectrochemical etching is depicted by Figure 3.3. The reactor used for electrochemical 

etching was made of Teflon and has a brass electrode at the bottom to provide electrical contact. 

Gallium-Indium eutectic was applied evenly on the brass electrode to achieve good electrical 

contact between Si (anode) and the brass electrode. Once the substrate (working electrode) is 

placed, the reactor was sealed with an o-ring. Platinum counter (cathode), platinum pseudo 

reference and the working electrode were connected to potentiostat (Princeton Applied Research 

Potentiostat/Galvanostat Model 263A). Figure 3.4a shows the laboratory set-up of the 

electrochemical cell.  

Figure 3.3. 2D schematic of a photo-electrochemical cell. 
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HF in combination with aqueous and/or organic solvents formed the etching electrolyte. 

Aqueous electrolyte containing 5.21M HF, 48.15% (vol) Isopropyl alcohol (IPA), and 1480 ppm 

Triton X-100 formed the typical electrolyte composition (BKM) used in most etching 

experiments unless otherwise mentioned. The electrolyte composition is obtained from literature 

(Kim, Kim et al. 2008) and was further optimized to achieve high etch rates. Etching 

experiments were performed using potentiostat in the chronoamperometry mode, by keeping the 

applied potential constant vs. pseudo reference electrode. n-type Si is photoelectrochemically 

etched using a collimated light source. In our experiments, red light (632.8 nm) from HeNe laser 

(CVI Melles Griot, USA) with a maximum average light intensity of 461.11 mW/cm2, and blue 

light (365 nm) from an UV LED (M365L2-C4, Thorlabs, USA) with an average light intensity of 

7.8 mW/cm2 were used. In order to control and reduce the light intensity from the HeNe laser 

neutral density filters (Thorlabs, USA) were used.   

3.3 Methods for Analysis 

The patterns on Si are ≥ 6 µm in width, but the sidewall porosity is in the nm range and hence, 

for a detailed structural and morphological analysis Scanning Electron Microscope (FEI Quanta 

3D FEG Dual Beam SEM/FIB) was used. The cross-section of the microstructures etched in Si 

Figure 3.4. Electrochemical cell (a) assembled with electrode connections, and (b) 
disassembled. 
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were observed by manually cleaving the Si samples with a scriber. Samples were placed 

vertically in the SEM to measure the depth attained. The imaging process is simple and quick 

with SEM. 

The size of the structures being in the micron range, it is a challenge to manually cleave the 

substrate at the preferred location. Focus Ion Beam - Scanning Electron Microscope (FEI Quanta 

3D FEG Dual Beam SEM/FIB) is a tool that mills the substrate at the desired location using an 

Ion beam. Samples were back filled with an epoxy M bond 610 (Ted Pella Inc., USA) and 

sputtered with gold using a sputter coater prior to analysis using FIB-SEM. FIB-SEM technique 

is time consuming for micron sized structures. Hence, most of our analysis is done using SEM by 

manually cleaving the wafers. 
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4 RESULTS AND DISCUSSION 

4.1 Frontside Versus Backside Illumination 

Photoelectrochemical etching of n-type silicon (Si) is carried out by illuminating the Si surface 

with light possesing photon energy greater than the band gap of Si (1.12 eV). Minority Chrage 

carriers (holes) are formed in n-type Si on photon absorption. The morphology of porous Si is a 

strong function of illumination method (backside or frontside).  

In this work, frontside illumination is used for wet photoelectrochemical etching of Si. Patterned 

n-type Si (10-20 ohm-cm) is photoelectrochemically etched in an aqueous electrolyte containing 

5.21M hydrofluoric acid (HF), 48.15% (vol) isopropyl alcohol (IPA), and 1480 ppm Triton X-

100 (BKM electrolyte). Si is anodically biased at 5 V versus Platinum (Pt) pseudo reference 

Figure 4.1. n-type Si (100) 10-20 Ω-cm, pitch =100 µm, starting diameter =30 µm, average light 
intensity = 46.11 mW/cm2, final depth = 100 µm, etch rate = 1.49 µm/min. 
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electrode. An average light intensity of 46.11 mW/cm2 from a HeNe laser (632.8 nm) is used to 

irradiate silicon-electrolyte interface. Deep microstructures with 100 µm depth and 78 µm width 

are obtained. Inverted pyramidal shaped pits created in the patterned regions by chemical 

dissolution using potassium hydroxide (KOH) solution, act as etch seeds for further 

photoelectrochemical etching. The depth and width of the etch seeds vary with the pattern 

opening and the duration of chemical dissolution. Figure 4.1 shows the SEM image of deep 

microstructures created using photoelectrochemical etching with 30 µm wide 10.6 µm deep 

KOH pits. On photoelectrochemical etching a vertical etch rate of 1.49 µm/min and a lateral etch 

rate of 0.4 µm/min are obtained leading to anisotropy of 0.73 (Anisotropy = 1 −
lateral  etch  rate

vertical  etch  rate
). The microstructure walls make an angle of 70-80º with horizontal Si (100) 

crystal plane. The microstructures are covered with a microporous tangled layer that formed the 

top layer and macropores existed below the microporous layer. Further, the sidewalls near the 

top surface show lateral etching; hence porous. Towards the microstructure bottom, the wall in-

between adjacent microstructures showed no porosity. These initial results formed the basis to 

select frontside illumination for wet photoelectrochemical etching to create isolated, anisotropic, 

and deep microstrcutures in n-type Si. Astrova et al showed (Figure 2.7) using backside 

illumination on n-type Si, creation of anisotropic isolated structures with sidewall thickness 

greater than 9 µm and 2.3 µm for 15 Ω-cm and 5 Ω-cm, respectively, is difficult and has not 

been widely published. 

The morphology of microstructures created using wet photoelectrochemical etching differ 

significantly based on the illumination technique.  On illuminating the Si from backside (away 

from silicon-electrolyte interface), the incident photons are absorbed in the bulk (Figure 4.2a).  

When an anodic bias is applied to n-type Si, the holes generated in the bulk are brought to the 
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silicon-electrolyte interface. Hence, we believe behavior of backside illuminated n-type Si would 

be similar to p-type Si (majority charge carriers - holes). If the patterns are loosely pitched (wall 

thickness > 2 × WDR (Depletion Region width)), holes are present around the microstructure 

leading to sidewall porosity (dissolution along more than one crytalline orientations) (Figure 

4.2a). On the other hand, if the wall thickness between the adjacent structures is less than or 

equal to WDR, then the sidewalls are depleted of holes (Figure 4.2b) and dissolution is observed 

only along one crystalline directon. Consequently, macropores with non-porous sidewalls are 

obtained via photoelectrochemical etching of tightly pitched n-type silicon using backside 

 

Figure 4.2. Backside illumination for patterned Si with wall thickness between adjacent 
structures (a) > 2 × WDR, and (b) ≤ 2 × WDR. 

illumination. While with frontside illumination micron-sized structures can be formed at isolated 

locations. Frontside illumination (illumination at silicon-electrolyte interface) generates near 

surface minority charge carriers. Holes can be created within and beyond the depletion region 

width depending on absorption depth of the incident photon. Figure 4.3 shows the schematic of 
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hole generation using frontside illumination on n-type Si. The presence of an opaque mask (gold) 

helps in blocking the photons from being absorbed in the unpatterned regions. 

Absorption and relflection coefficients of photons not only depend on the material, and the 

photon energy but also on the angle of incidence (φ) of light. As shown in Figure 4.4, φ is 

Figure 4.3. Schematic of hole generation in n-type Si with frontside illumination. 

Figure 4.4. Schematic of beam of light traversing an interface between two different materials. 
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measured with respect to the normal to the surface. When collimated beam is used to illuminate 

the KOH pit or any non-planar structure, φ being different at every incidence point, the 

absorption and reflection coefficients will vary along the surface. For example, when collimated 

light is used to illuminate the KOH pit as shown in Figure 4.5, at point A φ is 54.74º while at 

point B, φ is 0º. As φ increases, the reflection coefficient increases thereby decreasing the photon 

flux absorbed. The absorbed photons generate holes in n-type Si. Also, photons from the  

reflected ray are absorbed as shown in Figure 4.5.  Electrochemical dissolution of Si occurs in 

the presence of holes. During electrochemical dissolution of n-type Si, the current flowing 

through the circuit for a given anodic bias is goverened by the absorbed photons. Further, the 

electrochemical dissolution rate of Si is a function of the current flowing through the circuit. 

From Figure 4.1 the vertical dissolution rate is observed to be higher than the lateral dissolution 

rate. Hence, the current in the vertical direction is higher than the lateral direction; more photons 

are absorbed at the bottom of the KOH pit than the sidewalls.  

 

 

 

 

 

 

Figure 4.5. Schematic showing the angle of incidence of light at different points in a KOH pit. 
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While with backside illumination, a planar Si surface is illuminated. Thus, the approximate 

number of photons absorbed at any position remains the same. Consequently, the control over 

the number of holes reaching the sidewalls while working with isolated pitches is minimal. 

The tendency of holes to collect at stressed regions in Si is another major factor contribut ing 

towards a higher vertical etch rate in both frontside and backside illumination. The bottom of the 

KOH pit is more stressed than the sidewalls; hence higher vertical etch rate observed. 

The factors deciding the viability of a particular technique to create deep microstructures in Si 

are etch rate, anisotropy, aspect ratio, wall texture, and flexibility in creating the microstructures 

at any desired location. 

Conditions related to etch rate and anisotropy will be discussed in section 4.1.1 to 4.1.5. 

 4.1.1 Etch Rate Dependence on Reaction Rate Limiting Step 

Experiments with varying light intensities are performed to optimize microstructure forming 

conditions and to obtain operation limits. Steps governing n-type Si dissolution are based on 

kinetics of charge transfer and mass transfer. Etching mechanism and etched structure 

morphology depend on rate determining step of Si dissolution reaction. To analyze vertical etch 

rate variation as a function of incident light intensity, photoelectrochemical etching of blank n-

type Si (10-20 ohm-cm) is carried out in BKM electrolyte for 1 hr at a potential of 5 V versus Pt. 

When collimated light is incident at n-type silicon-electrolyte interface, pit formation is 

observed. The shape of the pit is similar to the incident light intensity profile. HeNe laser has a 

Gaussian light intensity profile. Consequently, pit shape is Gaussian with maximum depth at 

center. Hence, instead of using average light intensity, the light intensity at the center of the laser 

beam is plotted as X-axis. The maximum depth attained by the pit is measured by manually 
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cleaving the wafers (for obtaining the cross-section) and observing under SEM. As seen in 

Figure 4.6, the etch rate is observed to increase to a certain value with the light intensity and then 

eventually become independent of the light intensity. At low light intensities (≤ 92.22 mW/cm2), 

photon flux is lower than mass transfer rate in the electrolyte, therefore, increasing the light 

intensity (photon flux) leads to a corresponding increase in the etch rate. Whereas at high light 

intensities (≥ 230.55 mW/cm2), the photon flux being higher, charge transfer rate becomes higher 

than the mass transfer rate (constant in all the experiments) and thus, etch rate becomes 

independent of the incident light intensity. Further, the quantum efficiency, which is the number 

of electrons injected in the conduction band per incident photon, increases with decreasing light 

intensity. Quantum efficiencies of 2.0, 2.5, and 4.0 are achieved at 92.22 mW/cm2, 46.11 

mW/cm2, and 23.05 mW/cm2, respectively.  

 Figure 4.7 shows variation in vertical etch rate with agitation rate at three different light 

intensities (92.22 mW/cm2, 230.55 mW/cm2, and 461.11 mW/cm2) on blank n-type Si (10-20 Ω-
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Figure 4.6. Etch rate as a function of light intensity. 
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cm) in BKM electrolyte composition. The reported light intensities are values calculated at 

center of HeNe laser beam. The etch rates measured correspond to the maximum depth of etch 

pit. At 92.22 mW/cm2, the observed vertical etch rate remains constant with increasing stir rates, 

whereas at 230.55 mW/cm2 and 461.11 mW/cm2 the etch rate increases with increasing mass 

transfer rates. This shows the system becomes mass transfer limited at the higher light intensities. 

Once the reaction rate is limited by transport of HF, the mechanism of Si dissolution is via oxide 

formation. Si in the presence of water forms silicon dioxide. HF dissolves silicon dioxide 

isotropically which leads to electropolished surfaces. In order to obtain anisotropic 

microstructures, it is necessary to operate within kinetically limited regimes. 

Thus, from Figure 4.6 and 4.7, it is found that higher etch rates can be attained at higher light 

intensities with no mass transfer limitations, by pushing the kinetic regime to higher light 

intensities using additional techniques to improve mass transfer.  

4.1.2 Morphology of Etch Pit 

Morphology of a pit greatly depends on the reaction rate limiting step. Unpatterned (blank) n-

type Si is photoelectrochemically etched using HeNe laser (632.8 nm) to view and analyze the 

Figure 4.7. Etch rate as function of mass transfer rate. 
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morphology. HeNe laser used in all our experiments emits a beam which is Gaussian in nature 

and light intensity varies along the beam diameter with maximum light intensity 461.11 mW/cm2 

at the center of the beam. Hence, it is possible to expose Si to different light intensities in a 

single experiment allowing study on the morphology of Si in different rate limiting regimes. 

Figure 4.8a shows three different surface morphologies in the pit created by illuminating the 

sample at an average light intensity of 230.55 mW/cm2. Figure 4.8b is a 1200x magnification 

showing the morphology variation with the rate limiting regime. 

Figure 4.8. SEM image of photo-electrochemically etched blank n-type Si (10-20 ohm-cm) 
showing (a) cross-section of etch pit, (b) morphology at different regimes, (c) cross-section at 
charge transfer limited regime, and (d) cross-section at transition regime. 
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As seen in Figure 4.8c, in the charge transfer limited regime, macropores are formed below a 

microporous sheath. The depth of these macropores ranges from 2-10 µm. The overall vertical 

etch rate in this regime is high. 

As the light intensity increases further, mass transfer rate becomes equal to charge transfer rate, 

shallow cup shaped pits with 2-4 µm diameters are obtained as shown in Figure 4.4d. The 

surface of the cup shaped structures is smooth unlike pores obtained in the charge transfer 

limited regime.                                                                                                                                                             

On further increasing photon flux, mass transfer governs dissolution rate. Mechanism of 

dissolution in the mass transfer limited regime involves formation of an oxide and this oxide is 

further etched by HF. This results in more isotropic dissolution leading to a drastic reduction in 

aspect ratio. Thus, the shape of the pit deviates from Gaussian profile (laser light intensity 

profile) during photoelectrochemical etching using high laser fluencies. 

In order to obtain anisotropic pits in Si, wet electrochemical dissolution should be performed 

with charge transfer as the rate limiting step. 

4.1.3 Effect of Light Intensity on Isolated Structures 

The effect of light intensity on patterned structures is observed to determine the operating range 

for photoelectrochemical dissolution of n-type Si (100) (10-20 Ω-cm). Patterned Si is 

photoelectrochemically etched at three different light intensities 92.22 mW/cm2, 230.55 

mW/cm2, and 461.11 mW/cm2. Cross-sectional SEM images of the resultant microstructures are 

shown in Figure 4.9. At 230.55 mW/cm2, experiments with blank Si yield electropolished 

surface (Figure 4.6). When patterned Si is subjected to the same light intensity, microstructures 

with macropores along walls covered with microporous Si is observed from Figure 4.9b. On 

blank Si mass transfer limited regime is attained at 230.55 mW/cm2, whereas reaction on 
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patterned Si is kinetically limited at the same light intensity. Patterned Si reaches transition 

regime at higher light intensities as compared to the blank Si surface. While mass transfer 

limitations are expected to be higher in smaller features, our results show reaction in micron 

sized structure not being limited by mass transfer at the same conditions in which reaction 

millimeter sized pits is limited by mass transfer. This behavior in microstructures can be 

explained by the angle of light incidence. KOH pit is used as an etch seed for initiating 

photoelectrochemical etching in patterned structures while blank Si is subjected to 

photoelectrochemical etching without KOH etching. Consequently, the angle of incidence of 

Figure 4.9. SEM images for PEC etched samples at 5V with 632.8 nm at light intensities (a) 
92.22 mW/cm2, (b) 230.55 mW/cm2, and (c) 461.11 mW/cm2. 
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light is greater in the microstructures, resulting in lesser photon absorption than planar blank Si. 

Thus, the reaction rate in microstructures is still limited by charge transfer at the same incident  

light intensity at which the dissolution reaction in millimeter sized pits is limited by mass 

transfer. 

The aspect ratio of the microstructures created by photoelectrochemical etching of patterned n-

type Si (10-20 Ω-cm) is obtained as a function of incident light intensity. Figure 4.10 

demonstrates the aspect ratio of the microstructures as a function of the incident light intensity. 

All the experiments are performed with 6 µm opening diameter and 5 V applied bias. Aspect 

ratio used in Figure 4.10 suggests only microstructure depth and does not consider total vertical 

depression created as a result of undercut. As the light intensity increases, lateral expansion 

becomes more pronounced. Also, undercut increases with the light intensity and has a negative 

effect on aspect ratio. At light intensities equal to or lower than 92.22 mW/cm2, photons 

absorbed from the collimated light contribute to a faster vertical etch rate as compared to the 

radial etch rate. Whereas at higher light intensities, either Si dissolution mechanism alters to 
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Figure 4.10. Aspect ratio variation in patterned Si as a function of light intensity at an applied 
bias of 5 V versus Pt. 
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form an intermediate oxide layer which is subsequently chemically etched by HF giving an 

isotropic etch or there is excessive undercut leading to a decrease in apparent aspect ratio. 

4.1.4 Effect of Surfactants 

Electrolyte-semiconductor contact can be improved by releasing H2 gas bubbles formed on Si 

surface during electrochemical etching. Surfactants improve the electrolyte-semiconductor 

contact by reducing interfacial surface tension. Effect of different surfactants on etch rate and 

anisotropy is observed from Figure 4.11. Anionic (DowFax-3B2), Neutral (Triton X-100) and 

Zwitterionic (Sulfobetaine-12) surfactants are added below their critical micellar concentration in 

the electrolyte containing 4.63M HF, 57.77 volume % IPA, and water. Experiments were 

performed on p-type Si (100) with resistivity 10-20 ohm-cm and etched with KOH prior to 

Figure 4.11. SEM images showing the effect of different surfactants in the aq. Electrolyte 
containing 4.63M HF, 57.77% (vol) IPA, and (a) 74400 ppm Sulfobetaine-12, (b) 13300 ppm 
DowFax-3B2, and (c) 1480 ppm Triton X-100. 
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electrochemical etching. To explore the chemistry of etchants with Si, both n-type and p-type 

could be used since they only differ in their electronic properties but their chemistry remains 

similar (Gerischer and Lubke 1987; Lehmann 1993). An attempt was made to adsorb negatively 

charged surfactant molecules (anionic and zwitterionic) on anodized Si surface to passivate 

sidewalls. Figure 4.11a and 4.11b confirm neither zwitterions nor anions served in blocking the 

sidewalls. Instead, these surfactants performed their role as a surfactant by freeing the Si surface 

from gas bubbles; thereby etch rate is maintained in all crystallographic orientations. Similar 

action was observed with a neutral surfactant. Although surfactants played no role in the sidewall 

passivation, their contribution towards improving electrochemical etch rate served as reason for 

their incorporation in the electrolyte. The etch rate achieved with these surfactants were around 

0.5 µm/min. From a qualitative point of view it is observed from Figure 4.11 a, b and c sidewall 

etching is more vigorous with ionic surfactants as compared to neutral surfactant.  

4.1.5 Electrolyte Selection 

Dissolution rate observed in each system depends partly on electrolyte composition. Blank n-

type Si (100) wafers are used for investigating H2O and isopropyl alcohol (IPA) effect on the 

etch rate. In each experimental run, the electrolyte contains 5.1 M HF and 1480 ppm Triton X-

100, the average light intensity incident at the silicon-electrolyte interface is 46.11 mW/cm2 and 

an anodic potential versus Pt reference is 5 V. Figure 4.12 proves combination of water and IPA 

in electrolyte enhances etch rate. IPA minimizes solution surface tension thereby causing 

increased wettability and higher H2 detachment rates from Si surface (Campbell, Cooper et al. 

1995). High wettability has a positive effect on dispersive nature of HF and fluoride (F-) species 

in the electrolyte thereby improving mass transfer. As a consequence, limiting current increases 

at same HF concentration (Lin, Lai et al. 2008). This is observed from Figure 4.13 and 4.8b. 
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Figure 4.13b and 4.13c reveal tangled wire-like microporous structure. Similar structure is 

obtained when dissolution occurs with charge transfer limiting overall reaction rate (Figure 4.8c). 

Figure 4.13a shows cup shaped morphology resembling surface morphology attained in 

transition regime (charge transfer rate = mass transfer rate, Figure 4.8d). IPA‟s (3.5 µs/cm) larger 

electrical conductivity than distilled water (0.04 µs/cm) assists in improving the etch rate. Merlos 

et al also stated IPA‟s role in reducing undercut by 40-72% (Merlos, Acero et al. 1993). On the 

other hand, dielectric constant of water (78.39) is higher than IPA (19.9), resulting in higher 

degree of HF solvation in water. As a result, concentration of F- ions is higher in the electrolyte 

containing water. Presence of F- ions in the electrolyte contribute in improving the Si dissolution 

rate (Lin, Lai et al. 2008). Thus, a mixture of water and IPA in the supporting electrolyte 

increases the overall etch rate of the system.  

 

Figure 4.12. Etch rate as function of IPA volume fraction in electrolyte. 
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4.2 Effect of Applied Bias 

The effect of applied bias on sidewall porosity of the microstructures is studied. When photons 

from the incident light are absorbed by Si electron-hole pairs are generated. These photo-

generated holes in Si are brought to silicon-electrolyte interface by applied anodic bias. Since we 

use frontside illumination the electron-hole pairs are generated in the depletion region or in both, 

Figure 4.13. Morphology of etch pit with the electrolyte composition  as  CHF = 5.10M, CTriton 
X-100 = 1480 ppm, and  (a) 92.56% (v/v) water, (b) 11.06% (v/v) water, 81.5% (v/v) IPA, and 
(c) 44.41% (v/v) water, 48.15% (v/v) IPA. 
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the depletion region and bulk Si. The recombination rate of electron-hole pairs depend on their 

position relative to the depletion region width. Currents arising during photoelectrochemical 

etching are categorized based on the position of photon absorption relative to the depletion 

region in Si.  

The depletion region is a strong function of Si resistivity and the applied bias. The relationship 

between the depletion region width (WDR) and the applied bias (Vapp) is given by,  

WDR =  2.ε0.εSi .Veff

q.ND
     (4.1) 

where,   Veff = Vbi − Vapp      (4.2) 

Built-in voltage for Si-HF junctions (Vbi) ~ 0.5 (Wehrspohn, Schweizer et al. 2007), Permittivity 

of free space (ε0) – 8.85 × 10−14 F·cm−1, Relative permittivity of Si (εSi ) – 11.7, Elementary 

charge (q) – 1.6 × 10−19 C, Donor concentration (ND) – 3.604 × 1014 cm-3, Boltzmann‟s constant 

(k) – 8.61 × 10−5 eV/K, Intrinsic carrier concentration at 300 K (ni) – 8.6 × 109 cm-3, and  

Figure 4.14. Depletion Region Width as function of applied anodic bias for a planar surface n-
type Si (100). 
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Temperature (T) – 300 K. Figure 4.14 shows a plot of the depletion region width as a function of 

the applied bias for planar n-type Si (10-20 Ω-cm). From Figure 4.14, it is observed as the 

reverse bias on n-type Si is increased, the depletion region width increases. The calculated values 

for the planar surface depletion region width shown in table 4.1: 

Table 4.1 Depletion region widths at different anodic bias 

 

 

 

The ability to tailor the depletion region width in Si with given resistivity has made it possible to 

absorb photons even beyond the depletion region width during frontside illumination. Figure 

4.15 shows the schematic for photon absorption as a function of depth in Si. The incident light 

Applied bias (V) 𝑾𝑫𝑹(µm) 

5 4.47 

0.5 1.88 

Figure 4.15. Light intensity as a function of depth in Si. 
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has a wavelength of 632.8 nm. Photon absorption in a material is governed by Beer Lambert‟s 

law. Beer-Lambert‟s law shows photon flux (light intensity) as a function of depth (Equation 

4.3); 

 I = I0 . e−α.x      (4.3) 

Where, I‟ is the light intensity at any depth „x‟, „I0‟ is the incident intensity of light, and „α‟ is the 

photon absorption coefficient. Photon absorption coefficient varies with the material and the 

incident light wavelength. For monochromatic light, the photon absorption coefficient remains 

constant (𝛼632.8 nm = 2.9 × 103). Consequently, the intensity of light exponentially decays with 

increasing depth in Si. Area under the intensity versus depth curve gives the number of photons 

absorbed within the depth considered. The dotted vertical lines in Figure 4.15 indicate the 

position of the depletion region and bulk Si interface. The width of the depletion region varies 

Figure 4.16.Effect of radius of curvature on depletion region width, (Jin, Xuemei et al. 2002) 
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with the applied potential. When the width of the depletion region is large majority of the 

photons are absorbed within the depletion region, while for a smaller depletion region width 

most of the photons are absorbed beyond the depletion region and into bulk Si. This is indicated 

by the schematic in Figure 4.15.  

The width of the depletion region and the electric field across the depletion region is affected by 

the surface geometry. Poisson‟s equation for an interface is given by, 

1𝑟2

𝑑𝑑𝑟  𝑟2 . 𝜉 𝑟  =
𝜌(𝑟)𝜀     (4.4) 

Where ε is the dielectric constant, r is the radius of curvature, 𝜉 𝑟  is the electric field, and 𝜌(𝑟) 

is the charge density in the depletion region. On integrating the Poisson‟s equation we get, 

𝜉 𝑥 + 𝑟0 =
𝑞 .𝑁𝐷

3.𝜀 [− 𝑥 + 𝑟0 +
 𝑟0+𝑥𝑑 3 𝑥+𝑟0 2

]    (4.5) 

Where, ND is the ionized dopant density, q is the electronic charge, r0 is the radius of curvature at 

the interface, xD is the depletion region width, r is given as x+r0 (Zhang 1991). As the radius of 

Figure 4.17. Schematic of depletion region width as function of pore geometry. 
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curvature of the microstructure becomes smaller than the depletion region width of a planar 

surface, the electric field becomes stronger. This results in high current flow through the region 

with large electric field. The bottom of a KOH pit or a u-shaped pore has a very small radius of 

curvature. Thus, the electric field at the bottom of a tapered microstructure is a maximum. A 

large electric field gives rise to high current flow at the pore tip leading to a higher vertical etch 

rate.  

The depletion region width is a function of the surface geometry. As shown in Figure 4.16, the 

depletion region width reduces with decreasing radius of curvature of a metallurgical junction 

(Jin, Xuemei et al. 2002). The planar surface has an infinite value for the radius of curvature. The 

planar surface depletion region width is the maximum value of the depletion region of Si 

substrate with a given resistivity at a fixed applied bias. Mellaurgical junction can be 

approximated to a electrolyte-semiconductor junction. In deep microstructures, the radius of 

curvature of the microstructure surface varies with every point on the surface. The microstructure 

tip has the smallest radius of curvature and this gradually increases at the pore walls. 

Consequently, the depletion region width at the bottom of the microstructures is smaller than at 

the sidewalls as shown in Figure 4.17.  

The investigation on the effect of potential on sidewall porosity of the microstructures is 

performed at constant average light intensity 11.5 mW/cm2. Collimated light with 632.8 nm 

wavelength is used as the photon source. At an applied bias of 5 V highly porous microstructure 

sidewalls are obtained as shown in Figure 4.18a. As the applied potential is lowered to 0.5 V 

sidewall porosity reduces (Figure 4.18b). Furthermore, morphology of the microstructures 

change with the applied bias; at a higher applied bias (5 V versus Pt) microstructure walls are 

covered with a microporous tangled wire-like layer with macropores at the bottom (Figure 4.18a) 
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and at lower bias (~ 0.5 -1 V versus Pt) cup shaped smooth structures are formed on the 

microstructure walls with no microporous layer covering them at a pitch of 50-100 µm (Figure 

4.18b). Therefore, lower potentials seem promising to obtain isolated microstructures.  

Arita classified the morphology (crystalline or amorphous) of the photoelectrochemically etched 

blank Si based on the current density. The current density depends on the number of electrons (n) 

injected into the conduction band of Si during electrochemical etching. „n‟ is between 2 and 4 for 

Si anodization reactions. The electrochemically etched Si structure is amorphous when n is equal 

to 2 and the Si structure is crystalline for n between 2 and 4. The structure of the 

electrochemically etched Si (crystalline or amorphous) can be attributed to the relative position 

of the generation of minority charge carriers with respect to the depletion region. During 

anodization, n-type Si is under depletion. Current flowing through circuit is composed of drift, 

diffusion and tunneling currents.  

JTotal = JDrift + JDiffusion + JTunnel     (4.6) 

Tunneling currents dominate in highly doped Si (> 1018/cm3).  Since we are working with 10-20 

Ω-cm resistivity (medium doped), tunneling currents are insignificant. Dominance of drift or 

diffusion current, is based on relative photon absorption position in Si to depletion region width. 

Drift currents dominate when minority charge carriers are generated within the depletion region 

(n=2), while the diffusion currents (2<n<4) control Si dissolution reaction, when the charge 

carriers are generated outside the depletion region (Arita 1978). Further, due to the built in field, 

almost all the minority charge carriers generated within the depletion region width do not 

recombine contributing to current (Bazkir 2009). The lifetime of excess carriers is inversely 

proportional to the recombination rate and ranges from 1 ns to 1 ms in silicon (Delalamo and 
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Swanson 1987) and hence, the excess carriers generated in bulk Si recombine at a certain finite 

recombination rate. 

Microstructures formed in patterned n-type Si (10-20 Ω-cm) show difference in the sidewall 

porosity based on the relative position of photon absorption with respect to the depletion region. 

Figure 4.18.Cross-sectional SEM image of TSVs obtained with HeNe laser (632.8 nm) at an 
applied bias of (a) 5V, (b) 0.5V versus Pt at an average incident light intensity of 11.5 mW/cm2 
(top), schematic showing effect of applied bias (bottom). 
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Depletion region width increases with increasing reverse bias on n-type Si as per Equation 4.1. 

For an applied bias of 5 V and 0.5 V, the depletion width is calculated as 4.47 µm and 1.88 µm, 

respectively. Absorption depth of photons with 632.8 nm wavelength is approximately 3.4 µm 

(VirginiaSemiconductor). Consequently, at an applied bias of 5 V most of the photons are 

absorbed within 4.4 µm (depletion region width), while at 0.5 V, majority of the charge carriers 

are created beyond 1.6 µm. At high reverse bias (5 V) most of the charge carriers are generated 

in the depletion region. The holes in the depletion region cannot recombine and hence, the 

electric field drives almost all the holes to the silicon-electrolyte interface. Due to this all the 

charge carriers generated in the depletion region participate in the Si dissolution reaction giving 

rise to significant drift currents. Drift currents cause new lattice defects nucleation (Outemzabet, 

Gabouze et al. 2005) which explains sub-micron sized pores emerging from the sidewalls. On the 

other hand, when the applied anodic bias is low, the depletion region is extremely thin. Hence, 

most charge carriers are absorbed beyond the depletion region. These charge carriers generated 

in the bulk can recombine at a finite recombination rate. The electron-hole pair recombination 

leads to annihilation of excess carriers. The recombination process reduces the number of holes 

reaching the depletion region from bulk. The density of holes at the sidewalls is minimized to a 

great extent due to (i) control over the photon absorption by increased angle of incidence of light 

at the sidewalls and, (ii) the recombination process occurring in the bulk (when photon 

absorption occurs beyond the depletion region). At the bottom of the KOH pit due to zero angle 

of incidence of light larger number of holes are created. A fraction of the holes created beyond 

the depletion region recombine. The difference in the number of holes generated varies 

drastically from the sidewalls to the bottom of the microstructure. Thus, majority of holes are 

present at the bottom of the KOH pit. These holes diffuse to the depletion region and then 
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brought to the silicon-electrolyte interface by the electric field. (Figure 4.18 bottom). We believe 

the electron-hole recombination in addition to the lower photon absorption at the sidewalls due to 

the increased angle of incidence of light at the walls of the KOH pit creates anisotropic isolated 

structures in n-type Si with frontside illumination. 

The dependence of the depletion region width on surface geometry helps in analyzing the effect 

of depletion region width on sidewall porosity from the SEM image of a single microstructure. 

Collimated light (λ = 632.8 nm) with an average light intensity of 115.27 mW/cm2 is used to 

illuminate Si. Photoelectrochemical etching is performed at an anodic bias of 3 V. At these 

conditions, the cross-sectional SEM of a single microstructure is seen from Figure 4.19. The 

Figure 4.19. SEM image of a single microstructure demonstrating porous and non-porous 
sidewalls. 
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upper portion of the microstructure shows porous sidewalls, whereas the lower portion shows 

non-porous sidewalls. The observation of different structures in a single microstructure can be 

attributed to the depletion region width which varies as a function of microstructure geometry. 

As the radius of curvature of a surface increases, the depletion region width correspondingly 

reduces. Consequently, the depletion region width is lesser at the bottom of the microstructure 

than the top. Thus, majority photons are absorbed within the depletion width at surfaces with 

smaller radii of curvature (top portion of the microstructure), while majority photons are 

absorbed beyond the depletion region width at surfaces with larger radii of curvature (bottom 

curved portion of the microstructure). The electron-hole pairs created in the depletion region do 

not recombine and consequently lead to excessive nucleation at the sidewalls. While the hole 

density is reduced when most of the photons are absorbed in the bulk since the recombination 

rate is much higher in the bulk. These holes created in the bulk with the ability to recombine 

reduce the percentage of holes reaching the silicon-electrolyte interface.  

A low anodic bias decreases the depletion region width thereby generating a larger percentage of 

excess carriers in the bulk than within the depletion region. Recombination in the bulk helps 

reduces the drift current thereby reducing nucleation at the sidewalls of the microstructure. Thus, 

non-porous, isolated microstructures can be created by performing photoelectrochemical etching 

at a low anodic bias. 

4.3 Effect of Wavelength 

The effect of wavelength of the incident light on the morphology of photoelectrochemically 

etched Si is investigated. On illumination, absorption coefficient which is a function of photon 

energy and absorbing material, governs depth at which photons are absorbed from silicon-

electrolyte interface.  



59 

 

Experiments are performed with 632.8 nm HeNe laser and 365 nm collimated UV Light 

Emitting Diode. Average light intensities of 11.5 mW/cm2 and 7.8 mW/cm2 are obtained from 

Figure 4.21. Light intensity decay as a function of depth in silicon and the wavelength of light. 

Figure 4.20. Cross-sectional SEM images of TSVs showing morphology variation with 
photon energy; (a) λ = 632.8 nm, (b) λ = 365nm. 
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632.nm HeNe laser and the 365 nm UV LED, respectively. Since the average light intensities are 

almost equal, wavelength is the main parameter varied in both the experiments. Figure 4.20a 

shows very rough morphology and pronounced cup shaped structures (< 10 µm deep) all along 

the periphery of the microstructure when irradiated with 632.8 nm light, while Figure 4.20b 

shows extremely shallow cup shaped structures at the lower half of the microstructures created 

with 365 nm UV light. There is no evidence of a microporous sidewall at the low applied voltage 

of 0.5V versus Pt, the incident light intensity and wavelength. The difference in the morphology 

observed with different wavelengths could be attributed to difference in photon absorption 

coefficient in Si with the wavelength of the light. 

The hole generation rate (g x ) in a semiconductor is given by the following equation 

g x = I0. α. e−α.x       (4.7) 

Where, 𝐼0 is the intensity of incident light, 𝐼 is the intensity at depth 𝑥, and 𝛼 is the absorption 

coefficient. Equation 4.3 and 4.7 suggest the intensity of light and the hole generation rate 

decrease exponentially with increasing depth in the absorbing material. Figure 4.21 shows the 

light intensity decay for 365 nm and 632.8 nm light. The light intensity (photon flux) decay is a 

strong function of the absorption coefficient of light in Si. Light with smaller wavelengths have 

higher absorption coefficient. As a consequence, light with 365 nm decays faster with depth than 

light with 632.8 nm. Photons having a wavelength of 365 nm are absorbed near the silicon-

electrolyte interface, whereas the 632.8 nm wavelength photons generate holes from the silicon-

electrolyte interface to larger depths in Si. The photon absorption depth (inverse of photon 

absorption coefficient) corresponding to 632.8 nm is 3.44 µm and 365 nm is 10.5nm (Green and 

Keevers 1995). The difference in the photon absorption depth is around 2 orders of magnitude. 
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This difference is evident in the surface roughness of the samples illuminated by light sources 

with 365 nm and 632.8 nm (Figure 4.20).  

The ideal technique to measure the degree of isolation (non-porous walls) of a microstructure is 

obtaining the cross-section showing the corner row of a pattern. At the corner row one side of the 

microstructures is bound by the adjacent microstructure while the other side remains unbound. 

Figure 4.22 shows the cross-section revealing the corner of a pattern; the sidewalls are non-

porous and appear to be the same as the walls bound by other microstructures. Thus, it is feasible 

to obtain a single isolated microstructure using wet photoelectrochemical etching.  

The data points used in Figure 4.23 and 4.24 are as follows: 

„1‟ - Photoelectrochemical etching with Frontside illumination (FSI) on n-type-Si (10-20 Ω-cm) 

„2‟ - KOH Etching  

Figure 4.22. SEM image showing anisotropic, isolated microstructures at the corner row of a 
pattern. 



62 

 

„3‟ - Photoelectrochemical etching with Backside illumination (BSI) on n-type Si (80 Ω-cm), 

(Lehmann and Foll 1990) 

„4‟ - Photoelectrochemical etching with Backside illumination on n-type Si (20 Ω-cm), 

(Lehmann and Foll 1990) 

„5‟ - Photoelectrochemical etching with Backside illumination on n-type Si (40 Ω-cm), 

(Lehmann and Ronnebeck 1999) 

„6‟ - Photoelectrochemical etching with Backside illumination on n-type Si (2.4-4 Ω-cm), 

(Barillaro, Nannini et al. 2002) 

From Figure 4.23 we observe frontside illumination creates non-porous microstructures with 

sidewall thickness of 87 µm (wall thickness between adjacent microstructures), while the 

maximum non-porous sidewall thickness published with backside illumination is approximately 

38 µm (Lehmann and Ronnebeck 1999). The non-porous sidewall thickness in microstructures 

Figure 4.23. Plot comparing frontside illumination with backside illumination and KOH etching 
to demonstrate sidewall angle as a function of sidewall thickness while creating microstructures 
with non-porous sidewalls 
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depends mostly on the depletion region width while using backside illumination for 

photoelectrochemical etching. The depletion region width restricts the non-porous sidewall 

thickness while forming microstructures at isolated locations by backside illumination for a 

given Si resistivity. The limitation of backside illumination in creating non-porous sidewalls at 

wall thickness much greater than twice the depletion region width can be observed from Figure 

4.24 and 4.25. Figure 4.24 illustrates the microstructure sidewall angle against horizontal (100) 

plane as a function of the sidewall thickness normalized to twice the depletion region width for 

non-porous sidewalled microstructures created using frontside illumination, backside 

illumination and KOH etching. From the plot it is evident that the backside illumination fails to 

create microstructures or macropores with non-porous sidewalls at larger sidewall thickness 

(isolated locations). Lehmann and Ronnebeck have shown macropores with non-porous 

sidewalls up to three times twice the depletion region width with backside illumination 

(Lehmann and Ronnebeck 1999). Contrary to the result obtained by Lehmann et al, many 

researchers have observed porous sidewalls at wall thickness greater than twice the depletion 
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Figure 4.24. Sidewall angle as a function of normalized non-porous sidewall thickness for 
frontside illumination, backside illumination and KOH etching. 
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region width (Lehmann and Foll 1990; Barillaro, Nannini et al. 2002; Tao and Esashi 2005; 

Astrova and Fedulova 2009). From data point 2 it is seen that KOH etching is independent of the 

wall thickness between the adjacent patterns.  However, KOH etching creates sidewalls at 54.74º 

with (100) plane (horizontal) giving an inverted pyramidal structure. Also, the aspect ratio given 

as the ratio of height to the diameter of the microstructure remains constant with time. On the 

other hand, data point 1 proves that photoelectrochemical etching with frontside illumination can 

create microstructures independent of the wall thickness between the adjacent patterns ((sidewall 

thickness / 2 × depletion region width) = 22.76) and the angle made by the sidewalls is 

approximately 87º with the horizontal.  

Since the sidewall thickness of isolated microstructures using backside illumination is a function 

of Si resistivity, the sidewall thickness normalized to twice the depletion region width is plotted 

against Si resistivity in Figure 4.25. This plot indicates for n-type Si 10-20 Ω-cm, a normalized 

sidewall thickness of 22.76 and 1.165 (Astrova and Fedulova 2009) for frontside illumination 
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and backside illumination, respectively, suggesting photoelectrochemical etching using frontside 

illumination using UV light source (365 nm) and low applied reverse bias (0.5 V) has the 

potential to create isolated microstructures in n-type Si (100) 10-20 Ω-cm.  

Prolonged etch for 4 h using UV light source (365 nm) at an average incident light intensity of 

7.8 mA/cm2, a maximum depth of 78 – 96 µm is repeatedly obtained giving an overall etch rate 

of 0.325 – 0.4 µm/min. Sidewalls making 85-90º with horizontal axis were obtained. Moreover, 

a minimal radial expansion of 2-3 µm from the initial seed size is observed. Isolated 

microstructuress are created at a pitch of 100 µm (Figure 4.26). Further, the aspect ratio 

increases with time, hence, anisotropic, isolated, high aspect ratio microstructures can be 

fabricated. 

Figure 4.26. Photo-electrochemical etching of n-type Si at 0.5 V versus Pt using 7.8 mA/cm2 
average light intensity from 365 nm collimated UV LED for 4 hours. 
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5 CONCLUSION 

Effect of incident light wavelength, and applied bias have been studied to create high aspect 

ratio, and anisotropic microstructures at isolated locations in n-type silicon (Si), via wet 

photoelectrochemical etching using frontside illumination. Lehmann et al observed excessive 

lateral etching due to near surface charge carrier generation while using frontside illumination. 

Contrary to the observation by Lehmann et al, high aspect ratio microstructures have been 

demonstrated in this work using frontside illumination. Moreover, the depletion region no longer 

serves as the sidewall passivating agent while illuminating at the silicon-electrolyte interface. 

Microstructures with an aspect ratio of approximately 5:1 have been obtained and the aspect ratio 

increases with time. Etch rate is a function of the light intensity while working in charge transfer 

limited regime, necessary condition for anisotropic etching.  

Minority carrier generation beyond the depletion region width on application of low reverse bias, 

reduces sidewall porosity and leads to the formation of microstructures with non-porous 

sidewalls at isolated locations. The morphology of the microstructures is found to be a strong 

function of the incident wavelength. The microstructure wall roughness could be attributed to the 

absorption depth of the incident light; consequently smooth sidewalls are obtained with smaller 

wavelength illumination. Furthermore, use of UV light with photon energy greater than band gap 

of silicon nitride helps in eliminating chrome and gold masking layers.  

 

 

.  
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CMP and sintering (right). (Pt on top for contrast)    
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