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Abstract. We investigate the photoelectron spectrum of the H+
2 target induced by few-cycle XUV laser

pulses using first principle calculations. In the photoelectron spectrum, by performing calculations for
different internuclear separations, we investigate how the structure of the target is influencing the spa-
tial interference pattern. This interference pattern is created by the coherent superposition of electronic
wave packets emitted at the same time, but following different paths. We find that the location of the
interference minima in the spectra is dominantly determined by the target’s ionization energy, however,
by comparing the H+

2 results with model calculations with spherically symmetric potentials, clear differ-
ences were observed for the molecular potential relative to the central potentials. Next to the main feature
(spatial interference) we have also identified the traces of the two-center interference in the photoelectron
spectrum, however, these were mainly washed out due to the complex electronic wave packet dynamics
that occurs during the interaction with the considered laser field.

1 Introduction

As in the case of its optical analogy [1], the electron holog-
raphy [2] captures both the phase and amplitude informa-
tion of the electron wave packets (EWPs) scattered by
the target, which is achieved by the interference between
the scattered and a reference wave. In traditional electron
holography the electron wave packets are created by the
electron gun of an electron microscope and manipulated
by imaging elements [2,3]. In contrast, in photoelectron
holography the EWPs are created via the ionization of
the target by an intense ultrashort laser pulse, and are
manipulated by the electric field of the same laser pulse.
Compared to the traditional electron holography, photo-
electron holography is a relatively new technique. The first
experimental observation of a photoelectron hologram [4]
dates back only a few years, and in order to become a
mature experimental technique, a detailed understanding
of the underlying processes is required.

The formation of the photoelectron holograms can also
be interpreted as a secondary process following the pri-
mary ionization of a target induced by an ultrashort laser
pulse, which modulates the photoelectron momentum dis-
tribution. These modulations are the results of the super-
position of electronic wave packets created at the same
time (i.e., during the same quarter-cycle of the pulse),
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but which follow different spatial paths. This is one of
the several possible EWP interference scenarios [5], and
it is also known as spatial interference. In the case of
spatial interference, along the different spatial paths each
wave packet accumulates a different phase, which due to
the coherent superposition leads to the formation of a
radial ridge structure in the electron spectra [4–14]. In the
framework of a simplified two-path model [4–6] the spa-
tial interference pattern can be understood as the result of
the interference between the direct (i.e., weakly scattered
by the parent ion) and indirect (i.e., strongly scattered)
EWPs. The existence of these two distinct wave packets
was confirmed by an elaborate classical trajectory Monte-
Carlo simulation [10] for the hydrogen target, where it was
shown that electrons can reach a given continuum state
with a well defined momentum by following two types of
trajectories: weakly scattered by the core (i.e., the min-
imum distance between the returning electron and the
parent ion is larger than 5 a.u.), or strongly scattered ones
(i.e., the minimum distance between the returning electron
and the parent ion is ∼1 a.u.). In this picture, the weakly
scattered waves can be considered as part of the reference
wave packet, while the strongly scattered EWPs as part of
the signal wave packet, which confirms the interpretation
of the spatial interference pattern as the hologram of the
target [4,10].

Both the photoelectron holography and the laser-
induced electron diffraction (LIED) [15–19] rely on the
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scattering by the parent ion of the laser field induced
EWPs during their quiver motion. The main difference
between the two is that in the case of LIED the reference
wave is missing (i.e., the continuum EWP created during
the ionization step is not broad enough in the momentum
space). The transition between the photoelectron holog-
raphy and LIED is gradual, and it can be achieved by
narrowing the continuum electron wave packet in momen-
tum space in the direction perpendicular to the laser
polarization axis. From the photoelectron momentum dis-
tribution resulted from this electronic wave packet diffrac-
tion both structural [15–18] and temporal [19] information
regarding the target atom or molecule can be extracted
using laborious procedures [17]. In photoelectron hologra-
phy, in addition to the LIED’s scattered electronic wave
packet (signal) a reference wave packet is also present, and
the coherent superposition of these two EWPs leads to
a more structured electron momentum distribution with
clearly identifiable interference minima and maxima. This,
in principle, allows for an easier extraction of structural
information from a photoelectron hologram, than from a
LIED pattern.

Due to previous experimental [4,6,8,11] and theoreti-
cal [10,12–14,20,21] investigations several aspects of the
formation of the photoelectron holograms are understood.
Firstly, for a given target, the density of the interference
minima is determined by the z0 parameter, which mea-
sures the maximum distance from the parent ion reached
by the EWPs before the scattering event. The value of
z0 is directly controlled by the parameters of the driving
laser pulse, and its increase can be achieved by increas-
ing the pulse intensity or wavelength. Secondly, it was
recently shown [13] that in the case of atomic targets for
a fixed driving laser pulse the shape of the hologram is
strongly influenced by the scattering potential (i.e., the
atomic species of the target). This high target sensitivity
of the photoelectron holography is due to the fact that
the phase accumulated by the scattered EWP is strongly
influenced by the depth of the binding potential in the
vicinity of the target core. In order to continue this line
of inquiry, in the present paper, we investigate how the
photoelectron hologram looks like for molecular targets,
and how the geometry of the molecular target is influenc-
ing the obtained hologram. We chose the H+

2 molecular
ion as our target [22,23], and we solved numerically the
time-dependent Schrödinger equation (TDSE) consider-
ing different internuclear distances. In order to highlight
the multi-center effects of the molecular binding potential
on the hologram we also performed calculation for two
different model H+

2 targets. In the first model we have
substituted the two-center binding potential of H+

2 with a
one center potential obtained by averaging over the molec-
ular axis orientation (H+

2mod1), while in the second case

(H+
2mod2) we have used a modified version of the model

potential from [24].
Several studies [25–34] on the photoelectron holography

of molecular targets were already performed, which, with
the exception of a few studies [26,27,31,32], were focus-
ing on the H+

2 target. A significant portion of these works
[26,27,29,34] investigated the influence of the molecular

axis orientation on the hologram at equilibrium inter-
nuclear distance, and found that the forward scattering
photoelectron hologram is only weakly influenced by it.
This weak effect was explained by the observation that
in the case of the small molecules the electron scatter-
ing cross section in the forward scattering direction is
mainly determined by the long-range Coulomb poten-
tial [32,35], and the short-range effects are repressed by the
long range contribution. The molecular axis orientation
dependence of the forward scattering photoelectron holo-
gram can be investigated by increasing the molecular axis
length [30,33] or by the use of circularly polarized driving
laser field [28,29]. For the backward scattering direction
the contribution of the short-range part of the molecular
potential is larger, thus as it was expected the backward
scattering photoelectron hologram (the signal and refer-
ence wave packets being created during different quarter
cycles [25,32]) is much strongly influenced by the molecu-
lar axis orientation [32]. In contrast, investigations on the
molecular axis length dependence of the forward scatter-
ing photoelectron hologram are sparse. In [32] the indirect
experimental evidence is presented on the molecular axis
length dependence of the photoelectron hologram. Fur-
thermore, in the framework of a simplified model, where
the H+

2 was described by a 2D soft-core Coulomb poten-
tial, this effect is explicitly investigated [30,33]. In the
first study [30] it is only marginally discussed, while in
the second study [33] it is investigated in detail only at
large internuclear distances (in the region of the charge-
resonance enhanced ionization).

In the above outlined context, the present study is ded-
icated to the investigation of the molecular axis length
dependence of the forward scattering photoelectron holo-
gram (photoelectron hologram in the forthcoming part of
the paper), where special attention will be accorded to
the physics of the molecular axis length dependence of the
photoelectron hologram. Furthermore, for the equilibrium
internuclear distance, the laser field intensity dependence
of the photoelectron hologram will also be analyzed in
order to check the validity of previous observations [10]
made for atomic targets.

The present paper is structured as follows: the introduc-
tion is followed by the theory section, where our approach
for the numerical solution of the TDSE for the H+

2 tar-
gets is outlined. This is followed by a section dedicated to
the performed numerical convergence tests. Thereafter we
present and discuss our results obtained for the H+

2 target
followed by a comparison to the H+

2mod1 and H+
2mod2 model

targets. The last section is dedicated to the conclusions.
Throughout the present article atomic units are used.

2 Numerical solution of the TDSE for the H+
2

molecule

During our investigations we have considered the inter-
action between few-cycle XUV laser pulses and the
H+

2 molecule. For such ultrashort laser fields the Born-
Oppenheimer approximation can be safely used, thus
the electronic and nuclear dynamics can be separated.
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Fig. 1. The geometry of the studied system in the laboratory
(a) and in the molecular frame (b). The x′y′z′ molecular frame
is rotated by the angle θR around the 0y = 0y′ axis. The elec-
tric component of the incident laser field is linearly polarized
in the 0z direction.

Moreover, the fixed nuclei approximation was considered
since the vibrational period of the target is much larger
than the duration of the driving field, thus we restricted
ourselves to the solution of the electronic TDSE for fixed
internuclear separation

i
∂

∂t
Ψ(r; t) =

[

Ĥ0 + Ûint(t)
]

Ψ(r; t) (1)

where the time-dependent electronic Hamiltonian was
given as the sum of the Ĥ0 = T̂ + V̂ field-free and the
Ûint(t) = r · E(t) electron-laser interaction term written

in the dipole approximation using the length gauge. T̂ is
the kinetic energy operator of the electron with mass µ
at position r, while V̂ = −ZA/rA −ZB/rB represents the
Coulomb interaction potential between the electron and
the two nuclei located at distances rA,B from the electron.
The electric charges of the nuclei were set to ZA = ZB = 1
(H+

2 ). In our calculations we employed linearly polarized
laser fields in the Oz direction (which defines the labora-
tory frame) having a sine-square envelope:

E(t) =

{

E0 sin (ωt+ ϕCEP) sin2
(

πt
τ

)

, if t ∈ [0, τ ];

0, otherwise,
(2)

where ω is the carrier frequency, τ is the pulse duration,
ϕCEP is the carrier-envelope-phase, and E0 represents the
amplitude of the electric field. Figure 1 illustrates the
geometry of the studied system in the laboratory and
the molecular frame of reference.

Both the Ψ(t, r) =
∑∞

m=−∞ Ψ(m)(ξ, η; t)eimϕ/
√

2π
(m ∈ Z) wave function (WF) and the Hamiltonian were
expressed in the prolate spheroidal coordinate system:
ξ = (rA+rB)/R, η = (rA−rB)/R, ϕ (the azimuthal angle);
with R being the internuclear distance, and ξ ∈ [1,∞),
η ∈ [−1, 1], ϕ ∈ [0, 2π] [36–42]. Then, they were repre-
sented on finite-element discrete variable representation
(FE-DVR) grids [43–46] (for both ξ and η configuration
subspaces), where the local basis functions [47] were built
using rescaled Lagrange interpolation polynomials (DVR
functions) built on top of the xα

i (wα
i ) Gauss–Lobatto

quadrature points (weights).

Moreover, we employed a rescaled form of the WF

Ψ(m)(ξi, ηj ; t) = ψ
(m)
ij (t)

/

√

(R3/8)w
{ξ}
i w

{η}
j J(ξi, ηj),

(3)
with J(ξi, ηj) = Jij = ξ2i − η2

j being the Jacobian. By
using this ansatz the TDSE in the FEDVR basis takes
the following form

i
∂ψ

(m)
ij (t)

∂t
=

∑

m′i′j′

[

Tmm′

iji′j′ + V mm′

iji′j′ + Umm′

iji′j′(t)
]

ψ
(m′)
i′j′ (t),

(4)
where the coupling (Hamiltonian) matrix elements

Hmm′

iji′j′(t) = Tmm′

iji′j′ + V mm′

iji′j′ + Umm′

iji′j′(t) were decomposed
to

Tmm′

iji′j′ = 2δmm′µ−1R−2
[

δii′δjj′m2(ξ2i − 1)−1

× (1 − η2
j )−1 + (δjj′〈fi|T̂ξ|fi′〉

+ δii′〈gj |T̂η|gj′〉)J−1/2
ij J

−1/2
i′j′

]

; (5)

V mm′

iji′j′ = δmm′δii′δjj′V (ξi, ηj); (6)

Umm′

iji′j′(t) =
[

2δmm′ξjηj cos θR + (δm−1,m′ + δm+1,m′)

×
√

(ξ2i − 1)(1 − η2
j ) sin θR

]

δii′δjj′E(t)R/4.

(7)

It is worth mentioning, that in the case when the molec-
ular axis is parallel to the laser polarization vector, the
coupling between the partial channels corresponding to
different m values vanishes, since the second term in equa-
tion (7) is zero for θR = 0.

In order to obtain a symmetric form for the kinetic
energy matrix Tmm′

iji′j′ , the matrix elements of the T̂ξ and T̂η

operators were symmetrized by following the procedures
outlined in [37,38]:

〈fi|T̂ξ|fi′〉 ≃
∑

k

w
{ξ}
k (ξ2k − 1)f ′i(ξk)f ′i′(ξk). (8)

〈gj |T̂η|gj′〉 ≃
∑

l

w
{η}
l (1 − η2

l )g′j(ηl)g
′
j′(ηl), (9)

where fi(ξ) and gj(η) are the rescaled Lagrange interpo-
lation polynomials built on top of the ξ and η grid.

Since, in the present work the orientation of the
molecular axis was constrained parallel to the laser field
polarization vector (θR = 0) and due to the cylindri-
cal symmetry around the molecule, the coupling between
the partial channels corresponding to different m val-
ues disappeared. Starting the simulation from the m =
0|1sσg〉 ground state the dimensionality of the original
3D problem was reduced to 2D. This initial WF (and
the other higher lying bound states used during the cal-
culation of the photoelectron spectra) was obtained for
fixed internuclear distances via the direct diagonalization
of the field-free Hamiltonian using the Scalable Library for
Eigenvalue Problem Computations (SLEPc) package [48].
Afterwards, this initial WF was propagated in time using
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the short-iterative Lanczos (SIL) scheme [49], where in
each fixed-size (∆t = 10−3 a.u.) time step the propaga-
tion error was kept below 10−8 by automatically adapting
the size of the Krylov subspace in which the evolution
operator was evaluated.

2.1 Numerical details

In order to avoid the undesired reflections from the edge
of the simulation grid at ξmax, we have utilized a complex
absorbing potential of the form:

VCAP = −i exp

[

αabs log cos
ξ − ξcut

ξmax − ξcut

]

, for ξ ≥ ξcut,

(10)
where the value of αabs was set to 106 and ξcut at 0.95ξmax.

The proper size of our ξ simulation box was ensured by
keeping the norm of the absorbed part of the WF below
10−10. For the results presented in this paper this con-
dition was always fulfilled with the simulation box-size
ξmax = 1220 a.u./R. The number of DVR basis functions

for both the ξ and η grids was set to Nfun = N
{ξ}
fun =

N
{η}
fun = 7. For all internuclear separations the size of the

η FEs was fixed to ∆η = 10−1 (resulting in an average

η gridpoint distance of ∆η/(N
{η}
fun − 1) ≃ 1.6 × 10−2),

while the size of the ξ FEs varied as a function of R in
such a way that ∆ξR was kept constant at 2.4 a.u. This
translates to 121 η and 3073 ξ gridpoints leading to the
Hamiltonian matrix size of 371 833 × 371 833. With these
grid parameters the calculated bound state energies were
in excellent agreement with the data found in [41], e.g.,
the relative differences between the two sets of data for
the first 10BS energies for R = 2 a.u. were below 10−10.
These grid parameters also ensured that even electronic
states with high momentum and angular momentum were
properly represented.

3 Calculation of convergent photoelectron

spectra

The most straightforward way of obtaining the ioniza-
tion probability density [i.e., the photoelectron spectrum
(PhES)] is by projecting the propagated WF onto the
exact scattering states |Ψk〉 with asymptotic electron
momentum k

dP

dk
(k; t) = |〈Ψk|Ψ(t)〉|2. (11)

Considering that the two-center continuum WFs do
not have analytical expressions – there are only labo-
rious numerical procedures [50] to obtain them – we
restricted our calculations to one-center continuum func-
tions. Since these scattering states are approximate for
the H+

2 molecule they introduce a certain amount of error
in the calculated electron spectra. The first source of
error lies in the fact that the one-center functions are not
orthogonal to the bound state (BS) wave functions of H+

2 .

Fig. 2. Convergence of the photoelectron spectra calculated
as a function of the number of subtracted bound states (NBS)
calculated at time moment 5τ for the internuclear separation
R = 4 a.u.: (a) NBS = 0, (b) NBS = 5, (c) NBS = 80. kx

is the electron momentum component perpendicular, while kz

parallel to the laser polarization vector. In (d) the ionization
probability density at t = 5τ for the fixed k =

√
k2

x + k2
z =

0.5 a.u. momentum is shown as a function of NBS.

This source of error can be eliminated by removing the
bound part of the time-dependent WF prior to projecting
it onto the continuum states [Eq. (11)]. The second source
of error is rooted in the fact that while in the asymptotic
region the one- and two-center Coulomb wave functions
are similar, in the close vicinity of the nuclei they differ
significantly. This error can be greatly reduced by prop-
agating the TDSE until the continuum part of the WF
departs sufficiently far from the vicinity of the nuclei.

Throughout this work we used a two-cycle XUV laser
pulse [see Eq. (2)] with ω = 0.4445 a.u., τ = 28.27 a.u.,
E0 = 0.5 a.u., and ϕCEP = −(ωτ + π)/2 (resulting in a
symmetric pulse in time), and calculated the photoelec-
tron spectra for different internuclear distances: R = 1,
2, and 4 a.u. As mentioned above the use of one-center
continuum WFs introduces potentially two types of error.
This section is dedicated to show that these errors can be
reduced to minimum. First, we investigated how the num-
ber of the subtracted bound states influences the PhES,
second how these spectra depend on the propagation time
after the end of the laser pulse. We performed the conver-
gence tests for all considered internuclear distances, and
found a similar behavior for all R values. Here we show
the detailed results for R = 4a.u.

3.1 Convergence of the bound state subtraction

At time moment 5τ (measured from the start of the laser
pulse) we calculated the PhES for cases when a different
number of BSs (NBS ∈ {0, 5, 20, 80, 140}) were subtracted
from the TDWF. These results are shown in Figure 2.

https://www.epjd.epj.org
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The striking differences between the PhESs are the con-
centric rings appearing at low momenta for small NBS

values (Figs. 2a and 2b). These rings are the direct con-
sequence of the non-orthogonality of the H+

2 BSs with
respect to the used approximate scattering states. The
projection of the bound part of the TDWF onto single
center Coulomb wave functions is non-vanishing, and dur-
ing the calculation of the PhES it is coherently added to
the projection of the continuum part of the TDWF leading
to the observed concentric ring structures. Increasing the
number of subtracted BSs these rings fade away, i.e., for
NBS = 5 they are already significantly reduced, while for
NBS ≥ 20 they were barely visible. This behavior is also
observable in Figure 2d, where the PhES is presented as
a function of electron ejection angle (measured from the
polarization vector of the laser field) for a fixed electron
momentum k = 0.5 a.u. We see a significant change in the
PhES as NBS is increased from 0 to 5, and then to 20,
but for NBS ≥ 20 the changes in the PhES are negligible.
After analyzing the spectrum at different fixed electron
momentum values, by scanning both the lower and higher
momentum parts of the PhES, we found no significant
differences between the results obtained for NBS ≥ 20.

A similar behavior was observed for the other R val-
ues, however with the decrease in R the number of sub-
tracted states required for a converged PhES increased.
This is explained by the larger ionization potentials asso-
ciated with smaller internuclear distances, which results in
a smaller amount of continuum WF, i.e., a larger portion
of the WF remains distributed among the BSs. Accord-
ingly, the results presented in this article were calculated
for NBS = 120.

3.2 Convergence as a function of propagation time

In Figures 3a and 3b the PhESs calculated for R = 4 a.u.
at t ∈ {τ, 5τ} are shown. For an easier comparison,
Figure 3c presents segments of the PhES for the same
R at a fixed electron ejection angle θk = 40◦ (i.e., the
approximate direction of the first maximum in Figs. 3a
and 3b) for t ∈ {τ, 2τ, . . . , 6τ}.

It can be seen that these spectra are mostly sensitive
to changes in the final propagation time at small momen-
tum values. While a noticeable change can be observed
for low electron momentum (k ≤ 1 a.u.), in the higher
momenta region changes are barely visible and they dis-
appear quickly after the conclusion of the oscillating field.
This behavior can be again explained by the difference
between the exact scattering states of H+

2 and the approx-
imate one-center functions employed in this work, which
is the largest in the immediate vicinity of the target. The
continuum EWPs corresponding to the high momentum
part (k ≥ 1 a.u.) of the PhES depart quickly from the
immediate vicinity of the target, and for t ≃ 2τ they
already reach the region of the coordinate space where
the differences between the two types of continuum func-
tions become insignificant. In contrast, for the low momen-
tum part of the PhES (k ≤ 1 a.u.) a “full” convergence is
not achieved even when t = 6τ (see the zoomed inset
in Fig. 3c), since the corresponding continuum EWPs

Fig. 3. Ionization probability density calculated for the inter-
nuclear distance R = 4 a.u. as a function of electron momentum
component perpendicular (kx) and parallel (kz) to the laser
polarization vector calculated at time moments: (a) τ ; (b) 5τ ;
(c) segments of the electron spectra at different time moments
for the fixed ejection angle θk = tan−1(kx/kz) = 40◦ in the
range of k ∈ [0, 3] is shown, while in the inset a zoom into the
range of k ∈ [0, 1] can be seen.

are departing much slower from the close vicinity of the
molecule.

A “full” convergence (for small k values as well) can
be achieved by propagating the WF even further in time.
However, for those calculations the coordinate space simu-
lation box should be increased as well (to prevent absorp-
tion and reflection at the simulation box boundary), which
would imply a non-negligible increase in the CPU time
required for the simulations. In order to quantitatively
describe the convergence of the spectra the

ER(t) =

∫ ∫

dkxdkz|P (kx, kz; t) − P (kx, kz; τ)|
∫ ∫

dkxdkzP (kx, kz; τ)
(12)

quantity was introduced, which measures the relative dif-
ference between the PhES calculated at the end of the
laser pulse (t = τ) and the spectra calculated at a later
time moment t > τ . It was observed for all considered
R values that ER(t) exponentially converged towards an
asymptotic value ER

∞, which was obtained by fitting the
calculated ER(t) data points with the function ER

fit(t) =
ER
∞ − βe−αt (α, β ∈ R

+), and the relative error of the
PhES was estimated as:

δR
conv(t) = ER

∞ − ER(t). (13)

In Figure 4 this error estimate was plotted as a func-
tion of time along with its exponential fit (βe−αt) for
the different internuclear distances. For each internuclear
separation δR

conv(t) showed an excellent agreement with

https://www.epjd.epj.org
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Fig. 4. The error estimate δR
conv as a function of time for dif-

ferent R values. The data points are shown along with the
βe−αt fit.

the used exponential fit confirming the assumed exponen-
tial decrease in the projection error. As it is indicated in
Figure 4, for the propagation time 5τ the error estimate
in the case of each R is below 0.5%. Since this remain-
ing error is affecting only the low momentum part of the
PhES, and the dominant features of the holograms are
located at the higher momentum parts of the spectra, for
the results presented in the following, the time propaga-
tion was ended at t = 5τ .

4 Results

The main goal of the present work is to investigate
the structure of the photoelectron holograms for molec-
ular targets, i.e., how the geometry of the molecule is
influencing the hologram. To this end we present here
PhES obtained for the H+

2 target with different internu-
clear separations interacting with a few-cycle laser pulse
[ω = 0.4445 a.u., τ = 28.27 a.u., E0 = 0.5 a.u., ϕCEP =
−(ωτ + π)/2]. Based on previous [10,13,20,21] studies we
know that the shape of the hologram is predominantly
influenced by two factors. The first one is the spatial
path of the strongly scattered (signal) electron trajectory
[10,20,21], which is characterized by the z0 parameter
meaning the maximum distance reached by the contin-
uum EWP before the rescattering event. The second fac-
tor is the potential experienced in the immediate vicinity
of the target by the returning electron along the signal
trajectory [13]. In order to identify the influence of the
molecular binding potential on the photoelectron holo-
gram, we have also performed calculations for two model
systems with spherically symmetric potentials, which have
the same asymptotic forms as the H+

2 target, and when
they interact with a few-cycle laser field they produce sim-
ilar signal EWP trajectories with the H+

2 target, i.e., they
have the same z0 parameter. This second condition can
be fulfilled by ensuring that the ionization energy of the
model potentials and the H+

2 target is the same [13]. If
these two conditions are met, than the difference observed
in the PhES can be directly attributed to the difference

Table 1. The values of the equivalent internuclear distances
used for the H+

2mod1 (second column), and of the α parameter
used for the H+

2mod2 model target system (third column).

R(H+
2 ) [a.u.] Requiv(H

+
2mod1) [a.u.] α(H+

2mod2) [a.u.2]

1.0 0.92 −0.18322
2.0 1.72 −0.73734
4.0 3.01 −2.56654

between the binding potentials in the immediate vicinity
of the targets [13].

The first model potential was constructed by perform-
ing the molecular axis orientation averaging of the poten-
tial created by the two nuclei of H+

2 , which leads to the
following form

Vmod1(r) =

{

−2/r , if r ≥ R/2;
−4/R , if r < R/2,

(14)

with R being the internuclear distance of H+
2 . Compared

to H+
2 the ionization energy of this model system is lower

(the deep potential well around the cores disappears as
a result of the orientation averaging), thus, in order to
ensure the same ionization energy, the model potential
should be modified by performing the following substitu-
tion R→ Requiv, where Requiv is a model parameter. The
value of Requiv for each internuclear separation is listed in
Table 1 (second column).

For the second model potential we have used a modified
version of the potential found in [24]

Vmod2(r) = −2

r

{

1 +
α

|α| exp

[

− 2r

|α|1/2

]}

, (15)

and for each internuclear distance we set the value of the
model parameter α such, that the ground state energy of
the model system reproduced the ground state energy of
the H+

2 target. These values of α are listed in Table 1
(third column).

By comparing the PhES obtained for the H+
2 (first row

in Fig. 5) target and for its models (H+
2mod1, second row;

H+
2mod2, third row in Fig. 5), at first sight one can observe

that the H+
2 and its model counterpart results for the cor-

responding R are qualitatively similar. The similarities
between the holograms obtained for the H+

2 and for its
corresponding models is not surprising, since the model
targets were constructed in such a way that their ion-
ization potentials coincide. Thus, under the action of the
same driving laser field for all targets the direct and scat-
tered paths are roughly the same, which ensures that the
phases accumulated by the electron along these paths are
similar for all targets. The agreement between the PhESs
obtained for the different model potentials is very good,
differences between the two models are barely observable
only for R = 4a.u. (see the panels Figs. 5f and 5i). This
good agreement appears because the two model potentials
are very similar with the exception of the r < R/2 vicinity
of the target. The differences between the H+

2 and model

https://www.epjd.epj.org
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Fig. 5. The converged photoelectron spectra calculated for the
H+

2 (first row) are shown for different internuclear distances:
(a) R = 1 a.u., (b) R = 2a.u., (c) R = 4a.u. The H+

2mod1 [(d),
(e) and (f)] and H+

2mod2 [(g), (h) and (i)] results corresponding
to each internuclear separation are shown below the H+

2 . For a
given R the ionization energy of the H+

2 and the model targets

is the same: I
(a)
p = I

(d)
p = I

(g)
p ; I

(b)
p = I

(e)
p = I

(h)
p ; I

(c)
p = I

(f)
p =

I
(i)
p .

results, however, are directly attributed to the fact that
in a larger neighborhood of the targets the binding poten-
tials differ. This difference is illustrated in Figure 6, where
ρ [V (ρ, z) − Vmod1(ρ, z)] is shown in the ρOz plain. Here

ρ =
√

x2 + y2 denotes the cylindrical coordinate.
The discrepancies between the holograms obtained for

H+
2 and for its models can be further investigated by

comparing the angular distribution of photoelectrons (see
Fig. 7) at a fixed electron momentum value (k = 1.5 a.u.)
for different internuclear separations. For each internu-
clear distance in the forward electron ejection direction
(θk < 90◦) the deep minima associated with the spa-
tial interference can be clearly identified for both the H+

2
target and for its models. Moreover, the electron ejec-
tion angles at which these interference minima appear
roughly coincide for all targets. However, in the case of the
model targets, regardless of the internuclear distance, the
interference minima are systematically located at slightly
smaller electron ejection angles, which translates to a
slightly denser hologram (i.e., smaller angular separation
between the interference minima). The denser hologram in
the case of the model systems can be directly attributed to
the fact that the returning electron along a large portion
of the scattered trajectory meets a deeper binding poten-
tial [13]. This is confirmed in Figure 6, where it can be
observed, that with the notable exception of the immedi-
ate vicinity of the H+

2 cores ρ [V (ρ, z) − Vmod1(ρ, z)] ≥ 0.
Figure 7 also shows that for the forward electron scat-
tering (θk < 90◦) the difference between the two model

Fig. 6. The value of ρ [V (ρ, z) − Vmod1(ρ, z)], where ρ and z
are the cylindrical coordinates, calculated for the correspond-
ing pairs: (a) R(H+

2 ) = 1 a.u., Requiv(H
+
2mod1) = 0.92 a.u.; (b)

R(H+
2 ) = 2 a.u., Requiv(H

+
2mod1) = 1.72 a.u.; (c) R(H+

2 ) =
4 a.u., Requiv(H

+
2mod1) = 3.01 a.u.

calculations is small even for the largest internuclear sep-
aration. In contrast, for the backward electron scatter-
ing (θk > 90◦) these differences are much larger since
the backward scattering can be attributed to electron
trajectories with smaller impact parameters, which map
the region of the coordinate space where the difference
between the two model potentials is the largest. This is in
agreement with the observation [32,35] that the electron
scattering cross section in the forward direction is mainly
influenced by the long-range part of the binding poten-
tial, while in the backward direction by the short range
part.

Based on the above arguments, it is clear, that the
observed differences between the holograms of the real H+

2
target and its models can be attributed to the difference
between the two-center binding potential of H+

2 and the
central binding potential of the model targets.

Nonetheless, obvious traces of the two-center interfer-
ence [51–53] in the hologram of the H+

2 target are not
observed at first sight. This might be due to the fact that
the two dominant continuum electronic wave packets are
created during the second and the third half cycle [10,13]
of the driving laser pulse during a relatively large dura-
tion of time (compared to the laser field period). Each of
these dominant continuum EWPs can be decomposed into
smaller continuum wave packets, which are created over a
short period of time, in which the vector potential of the
laser field can be considered constant. In these smaller
EWPs the two-center interference pattern is present as it
is illustrated in Figure 8, where the EWP obtained for
a short half-cycle electric pulse corresponding to a small
segment of the driving laser pulse is shown in momentum
space. As a consequence of the continuing action of the
driving electric field, these small EWPs (along with the
attached two-center interference patterns) will be shifted
in momentum space in accordance with the vector poten-
tial value in the moment of their creation. After the com-
pletion of the laser pulse, when these wave packets are
coherently added, the interference pattern is averaged out
since the two-center interference pattern of each smaller
EWP is shifted in momentum space with a different value.

https://www.epjd.epj.org
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Fig. 7. The angular distribution of photoelectrons at the fixed
k = 1.5 a.u. momentum value for the different targets: (a)
R(H+

2 ) = 1 a.u.; (b) R(H+
2 ) = 2 a.u.; (c) R(H+

2 ) = 4 a.u.

For the present laser field parameters, even in the case
of the frozen-core approximation, the direct two-center
interference minima are smeared out due to the above
presented ponderomotive shift effect. This smearing effect
may be further amplified if the vibrational motion of the
nuclei is included, since the location of the two-center
interference minima1 shown in Figure 8 strongly depends
on the value of the internuclear separation R [54].

The internuclear distance dependence of the photoelec-
tron hologram can be investigated in Figure 5, where it
can be observed that by increasing the internuclear dis-
tance from 1 a.u. to 4 a.u. the density of the hologram
also increased. This behavior can be clearly observed in
Figure 9, where the angular distribution of photoelec-
trons emitted with asymptotic momentum k = 2a.u. are
shown for different internuclear separations. The number
of spatial interference minima in the forward electron ejec-
tion region (θk < 90◦) for the R = 1 a.u. internuclear

1 Can be approximated by the minima of ∼ cos2
(

k·R

2

)

[55].

Fig. 8. The EWP in momentum space representation induced
on the H+

2 target by a half-cycle step-like electric pulse with
τ = 0.1 a.u. duration and E0 = 1 a.u. strength.

Fig. 9. The k = 2a.u. segments of the photoelectron spectra
zoomed to the ejection region θk < 90◦ calculated for the H+

2

molecule for the different R internuclear separations.

distance is 3, which increases to 4 for R = 2 a.u. and
R = 4a.u. Moreover, the 4th interference minimum in the
case of R = 4a.u. is located at a smaller electron ejection
angle than the 4th interference minimum for R = 2a.u.
Consequently, the average angular separation between the
interference minima decreases, i.e., the density of the inter-
ference pattern increases as R gets larger. This increase in
the interference pattern’s density with increasing inter-
nuclear distance is indirectly induced by the drop-off of
the ionization energy with the increase in R. For a fixed
driving laser pulse the decrease in the ionization poten-
tial leads to the increase in the initial velocity of the
created continuum EWP, which in turn leads to longer
electron trajectories prior to the rescattering event. With
the increase in the electron trajectory length (i.e., with the
increase in the z0 parameter) the density of photoelectron
hologram increases.

Despite the considerable change of the H+
2 ionization

energy from 1.451 a.u. to 0.796 a.u. when the internuclear
distance is increased from 1 to 4 a.u., an anticipated dras-
tic change in the interference pattern’s density is not
observed. This can be explained by the simple consid-
eration, according to which the expected increase in the
interference pattern’s density is tempered due to the fact,
that with increasing R the depth of the binding potential
experienced by the returning electron decreases, which in
turn induces a lowering effect in the hologram’s density.

For the equilibrium internuclear distance (R = 2a.u.)
the laser pulse amplitude (intensity) dependence of the

https://www.epjd.epj.org
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Fig. 10. Photoelectron spectra of the H+
2 molecule (considered in the R = 2a.u. equilibrium configuration) calculated for

different electric field amplitudes [(a) E0 = 0.25 a.u., (b) E0 = 0.5 a.u., (c) E0 = 0.75 a.u., (d) E0 = 1 a.u.].

Fig. 11. PhES values along the first spatial interference mini-
mum calculated for H+

2 and for the H+
2mod1 model plotted next

to cos2(k ·R/2) ≡ cos2[k · cos(θk) · R/2] on logarithmic scale.

photoelectron holograms is shown in Figure 10. It can
be observed, that by increasing the amplitude the den-
sity of the photoelectron hologram (i.e., the number of
radial interference extrema) also increases without chang-
ing its main features. This behavior is in agreement with
our observations made in the case of atomic targets [10],
and can be explained within the framework of the sim-
ple two-path model [4,10]: with the increase in the field
amplitude (E0) the z0 parameter (the maximum distance
reached by the electron trajectory before the recollision)
also increases, which in turn induces a larger phase dif-
ference between the direct and indirect trajectory. This
larger phase difference will change more rapidly with the
change in the electron’s asymptotic parameters leading to
a denser interference pattern.

As it was argued before, in the photoelectron spectra the
two-center interference minima (see the horizontal min-
ima in Fig. 8) are not observable directly. However, when
the H+

2 and model photoelectron spectra for R = 2a.u.
are compared along the first spatial interference minima.
(observable around the θk = π/8 electron ejection angle
in Fig. 5b) significant differences are observed. Figure 11
shows the depth of the spatial interference minimum as
a function of the electron ejection momentum for the
H+

2 target and for its models as well. The high momen-
tum (k > 1.5 a.u.) minimum observable only in the H+

2
curve is located closely to the two-center interference min-

imum predicted by the simple model of Nagy et al. [55],
where the two-center interference pattern is proportional
to ∼ cos2

(

k·R
2

)

. The shift in the location of the H+
2 min-

imum appears due to the nonzero vector potential in the
time moment when the continuum EWP showing the deep
minimum was created. The minima observable for both
the H+

2 and its model at low electron momentum values
are the result of the interference between the EWPs cre-
ated during the second and third half cycle of the laser
field [13]. This minimum is observable only for the R =
2 a.u. internuclear distance at several field strengths and
its position moves around the minimum of the cos2

(

k·R
2

)

curve2 as the field strength is changed. This change in the
minimum’s position might be attributed to different vector
potentials of the driving field and also to the recollision
of the returning EWP, however, despite our best effort,
based on these effects we did not succeed to construct a
model which reliably describes the movement of the min-
imum. The minimum appears in case of R = 1a.u. for
k > 3.5 a.u., momentum for which the transition probabil-
ity is very small, and the effect is irrelevant. For R = 4a.u.
this effect, i.e., the two-center interference minimum, was
not observed, most probably because the amplitude of the
scattered EWPs on the two nuclei are very different due to
the large internuclear distance. We have to emphasize that
the main feature of the obtained hologram is governed by
the interference between the direct and scattered EWPs,
and not the interference between waves scattered on the
different nuclei.

5 Conclusions

We have developed and presented an accurate theoret-
ical tool based on the numerical solution of the time-
dependent Schrödinger equation (TDSE), which allows
us to study the interaction between few-cycle (ultra-
short) XUV laser pulses and the H+

2 molecule. Using this
tool we analyzed the photoelectron spectra (PhES) of

2 The observed minimum compared to the simple model minimum
is located at a higher momentum value for E0 = 0.5 a.u., at lower
momentum value for E0 = 0.75 a.u., while for E0 = 1.0 a.u. they
nearly coincide.
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H+
2 calculated for different internuclear separations. The

accurate PhES and photoelectron holograms (i.e., inter-
ference patterns created in the PhES by the interference
between the scattered and reference electronic wave pack-
ets) were obtained after performing rigorous convergence
tests. Beside the H+

2 , we also considered one-center model
systems (H+

2mod1 and H+
2mod2) with the same ionization

energy and long range potential as H+
2 . These conditions

ensured that during the interaction with the same XUV
pulse it produced similar scattered and reference EWP
trajectories as the H+

2 target.
As expected, we obtained roughly similar PhES for

both types of targets, and we have shown that the differ-
ences between the H+

2 and model patterns can be directly
attributed to the differences in the parent ions’ poten-
tial that the signal electron meets along the scattering
path during the recollision event: i.e., deeper the poten-
tial along the returning path, the higher the density of the
minima locations. We have compared the obtained holo-
grams for the H+

2 and two spherically symmetric models.
The two models lead to similar patterns, while clear differ-
ences were observed for the molecular potential relative to
the central potentials. These differences may be directly
attributed to the two-center character of the target. The
observed differences in the forward-scattering holograms
(θk < 90◦) are small, which makes their experimental
observation rather difficult, however these differences are
significantly larger for the backward scattering holograms
(θk > 90◦). These larger differences are easier to measure
in an experimental setup, thus the backward scattering
holograms appears to be a more suitable candidate for
structure analysis tool. The results presented here are not
suitable to study in details the backward photoelectron
hologram since the PhES is dominated by the forward
scattering hologram. In order to make their study easier
the parameters of the driving laser field should be changed
in such way that the intensity of the backward scattering
hologram becomes larger.

The direct fingerprint of the molecular structure, the
two-center interference, was not observed here because of
the complex superposition of the electron waves (direct
and scattered) ejected at different time moments, which
limits the direct applicability of the photoelectron holog-
raphy in imaging molecules. However, by changing the
parameters of the driving laser field, we can restrain the
creation of the continuum EWPs to the immediate vicinity
of each half cycle’s peak, and by doing so we can elimi-
nate the wave packet interference which smears out the
two-center interference.

The investigation of the molecular photoelectron holo-
grams in the above outlined laser pulse regimes will be the
subject of a future work.

Furthermore, we have shown that the locations of the
PhES minima obtained for the molecule changed as we
modified the internuclear separation R. As we increased R
we obtained a denser interference pattern, which is caused
by the interplay between two distinct factors. Firstly, with
the increase in R the ionization potential of the emitting
molecule becomes lower, implicitly meaning a higher ini-
tial velocity of the ionized electron, which will travel a

longer distance from the parent molecule (i.e., higher z0
parameter before returning), and which will result in a
higher minimum density in the hologram. Secondly, this
effect is weakened by the fact that the returning electron
will meet a shallower binding potential as the internuclear
distance is increased, resulting in a decrease in the holo-
gram density.
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