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In materials with strong electron-electron interactions, photoexcitation can trigger a cascade in which

multiple particle-hole excitations are generated. Here we analyze the cascade of impact-excitation processes

in graphene in which many hot carriers are generated by a single absorbed photon. We show that the number

of generated carriers has a strong dependence on doping (gate tunability). Linear scaling with photon energy

is predicted for the number of pairs and for the duration of the cascade. These dependencies, along with a

sharply peaked angular distribution of excited carriers, provide clear experimental signatures of hot carrier

multiplication.

DOI: 10.1103/PhysRevB.87.155429 PACS number(s): 78.67.Wj, 78.20.Bh

I. INTRODUCTION

Converting light to electrical currents or voltages is a

complex, multistep process which involves photoexcited

particles and holes undergoing scattering by other charge

carriers and by lattice vibrations. One of the key questions

in the field of optoelectronics is identifying materials in which

carrier multiplication can occur, i.e., a single absorbed photon

yielding a large number of particle-hole pairs as a result of the

primary photoexcited pair producing secondary pairs. Efficient

carrier multiplication relies on a combination of characteristics

such as a wide band of states with a large phase space density

for pair excitations, strong electron-electron scattering, and not

too strong electron-phonon interaction. While graphene is by

no means a unique example of a system with these properties,

it is believed to fit the bill better than other materials. This

has motivated an intense investigation of photoexcitation

processes in graphene-based systems.1–12

Graphene possesses a number of characteristics that dis-
tinguish it from other optoelectronic materials. One unique
aspect of graphene is its truly two-dimensional structure which
renders its electronic states fully exposed. Photogenerated
carriers in such a system can in principle be extracted by a
vertical transfer process, e.g., in a sandwich-type tunneling
structure. Vertical carrier extraction eliminates carrier loss
in lateral transport between the photoexcitation region and
contacts, often a limiting factor for optoelectronic response
in semiconductor systems.13 Another distinguishing trait of
graphene is slow electron-lattice cooling,14–16 which leads
to hot carrier cooling lengths reaching a few microns
even at room temperature.17,18 Slow cooling enhances hot-
carrier effects, leading to a unique photocurrent generation
mechanism.17,19

A number of experimental techniques have been employed
to track the decay dynamics of photoexcited carriers in
graphene, unraveling a complex picture of competing relax-
ation pathways.1,3,5,6,9,20 In particular, a recent ultrafast optical
pump-terahertz probe study20 of doped graphene obtained
detailed information on the number of hot carriers generated
in the cascade following a short photoexcitation pulse. It was
found that this number scales linearly with (i) the number of

absorbed photons and (ii) the energy of individual photons.
These dependencies indicate that the decay of photoexcited
carriers is dominated by electron-electron scattering events
rather than the emission of phonons (photoexcitation cascade
dominated by phonon emission is not expected to show
scaling with photon energy). These results, reproduced in
Fig. 1(b), highlight the crucial role that interactions play
in the photoexcitation cascade (and optical response) of
graphene.

However, studies of interaction effects have mostly con-
centrated on undoped graphene. Theory predicts that the
linear dispersion of charge carriers acquires a negative cur-
vature due to electron-electron interactions, d2ǫ(k)/dk2 <

0, which inhibits decay via electron-electron scattering in
undoped graphene.11,21 However, while the prediction of
negative curvature appears to be in agreement with transport
measurements,22 ARPES experiments support the scenario of
interaction-mediated decay23,24 and pump-probe experiments
point to the crucial role interactions play in the photoexcitation
cascade;20 interaction-induced quasiparticle decay remains the
subject of ongoing debate.11,12,25,26

Here we focus on the photoexcitation cascade in doped
graphene. We identify impact excitation (IE) as the scattering
process [see intraband carrier-carrier scattering process in
Fig. 1(a)] that dominates carrier relaxation dynamics in this
system. Multiple secondary electron-hole (e-h) pairs produced
by IE scattering involving a photoexcited carrier and ambient
carriers in the Fermi sea can lead to efficient hot carrier
multiplication. Our analysis predicts that IE processes result
in a chainlike cascade consisting of sequential steps with
relatively small energy loss per step �ǫ ∼ EF , where EF is
the Fermi energy in graphene doped away from neutrality [see
Figs. 1(a) and 1(c)]. As we shall see, both the number of pairs
produced in the cascade (hot carrier multiplication factor) and
the characteristic energy for the pairs are highly sensitive to
doping. As a result, the key parameters of photoexcitation
cascade in graphene are expected to be gate tunable in a wide
range.

As we argue below, the IE rate takes the highest values
allowed by unitarity, Ŵ ∼ EF /(2πh̄) (these values are con-
sistent with the inelastic lifetimes estimated in Refs. 26–28).
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FIG. 1. (Color online) (a) Impact excitation (IE) cascade of a

photoexcited carrier with initial energy E0. Each cascade step involves

electron-hole pair excitations with energy �ǫ ∼ EF , where EF is

Fermi energy. The net number of generated pairs and the relaxation

rate depend strongly on EF [see Eqs. (1) and (14)], and thus can

be tuned by gate voltage. (b) Measured response in optical pump-

terahertz probe of CVD graphene interpreted through the number of

photogenerated hot carriers per photon. Typical experimental trace

for differential transmission �T as a function of pump-probe delay

time, shown in the inset, features a pronounced peak. The peak height

is proportional to the number of generated hot carriers. Peak value

�Tpeak, normalized by absorbed photon density, is shown as a function

of photon energy (adapted from Ref. 20). Note linear scaling of �Tpeak

vs pump photon energy. (c) Transition probability (in units of h̄−1)

obtained from Eq. (13). IE processes with different initial energies,

ǫi/EF = −12, −10, . . . ,10,12 (here �ǫ = ǫi − ǫ ′). Electron (hole)

contributions shown by blue (red) curves.

This fast characteristic rate makes this scattering process a
highly efficient relaxation pathway which dominates over
phonon-mediated pathways in a wide range of energies. As
a result, the photoexcitation cascade proceeds in a step-like
fashion depicted in Figs. 1(a) and 1(c) producing multiple e-h
pairs.

The dependence on excitation energy E0 and Fermi energy
EF provides clear experimental signatures of this relaxation
mechanism. In particular, the average number of e-h pairs
produced in the cascade triggered by a single photoexcited

electron is

〈N〉 =

∫ E0

EL

dǫ

〈�ǫ〉
, 〈�ǫ〉 =

Jel(ǫ)

Ŵ(ǫ)
, (1)

where 〈�ǫ〉 is the average energy loss per step, and Jel(ǫ)
and Ŵ(ǫ) are the IE energy-relaxation and scattering rates,
respectively [see Eq. (14)]. Here EL ≈ EF is a low-energy
cutoff corresponding to the energy below which IE processes
are quenched; we used EL = 2EF (see discussion below).
Figure 2(a) indicates that 〈N〉 exceeds unity and grows quickly
for E0 above a few EF (red curve). Since 〈�ǫ〉 ∼ EF ,
we find that 〈N〉 scales as E0/EF . In particular, an

FIG. 2. (Color online) (a) Average net number of e-h pairs

produced in the cascade triggered by a photoexcited electron with

energy E0 (red curve). Cascade duration, �t = G/(EF [eV]) fs, see

Eq. (2) (blue curve). (b) Angular dependence for the e-h excitation

rate Ŵ(ϕ), where ϕ is the angle between k1 and q, see Fig. 3(a).

approximately linear dependence 〈N〉 ≈ 0.55E0/EF is found
for E0/EF ≫ 1.

Similarly, the time it takes for the photoexcited electron
to completely decay, �t , also exhibits strong E0 and EF

dependence. This fairly short time, on the order of hundreds
of femtoseconds, is

�t =

∫ E0

EL

dǫ

Jel(ǫ)
=

G(E0/EF )

EF [eV]
fs, (2)

where G is a dimensionless scaling function [blue curve in
Fig. 2(a)]. As shown in Fig. 2(a), G scales approximately
linearly with E0/EF , yielding a �t that scales linearly with
the excitation energy. For a typical doping value of EF =

0.2 eV and initial photoexcited carrier energy E0 = 1 eV
we find �t ≈ 0.12 ps, far faster than typical electron-lattice
cooling time scales found in graphene.14–16 This separation of
time scales means that the energy relaxation cascade occurs
independently of electron-lattice cooling.

Lastly, the angular distribution for impact-excitation tran-
sitions is highly anisotropic. This produces a strong search-
light-type structure peaked along the preferred direction of
momentum transfer shown in Fig. 2(b).

II. IMPACT EXCITATION SCATTERING

Our system is described by the Hamiltonian for N = 4
species of massless Dirac particles,

H =
∑

k,i

ψ
†
k,i(vσ · k)ψk,i + Hel-el, (3)

Hel-el =
1

2

∑

q,k,k′,i,j

V (q)ψ
†
k+q,iψ

†
k′−q,jψk′,jψk,i . (4)

Here i,j = 1 . . . N and V (q) = 2πe2/|q|κ is the Coulomb
interaction. Importantly, transitions in a massless Dirac band
governed by the Hamiltonian (3) are subject to certain
kinematical constraints.11,12 These constraints arise due to
the combined effect of linear dispersion in two Dirac cones,
E±(p) = ±v|p|, and the momentum conserving character of
carrier scattering. Here we analyze the simplest case of a
two-body collision. Each of the two particles participating
in a collision can make transitions between states in the
upper and lower Dirac cones which we denote by + and −

respectively. Two kinds of transitions can be distinguished:

155429-2



PHOTOEXCITED CARRIER DYNAMICS AND IMPACT- . . . PHYSICAL REVIEW B 87, 155429 (2013)

FIG. 3. (Color online) (a) Kinematics of intraband carrier-carrier

scattering in doped graphene. A photoexcited electron makes the

transition from k1 to k′
1 by exciting an electron-hole pair from

the Fermi sea from k2 to k′
2. (b) Spectral function R(q,ω) of

particle-hole excitation as a function of momentum transfer and

energy transfer per scattering event. (inset) Angular distribution of

normalized energy resolved transition rate [see Eq. (12) for fixed

values of ω/EF = 0.2,0.5,1,10 (red, black, green, and blue curves,

respectively)]. The near-collinear character of scattering at high ω is

manifested in narrowing of the angular distribution.

intraband transitions (+ → + or − → −) and interband
transitions (+ → − or − → +). Since momentum change in
any transition satisfies ||p1| − |p2|| < |p1 − p2| < |p1| + |p2|,
the intraband transitions can only occur when the energy and
momentum change are related by |�ǫ| � v|�p|, whereas the
interband transitions are possible only when |�ǫ| � v|�p|.

The scattering process of interest, pictured in Fig. 3(a),
involves a photoexcited carrier with high energy and mo-
mentum ǫk1

≫ EF , |k1| ≫ kF , which is scattered to a lower
energy state having momentum k′

1 with recoil momentum
q = k1 − k′

1 given to an electron in the Fermi sea. The latter
process results in a particle-hole pair excitation, as depicted by
a transition from k2 to k′

2 in Fig. 3(a). The transition rate for
this process, evaluated by the standard golden rule approach,
takes the form

Wk′
1,k1

=
2πN

h̄

∑

q,k2,k
′
2

fk2

(

1 − fk′
2

)

Fk2,k
′
2
|Ṽq|

2

× δk′
1,k1+qδk′

2,k2−qδ
(

ǫk′
1
− ǫk1

+ ǫk′
2
− ǫk2

)

. (5)

Here fk is a Fermi function, and Fk,k′ = |〈k′s ′|ks〉|2 is the
coherence factor (s,s ′ = ± label states in the electron and
hole Dirac cones). We treat the Coulomb interaction which
mediates scattering between the photoexcited carrier and the
carriers in the Fermi sea by accounting for dynamical screening
in the RPA approximation:

Ṽq =
V 0

q

ε(ω,q)
, ε(ω,q) = 1 − V 0

q (q,ω), (6)

where V 0
q = 2πe2/|q|κ and ε(ω,q) describes dynamical

screening. Here  is the polarization operator

(q,ω) = N
∑

k,s,s ′

Fk,k+q;ss ′

f (ǫk,s) − f (ǫk+q,s ′ )

ω + ǫk,s − ǫk+q,s ′ + i0
, (7)

with band indices s,s ′ = ±. This includes both intra- (s = s ′)
and inter- (s 	= s ′) band contributions.29

For Eq. (5) to give a nonvanishing result, the transitions
k1 → k′

1, k2 → k′
2 must occur in like pairs, both intraband or

both interband. Since k1 → k′
1 is restricted to be within a single

band, k2 → k′
2 must also be intraband. As a result, relaxation

via interband scattering is blocked, whereas intraband scatter-
ing is allowed. Kinematical blocking of interband processes
can in principle be relieved by three-body (or higher-order)
collisions (not discussed here). Such processes may become
important at strong excitation, however they are expected to
be weak in the low excitation power regime.

As shown below, the typical energy of an excited pair is
much smaller than the photoexcitation energy ǫk1

. Anticipating
this result, it is convenient to factorize the transition rate by
expressing it through the spectrum of secondary pair excita-
tions. This can be accomplished by writing δ(ǫk′

1
− ǫk1

+ ǫk′
2
−

ǫk2
) =

∫ ∞

−∞
dωδ(ǫk′

1
− ǫk1

+ ω)δ(ǫk′
2
− ǫk2

− ω).30 Next, we
use the identity fk2

(1 − fk′
2
) = (fk2

− fk′
2
) × (N (ǫk′

2
− ǫk2

) +

1), where N (ω) = 1/(eω/kBT − 1) is the Bose function taken at
the electron temperature. Lastly, we express the sum of (fk2

−

fk′
2
)δ(ǫk′

2
− ǫk2

− ω) through a suitably defined susceptibility

χ ′′(q,ω) = N
∑

k

Fk,k+q(fk − fk+q)δ(ǫk+q − ǫk − ω), (8)

which can also be written as χ ′′(q,ω) = − 1
π

Im (q,ω).
This yields a compact and intuitive expression for the total
scattering rate:

Ŵ =
∑

k′
1

Wk′
1,k1

(

1 − fk′
1

)

Fk1,k
′
1
=

∫ ∞

−∞

dωP (ω), (9)

P (ω) = A
∑

q

|Ṽq|
2Fk1,k

′
1
χ ′′(q,ω)δ

(

ǫk′
1
− ǫk1

+ ω
)

, (10)

where A = 2π
h̄

[N (ω) + 1)][1 − f (ǫk1
− ω)] and k′

1 = k1 − q.
As we show below, the typical energy and momentum

transferred per scattering is of the order of EF and EF /v,
respectively. These values are much smaller than those of
the photoexcited electron. We can therefore approximate
Fk1,k

′
1
≈ 1, f (ǫk1

− ω) ≈ 0 and write the delta function as
δ(ǫk′

1
− ǫk1

+ ω) ≈ δ(v|q| cos ϕ − ω), where ϕ is the angle
between k1 and q. The approximation |q| ≪ |k1|, |ω| ≪ v|k1|

is appropriate under realistic conditions: for example, visible
light frequencies translate to ǫk = hf/2 = 750 meV, which
is considerably larger than EF for typical doping values.
Equation (9) then yields the angle dependent transition rate

Ŵ(ϕ) =

∫ ∞

−∞

dωγω(ϕ), (11)

γω(ϕ) =

∫

d2q

(2π )2
R(q,ω)δ(v|q| cos ϕ − ω), (12)

where R(q,ω) = A|Ṽq|
2χ ′′(q,ω). We evaluate the spectral

function R(q,ω) using the RPA-screened interaction, Eq. (6),
and susceptibility expressed through the polarization function
from Ref. 29 and the interaction parameter α = e2/(κh̄v) =

0.73. The angular distribution Ŵ(ϕ), as well as the energy
resolved distribution γω(ϕ), feature interesting angular patterns
[see Figs. 2(b) and 3 (inset)]. Note in particular a sharp search-
light-type structure corresponding to the preferred direction
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of momentum transfer q in the IE process. The peaks move
closer to ϕ = 0 as ω increases, indicating that carrier-carrier
scattering with high energy transfer is nearly collinear. This
is analogous to the radiation pattern for an ultrarelativistic
particle becoming focused along particle velocity.31

The same approach can be used to obtain the energy
spectrum of pair excitations. In the following, however, we
study the full energy dependence of P (�ǫ) not limiting
ourselves to the asymptotic behavior at high photoexcited
energies. Using a Jacobian to convert the delta function in
energy to a delta function in angles in Eq. (10), we perform
the angular integral in Eq. (10) to obtain

P (�ǫ) =

∫ ∞

0

2|k1| − (�ǫ/vh̄) − |q| cos ϕ

(2π )2|k1||q|h̄v sin ϕ
R(q,�ǫ)qdq,

(13)

where ϕ is the angle between k1 and q and satisfies
(|k1|

2 − 2|k1||q| cos ϕ + |q|2)1/2 − |k1| = �ǫ/(vh̄). Numeri-
cally integrating Eq. (13) and taking ǫ ≫ kBT yields tran-
sition probabilities P (�ǫ) shown in Fig. 1(c) for different
initial photoexcited energies ǫi = ǫk1

. We find that P (�ǫ)
peaks close to �ǫ ≈ EF and decay rapidly for �ǫ ≫ EF .
This nonmonotonic dependence arises from the competition
between the available phase space, which grows with �ǫ, and
the Coulomb interaction form factor, which decreases with |q|.

The efficiency of IE scattering can be linked to the large
values of EF in graphene. The relation between efficiency and
EF can be clarified by simple dimensional analysis. We note
that P (�ǫ) depends on �ǫ essentially via the dimensionless
parameter x = �ǫ/EF . This is clearly seen, e.g., from pair
excitation spectrum shown for different values of initial energy
ǫi = ǫk1

in Fig. 1(c): The width and profile of P (�ǫ) has a
very weak dependence on ǫi . This can be captured by writing
the scattering rate Ŵ [Eq. (9)] as well as the energy relaxation
rate Jel =

∫ ∞

−∞
�ǫP (�ǫ)d�ǫ in the form

Ŵ(ǫ) =
EF

h̄

∫ ǫ/EF

0

P̃ (x)dx, Jel(ǫ) =
E2

F

h̄

∫ ǫ/EF

0

xP̃ (x)dx,

(14)

where we introduced dimensionless P̃ (x) = h̄P (�ǫ).
The EF dependencies in Eq. (14) manifest in observables

such as the average number of secondary e-h pairs produced
in a single photoexcitation cascade, 〈N〉, and its total cascade

time, �t . These quantities are related via 〈N〉 =
∫ �t

0
Ŵdt .

Using dǫ/dt = −Jel(ǫ) combined with Eq. (14), we obtain
Eq. (1) for 〈N〉 and Eq. (2) for �t . In both cases, we used a
low energy cutoff for the energy below which IE processes are
quenched, EL ≈ EF . Below the energy EL, the relaxation and
scattering of the carrier from impact excitation slows dramat-
ically and other relaxation processes dominate, for example
energy relaxation via the emission of acoustic phonons. In
evaluating Eqs. (1) and (2), we used the value EL = 2EF

below which the predicted value �t rapidly increases. The
scaling of �t and 〈N〉 with both excitation energy E0 and
doping in Fig. 2(a) are clear experimental signatures of IE.
Currently, particle-hole pair production and cascade times are
the subject of intense experimental interest.20,32,33

III. COMPARISON WITH PHONON EMISSION

Here we compare energy relaxation from IE processes with
the contribution of other potentially significant channels. In
particular, electron-phonon scattering leads to a direct transfer
of energy to the lattice degrees of freedom without creation of
secondary electron-hole excitations. We focus on the contri-
bution of optical phonons, which under normal circumstances
is more important than that of acoustic phonons. Our estimate
shows that under realistic conditions the contribution of
optical phonons to the energy relaxation rate is weaker than
that due to carrier-carrier scattering, Jph � Jel. This energy
relaxation channel was discussed in Ref. 20. We reproduce
these results for the reader’s convenience. The transition rate
due to electron-phonon scattering can be described by Fermi’s
golden rule

W
el-ph
k′,k =

2πN

h̄

∑

q

|M(k′,k)|2δ(�ǫk′,k + ωq)

× δk′,k+q(N (ωq) + 1),

�ǫk′,k = ǫk′ − ǫk, (15)

where ωq = ω0 = 200 meV is the optical phonon dispersion
relation, and N (ωq) is a Bose function. Here k is the initial
momentum of the photoexcited electron, k′ is the momentum
it gets scattered into, and q is the momentum of the optical
phonon. The electron-phonon matrix element M(k′,k) is

|M(k′,k)|2 = g2
0Fk,k′ , g0 =

2h̄2v
√

2ρω0a4
, (16)

where Fk,k′ is the coherence factor for graphene, g0 is the
electron-optical phonon coupling constant,14 ρ is graphene’s
mass density, and a = 1.42 Å is the distance between nearest
neighbor carbon atoms. The energy-loss rate of the photoex-
cited carrier at energy ǫ due to the emission of an optical
phonon is

Jph(ǫ) =
∑

k′

W
el-ph
k′,k (ǫ′

k − ǫ)[1 − f (ǫk′)]. (17)

Integrating over q and k′ we obtain

Jph(ǫ) =
πN

h̄
ω0g

2
0[1 − f (ǫ − ω0)](N (ω0) + 1)ν(ǫ − ω0),

(18)

where ν(ǫ) = ǫ/(2πv2h̄2) is the electron density of states in
graphene. Hence, Jph(ǫ) varies linearly with the photoexcited
carrier energy ǫ > ω0 and vanishes for ǫ < ω0. Because the
electron-phonon coupling with optical phonon is a constant,
this result is to be expected from the increased phase space to
scatter into at higher photoexcited carrier energy.

To get an estimate of the energy relaxation rate, we estimate
[N (ω0) + 1] ≈ 1 and 1 − f (ǫ − ω0) ≈ �(ǫ − ω0 − EF ) to
obtain

Jph(ǫ) ≈
ǫ − ω0

τ0

�(ǫ − ω0 − EF ), τ0 =
2v2h̄3

Nω0g
2
0

. (19)

Using ρ = 7.6 × 10−11 kg cm−2, we find τ0 ≈ 734 fs.
Using P (�ǫ) evaluated from Eq. (13), we can compare

the IE energy relaxation rate Jel with the energy-loss rate due
to optical phonons Jph. As illustrated in Fig. 4, for a typical
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FIG. 4. (Color online) Energy-loss rate via impact excitation, Jel

[blue curve, see Eq. (14)], and optical phonon emission, Jph [red

curve, see Eq. (19)] for a typical doping of EF = 0.2 eV. (Inset)

Branching ratio, Jel/Jph vs. ǫ and EF . Note that the branching ratio

can be tuned over an order of magnitude by density dependence.

doping of EF = 0.2 eV, the rate Jel overwhelms the rate Jph

over the entire spectrum of photoexcited carrier energies. We
also analyzed the branching ratio Jel/Jph shown in the inset of
Fig. 4 as a function of carrier density and photoexcited carrier
energy. Interestingly, the density dependence of Jel translates
into gate-tunable branching ratio Jel/Jph. For realistic gate

voltage values, the branching ratio can vary by up to an order
of magnitude.

IV. SUMMARY

As demonstrated above, the interaction mediated cascade
of IE processes in doped graphene can lead to the generation
of multiple electron-hole excitations by a single absorbed
photon. We developed a detailed model to describe multiple
pair generation in the IE cascade. Our analysis indicates that
the number of pairs generated scales approximately linearly
with photoexcitation energy. Similarly, the total cascade time
also exhibits a linear scaling with photoexcitation energy.
A comparison with electron-phonon scattering indicates that
the IE scattering is very efficient and can dominate carrier
relaxation for typical dopings. The predicted dependencies,
as well as a sharply peaked angular distribution of e-h
pairs, provide clear experimental signatures for IE-dominated
cascade. Strong gate dependence of the cascade parameters
affords a useful knob for the control of ultrafast scattering
processes in graphene.
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