INTRODUCTION

 quality plates of the field taken prior to the supernova; theseoffer the considerable advantage that we may photographi-

 the supernova. The implications of this result are discussed
in the last section.

OBSERVATIONS
 2.1 Photographic material

The field of SN 1987 A was photographed at the $f / 3.3$ prime
focus of the AAT using the triplet corrector on 1988 July 15 .
A single V-band plate was taken which had been hypersensi-
tized using the standard AAO nitrogen-bake hydrogen-soak
procedure. A similar plate had been taken three years before
SN 1987 A appeared. This plate was one of a B, V, R, set
obtained of 30 Doradus to produce a composite colour
picture of this exceedingly complex region of star formation
with its associated dust clouds and emission nebulosity. Both
plates were centred on 30 Doradus, but because the AAT
has a well-corrected field of one degree at prime focus, they
comfortably included the region of SN 1987 A which lies 20
arcmin away. Details of both plates are given in Table 1 and a
direct image made from the 1988 plate is shown in Plate $1(\mathrm{a})$.

Supernova 1987A has provided a wealth of opportunities to observe a wide range of astrophysical processes. Among hese has been its importance as a probe of the interstellar
medium (ISM) in both the Large Magellanic Cloud (LMC) and in our Galaxy. One important manifestation of this was the appearance late in 1987 of light echoes. This phenomenon, which is the result of the supernova light pulse forward scattering off concentrations of dust as it expands
out into the surrounding ISM, provides a rare chance to explore the three-dimensional structure of dust clouds in the LMC over the next several decades (Shaefer 1987; Chevalier
\& Emmering 1988).
\& Emmering 1988).
Optical light echoes around SN 1987A were first reported
by Crotts (1988a, b) whose coronographic CCD data taken in 1988 March revealed two thin arcs 32 and 51 arcsec to the north of the supernova. These features were promptly confirmed by Gouiffes et al. (1988) and Suntzeff et al.
(1988); the expansion of the arcs proved them to be light echoes, and spectra confirmed that the reflected light left the supernova at the time of maximum (c. 1987 May 15).
Adopting a distance of 50 kpc to the LMC , the common conclusion was that the light-scattering dust lay in two sheets located ~ 110 and $\sim 330 \mathrm{pc}$ in front of the supernova. he light echoes photographically using the $3.9-\mathrm{m}$ AngloAustralian Telescope (AAT). We have at our disposal high-

SUMMARY
The light echoes from SN 1987A have been photographed at the prime focus of the $3.9-\mathrm{m}$ Anglo-Australian Telescope. The bright emission nebulosity and large number traction. A more comprehensive view of the echoes results, revealing that the two previously known arcs are complete circles. Two new echo features are also revealed: an arc just interior to the inner ring over a small range of position angle, and a compact spot which appears to be part of a linear dust feature.

The geometry of the echo rings has been deduced from measuring-machine scans indicating that the illuminated cloud of dust, which lies $\sim 130 \mathrm{pc}$ in front of the supernova, is roughly normal to the line-of-sight. The outer ring is significantly eccentric about the supernova with its maximum displacement at $\mathrm{PA}=29^{\circ}$, in the direction of the nearby OB association NGC 2044 . This cloud is therefore inclined to the line-of-
sight to the supernova. The possibility is discussed that both clouds are part of the N 157 C supershell centred on NGC 2044.

W. J. Couch, D. A. Allen and D. F. Malin

Accepted 1989 August 7. Received 1989 June 1

556 W. J. Couch, D. A. Allen and D. F. Malin in the field fail to cancel fully because of the small difference
in seeing between the two plates. Despite this shortcoming,
the procedure has produced by far the best view of the
echoes reported to date and for the first time has shown both
echoes to be complete circles. It also reveals one and possibly
two new features. The first is a curious diffuse circular echo
spot just inside the outer ring to the west of the supernova
suggesting reflection from a small blob of dust. There is also
a hint of an arc just inward from the inner ring in the range
PA=180-270. All these features are very faint and
represent at most a $1-2$ per cent enhancement in surface
brightness above the subtracted background.
The appearance of the echoes as complete rings revealed
that the outer echo was significantly eccentric about the
supernova with its centre being offset in a north to north-
easterly direction. This observation, and preliminary
measurements of the ring radii made by hand off a ~ 1
arcmin mm ${ }^{-1}$ scale print, have already been reported (Allen,
Couch \& Malin 1988); we now present a more detailed
analysis of the echoes and their geometry.
A later plate, taken in 1989 February, is also listed in
Table 1. It is one of a B, V, R set that have been subjected to a
similar photographic subtraction technique, and a prelimi-
nary report on their content was given by Couch \& Malin
(1989). A full quantitative analysis of these plates has not yet
been undertaken, but in Section 4 we will make use of the
features of the V plate to help interpret the July data. We
note here that the diffuse circular spot repeats on the later
plate, retaining its position relative to the two rings; this
suggests a surprisingly elongated dust cloud. nately the 1988 July plate has substantially larger images than the earlier plate because of the unavoidably large zenith ing star images were -0.5 arcsec larger than those on the 1984 plate. However, as described in the next section, this the subtracted image. to that reported previously, with two arcs located to the north of the supernova. The picture also shows well the
competing effects of nebulosity in the field. In this respect it is noticeable that the arcs are most visible in the region of the brightest nebulosity. This was also noticed by Crotts (1988b)
in $\mathrm{H} \alpha \mathrm{CCD}$ images of the field, and led him to suggest that dust associated with this emission nebulosity to the north of
 albeit at a very faint level, right around the supernova. The wisps of fainter nebulosity to the south, however, make it eche The emission nebulosity appears even brighter on the 1984 blue and red plates; it is for this reason that we chose to
image the echoes in V.

2.2 Photographic subtraction

A relatively simple and speedy photographic cancellation process was used to reveal the full extent of the light echoes. plate was made on Kodalith film developed in print-strength Kodak 'Dektol' developer for 2 min at $20^{\circ} \mathrm{C}$. The exposure
of the positive copy was adjusted so that the photographic of the positive copy was adjusted so that the photographic the density of the nebulosity above the sky background on the pre-supernova plates. After processing, the film positive was taped in contact and in register with the original negative
pre-supernova plate. The final enlargement of this contact pair was made on Kodalith film developed in Dektol. This combination gave the high contrast necessary to compensate
ully for most of the dynamic range of the moderate contrast Kodak IIa-D plate used in our exposures, and incorporated a degree of photographic amplification (Malin 1978) to emphasize the faint light echo.
The picture produced by this process is shown in Plate
(b). Comparison with the pre-subtraction image of Plate 1 (a) clearly shows the success of the experiment. The contaminating nebulosity has been almost completely dense photographic image of the nebulosity. Images of stars

SN 1987A light echoes 557
 There are also significant differences in the width of the

Јо ЧІР!М pue !!pei วqı

 peak in Fig. 1; we estimate a resultant uncertainty of ± 0.5

 \qquad
 Table 2. Echo
are in arcsec). Position Angle

 less than 7° to the plane of the sky.
The eccentricity of the outer ech Fig. 2. Its radius ranges systematically with azimuth in a
manner consistent with an off-centred ring. The application
 circle centred 0.4 arcsec east and 1.0 arcsec north of the supernova and with a radius of $65.3 \pm 0.1 \mathrm{arcsec}$. Hence the outer ring arises from a sheet which is inclined with respect
to the plane of the sky. ${ }^{\star}$ The angle of inclination is given by $\tan \alpha=\delta r / c t_{\mathrm{e}} \quad$ (Couderc 1939),

DISCUSSION

 The enormous and morphologically complex Hin flaments
and shells found in the LMC by Meaburn (1980) suggest outflows centred on the star-forming regions at the eastern end several are located in the 30 Dor region (e.g. Lortet \& Testor several are located in the 30 Dor region (e.g. Lortet \& Testor
1984), and have radii ranging from 50 pc to 1 kpc . The most likely formation mechanism for these giant shells is mass-loss winds and repeated supernovae from OB associations which

 even larger. Absorption-line studies of the $[\mathrm{Fex}]$ line in the
direction of SN 1987 A (Pettini et al. 1989) have provided

thin sheets. not thin, the clumping of dust into discrete clouds is certainly consistent with the existence of cavities. A further clue is offered by the eccentricity of the outer light echo. In our first placement in the general direction of 30 Dor was suggestive of the illuminated material being part of a shell centred on that region. Crotts (1988b) subsequently pointed out that the nebulosity to the north of the supernova (see Plate 1a) is part
of the supershell nebula N 157 C centred on the prominent

 where δr is the angular distance of the centre of the echo ring from the supernova, t_{e} is the interval between maximum light
(1987 May 15; Chevalier \& Emmering 1988) and the epoch of observation, and c is the speed of light. Our value $\delta r=1.1 \pm 0.1$ arcsec at $t_{\mathrm{e}}=1.17 \mathrm{yr}$ implies $\alpha=37.2 \pm 2.5^{\circ}$. $29 \pm 4^{\circ}$, the direction in which the ring's centre is offset from the supernova. The distance from the supernova to the point

PA 209°. We also see in Fig. 2 and Table 2 variations with PA in the
width of each echo, from 3 to 9 arcsec for the inner ring and from 4 to 9 arcsec for the outer. The observed width is the combination of two smearing effects: the finite depth of the reflecting clouds and the breadth in time of the supernova
light maximum. Taking a FWHM of 64 d for the V light curve, as measured from the data of Hamuy et al. (1988), the contribution of the latter effect to the FWHM of the rings is 3.0 arcsec for the inner ring and $4.8-5.4$ arcsec for the outer.
Clearly the effect of cloud depth contributes to the apparent width of the echoes at most position angles. Only in
the PA interval $180-270^{\circ}$ can the observed thickness of the the PA interval $180-270^{\circ}$ can the observed thickness of the is the case for both rings and it is curious that there should be such angular coherence in features that are due to clouds separated by more than $\sim 200 \mathrm{pc}$ with no evidence of
material between. The excess width seen in both rings implies cloud depths of up to 70 pc along the line-of-sight, or about one third of the separation of the two clouds. This is greater than the diameter of the echoes, so that the descrip-
tion of the clouds as thin sheets is quite inappropriate over much of the area currently sampled. Once again we see

6ऽ§ saoчวa 148.11 VL86I NS
over a similar range of PA seen in our 1989 February photograph (Couch \& Malin 1989). Indeed, splitting of the inner shell over the PA range $180-250^{\circ}$ is already suspected on

If indeed the two echoes are portions of a common shell or system of shells, then we should eventually see them merge at
 spherical shell addressed above, the limb lies 53 pc from the
line-of-sight, and will be reached by the echo in $\sim 20 \mathrm{yr}$. The simplicity, sensitivity and large format afforded by our photographic approach makes us well poised to monitor do at regular intervals of 3-6 months.
 light echo plate, and Russell Cannon for valuable comments
 Australian National Research Fellowship during the course
of this work.
 Chevalier, R. A., 1977. Ann. Rev. Astr. Astrophys., 15, 175.
Chevalier, R. A. \& Emmering, R. T., 1988. Astrophys. J., 331, L105. Couch, W. J. \& Malin, D. F., 1989. IA U Circ. No. 4739. Couch, W. J. \& Malin, D. F., 1989. IA Circ. No. 4739.
Couderc, P., 1939 . Ann. Astrophys., 2, 271. Crotts, A. P. S., 1988b. Astrophys. J., 333, L51.
Gouiffes, C., Rosa, M., Melnick, J., Danziger, I. J., Remy, M., Santini,

 Lortet, M. C. \& Testor, G., 1984. Astr. Astrophys., 139, 330. Lucke, P. B. \& Hodge, P. W., 1970. Astr. J., 75, 171.
McCray, R. \& Kafatos, M., 1987. Astrophys. J., 317, 190. Malin, D. F., 1978. Nature, 276, 591. Soc. 192, 365. Pettini, M., Stathakis, R., D'Odorico, S., Molaro, P. \& Vladilo, G., Schaefer, B. E., 1987. Astrophys. J., 323, L47.
Suntzeff, N. B., Heathcote, S. R., Weller, W. G., Caldwell, N.,
Huchra, J. P., Olowin, R. P. \& Chambers, K. C., 1988. Nature,
334, 135. NGC 2044, which he saw in both the inner and outer echoes,
 dust on the back and front sides, respectively, of the N 157 C
bubble.

 outer echo being reflected from what must be the front side outer echo being reflected from what must be the front side
of a shell centred on NGC 2044 . On the assumption that the

 nova-sheet distance to calculate that the supernova must be
240 ± 10 pc behind the NGC 2044 complex and that the $240 \pm 10 \mathrm{pc}$ behind the NGC 2044 complex and that the
radius of the shell is $135 \pm 8 \mathrm{pc}$. This figure is more accurate than Crotts' (1988b) value of 300 pc because we have fitted a

 sheet, we would expect the centre of the inner echo to be displaced from the supernova by the same angular distance
as the outer echo but in the opposite direction. A displace-

 depth of the clouds in some PAs. Therefore, the inclination of the cloud is a somewhat arbitrary concept, dictated by
local variations of the density profile along the line-of-sight.

 where the inner echo ring is formed renders it normal to the line-of-sight. But it is also possible that the apparent inclina-
tion of the cloud responsible for the outer echo is simply a

