
 Open access  Journal Article  DOI:10.1103/PHYSREVB.94.035121

Photoinduced gap closure in an excitonic insulator — Source link 

Denis Golež, Philipp Werner, Martin Eckstein, Martin Eckstein

Institutions: University of Fribourg, Max Planck Society, University of Hamburg

Published on: 11 Jul 2016 - Physical Review B (American Physical Society)

Topics: Phase transition, Exciton, Photoexcitation and Critical point (thermodynamics)

Related papers:

 Ultrafast Electronic Band Gap Control in an Excitonic Insulator

 Photoinduced Enhancement of Excitonic Order.

 Nonequilibrium dynamical mean-field theory and its applications

 Theoretical description of time-resolved photoemission spectroscopy: application to pump-probe experiments.

 Light-Induced Superconductivity in a Stripe-Ordered Cuprate

Share this paper:    

View more about this paper here: https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-
aeul3bqvdr

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVB.94.035121
https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-aeul3bqvdr
https://typeset.io/authors/denis-golez-1d80u3v2tf
https://typeset.io/authors/philipp-werner-2rofvi8q8c
https://typeset.io/authors/martin-eckstein-1qcmfqwtao
https://typeset.io/authors/martin-eckstein-1qcmfqwtao
https://typeset.io/institutions/university-of-fribourg-dezgxla1
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/institutions/university-of-hamburg-i4ewvhai
https://typeset.io/journals/physical-review-b-282iy1ig
https://typeset.io/topics/phase-transition-16ouazma
https://typeset.io/topics/exciton-2enq3gnk
https://typeset.io/topics/photoexcitation-owqvo53s
https://typeset.io/topics/critical-point-thermodynamics-1r86t5wj
https://typeset.io/papers/ultrafast-electronic-band-gap-control-in-an-excitonic-jirwg776v4
https://typeset.io/papers/photoinduced-enhancement-of-excitonic-order-satl3dfepf
https://typeset.io/papers/nonequilibrium-dynamical-mean-field-theory-and-its-2hdyavvhi6
https://typeset.io/papers/theoretical-description-of-time-resolved-photoemission-ugfoozq6ka
https://typeset.io/papers/light-induced-superconductivity-in-a-stripe-ordered-cuprate-15di5a01t8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-aeul3bqvdr
https://twitter.com/intent/tweet?text=Photoinduced%20gap%20closure%20in%20an%20excitonic%20insulator&url=https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-aeul3bqvdr
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-aeul3bqvdr
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-aeul3bqvdr
https://typeset.io/papers/photoinduced-gap-closure-in-an-excitonic-insulator-aeul3bqvdr


PHYSICAL REVIEW B 94, 035121 (2016)

Photoinduced gap closure in an excitonic insulator
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We study the dynamical phase transition out of an excitonic insulator phase after photoexcitation using a

time-dependent extension of the self-consistent GW method. We connect the evolution of the photoemission

spectra to the dynamics of the excitonic order parameter and identify two dynamical phase transition points

marked by a slowdown in the relaxation: one critical point is connected with the trapping in a nonthermal

state with reduced exciton density and the second corresponds to the thermal phase transition. The transfer of

kinetic energy from the photoexcited carriers to the exciton condensate is shown to be the main mechanism for

the gap melting. We analyze the low energy dynamics of screening, which strongly depends on the presence

of the excitonic gap, and argue that it is difficult to interpret the static component of the screened interaction

as the effective interaction of some low energy model. Instead we propose a phenomenological measure for the

effective interaction which indicates that screening has minor effects on the low energy dynamics.

DOI: 10.1103/PhysRevB.94.035121

I. INTRODUCTION

Recent progress in time-resolved techniques has opened a

new window to probe the dynamics of complex materials on the

femtosecond time scale [1]. An intriguing goal of that research

is to understand and possibly control the ultrafast dynamics

of symmetry-broken phases such as charge density waves

(CDW) or superconductivity [2]. Many ordering phenomena

involve an interplay between the electrons and the lattice,

which provides a major challenge for the theoretical and

experimental understanding, and also links the relevant time

scales to the lattice motion. In contrast, the phenomenon of

exciton condensation is a symmetry breaking mechanism of

purely electronic origin, which would therefore provide an

ideal testbed to study the dynamics of long-range order on the

electronic time scale, where the lattice can be considered as

frozen.

Excitonic phases were proposed in a seminal work [3] by

Mott as a new insulating phase of matter in semimetals, and

later on also discussed for semiconducting materials [4]. The

proposed mechanism is that the Coulomb interaction binds

conduction band electrons and valence band holes into pairs

called excitons. If the binding energy of such a pair is larger

than the gap the pairing leads to a phase coherent state—the

excitonic insulator (EI)—by a mechanism similar to that of

BCS superconductors [5]. If the binding takes place between

electrons and holes at different locations in the Brillouin zone,

the condensate corresponds to a CDW [6].

Even though several candidate materials were proposed

that may exhibit an EI phase, the mechanism is still debated in

most cases [7–11]. A prominent example is 1T-TiSe2, which

is a semimetallic material exhibiting a commensurate CDW

accompanied by a periodic lattice distortion. The simultaneous

ordering of different degrees of freedom also allows for

alternative explanations for the symmetry-breaking based on

electron-phonon coupling [12], which can possibly cooperate

with the excitonic pairing to stabilize the CDW [13–15], and

in addition the CDW may also compete with excitonic spin-

density wave phases [13,16,17]. An analysis of the dynamics

of CDW phases after photoexcitation, and in particular the

time scale for its melting, can provide a different view on

the origin of the long-range order and help to disentangle

various contributions. Ultrafast melting of the CDW gap

in 1T-TiSe2 has been interpreted in favor of an electronic

mechanism [18,19], though also phononic contributions to the

CDW can be identified [20].

Theoretically, understanding the dynamics of symmetry

broken states is a challenging problem even in a purely

electronic system. One possible mechanism for the melting

of the CDW in 1T-TiSe2 is a photoinduced screening of the

Coulomb interaction responsible for the electron-hole bind-

ing [19]. According to previous studies on semiconductors,

the time scale of the buildup of screening is the inverse plasma

frequency [21–24]. On the other hand, excitons can break up

by inelastic scattering with photoinduced carriers. Naively one

might expect that this process leads to a rapid thermalization to

a hot electron temperature higher than the critical temperature.

However, if the symmetry breaking is described by an effective

mean-field Hamiltonian, like in BCS theory, the dynamics is

known to be collisionless, i.e., the melting is a dephasing

of the modes [25]. Investigations of interaction quenches

revealed nonthermal symmetry-broken states which persist at

excitation energies corresponding to effective temperatures

much above the thermal critical temperatures, while the

threshold behavior is characterized by critical scaling [26–28].

Remarkably, this behavior can be robust beyond mean field,

i.e., transient nonthermal states and the critical behavior related

to a nonthermal fixed point emerge before the system is

eventually attracted to the thermal fixed point [27,29,30].

Understanding the mechanism of ultrafast melting in an

electronic symmetry-broken phase is thus a highly nontrivial

task and it is important to elucidate the processes involved in

order to properly interpret their experimental signatures. In this

paper, we study the dynamics of an excitonic CDW insulator

after photoexcitation within a two-band model. In order to

capture the effects of exciton formation, incoherent electron-

electron scattering, and screening in the nonequilibrium

domain on the same footing, we implement the self-consistent

GW approximation on the Kadanoff-Baym contour [31] and

allow for excitonic and spatial symmetry breaking. We show
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that by exciting the system we can induce a transition from

the excitonic insulator to a nonthermal trapped state with

reduced excitonic binding or to a thermal phase without

symmetry breaking, similar to the case of an antiferromagnetic

insulator [27].

This paper is organized as follows. In Sec. II we introduce

the model and describe the time-dependent mean field approx-

imation and GW approximation. In Sec. III we first introduce

a simple equilibrium picture of the excitonic insulator using

the mean-field approximation. Later we employ the fully

self-consistent GW description and analyze the dynamics of

the excitonic order parameter after a photodoping pulse and the

gap closure in the photoemission spectra (PES). In Sec. IV, we

demonstrate that also in the nonequilibrium situation the gap

in the PES and the value of the order parameter are strongly

correlated as one would expect for the equilibrium systems. We

further discuss how one can interpret the evolution of the PES

in the light of the previously discussed phenomena. Section V

is a conclusion and an outlook.

II. MODEL AND METHOD

A. Hamiltonian

We study a one-dimensional two-band system of spinless

fermions described by the Hamiltonian

H = Hkin + Hloc + Hdip(t) + Hint. (1)

The noninteracting band-electron contribution is given by

Hkin + Hloc =
∑

kα

(ǫkα + �α)c
†
k,αck,α, (2)

with ǫkα = −2Jα cos(k) the band dispersion and ck,α the

annihilation operator for an electron with momentum k in

orbital α = 1,2. The crystal field splittings �1,2 are chosen

such that band 1 is occupied, except for a hole pocket close to

(k = π ≡ Q), while for band 2, only an electron pocket near

k = 0 is occupied. The third term allows one to make direct

(dipole allowed) interband transitions

Hdip(t) =
∑

k

(A(t)c
†
k,1ck,0 + H.c.) (3)

to describe the laser induced population transfer between

the bands. Finally we consider a density-density Coulomb

interaction of the form

Hint =
1

2

∑

i,j

∑

αα′

V αα′

|i−j |niαnj,α′ (4)

between lattice sites i and j . We adopt an exponentially

decaying interaction

V
α,α′

l = U (1 − δα,α′ )δl,0 + V e−λ(|l|−1)(1 − δl,0), (5)

where we separated the local U and the nonlocal part of the

interaction V with a characteristic screening length 1/λ. The

diagonal term V
α,α

0 = 0 is assumed to vanish (such terms

are absorbed into the single-particle part of the Hamiltonian).

Throughout this paper we focus on the half-filled (particle-hole

symmetric) case; this is ensured by choosing the bands

symmetric like �2 = μ + �/2 and �1 = μ − �/2 with μ =

−π 0 π
k
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k
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FIG. 1. Energy spectrum of the (a) noninteracting and (b) back-

folded noninteracting problem. (c) The momentum resolved spectral

function Ak(ω) from the GW approximation (gray). The full lines

represent the energy spectrum from the self-consistent Hartree-Fock

approximation. (d) Temperature dependence of the order parameter

ρ12 in the GW and Hartree-Fock (HF) approximation. All the results

are for U = 3 and V = 1.0.

−[U + 4V eλ/(eλ + 1)]/2. In the momentum representation

the interaction Hamiltonian reads

Hint =
1

2L

∑

k,k′,q

∑

αα′

Vαα′ (q)c
†
k+q,αck,αc

†
k′−q,α′ck′,α′ , (6)

with the vertex

Vαα′ (q) = U (1 − δα,α′ ) + 2V
e2λ cos(q) − eλ

e2λ − 2eλ cos(q) + 1
. (7)

B. Symmetry breaking

Figure 1(a) exemplarily shows the noninteracting band

structure for a band separation � = 2.0 throughout the

Brillouin zone (−π,π ), with an electron pocket at k = 0 and

a hole pocket around k = −π . The excitonic instability arises

because of the Coulomb attraction between the electrons in

the lower band and holes in the higher band, leading to a

condensation of the excitons which are formed across the

indirect band gap. The symmetry breaking is therefore of the

type

〈c†k+Q,1ck,2〉 �= 0, (8)

with Q = π , and there is a corresponding doubling of the unit

cell.

To describe the symmetry-broken phase, we backfold the

band structure into the reduced Brillouin zone [cf. Fig. 1(b)].

The four bands in the reduced Brillouin zone are labeled with a

superindex a ≡ (α,γ ) with orbital contribution α ∈ {1,2} and

sublattice vector γ ∈ {0,Q},

ψk ≡

⎛

⎜

⎝

ck,(1,0)

ck,(1,Q)

ck,(2,0)

ck,(2,Q)

⎞

⎟

⎠
=

⎛

⎜

⎝

ck,1

ck+Q,1

ck,2

ck+Q,2

⎞

⎟

⎠
, (9)

i.e., ψka = ck+γ,α . Below we will compute the 4 × 4 density

matrix ρ as

ρa,a′(k) = 〈ψ†
ka

′ψka〉, (10)

and the corresponding 4 × 4 Green functions

Ĝk(t,t ′) = −i〈TCψk(t)ψ
†
k (t ′)〉
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to characterize the order parameter and the spectral functions

(photoemission spectrum). The following subsection describes

the technical details of the four-band Hartree-Fock and GW

simulation. Results for both equilibrium and nonequilibrium

states follow in Sec. III.

C. Method

Using the four-band representation (9) in the reduced

Brillouin zone, the single-particle part of the Hamiltonian may

be expressed as

H = Hkin + Hloc + Hdip =
∑

k

ψ
†
k ĥ(k)ψk, (11)

where the matrix ĥ(k) is given by

⎛

⎜

⎜

⎝

ǫ0(k) + �1 0 A∗
k 0

0 ǫ0(k + Q) + �1 0 A∗
k+Q

Ak 0 ǫ1(k) + �2 0

0 Ak+Q 0 ǫ1(k + Q) + �2

⎞

⎟

⎟

⎠

(12)

and the corresponding energy bands in the reduced Brillouin

zone are illustrated in Fig. 1(b). In the new basis we define an

interaction vertex V̂q for later use,

V̂(α,γ ),(α′,γ ′)(q) = Vα,α′ (q + γ ) δγ,γ ′ . (13)

The two-band model (1) is a nontrivial many-body problem

which in equilibrium has been studied by different mean-

field [5,10], weak-coupling [15,32], and variational cluster

approximations [13,14,33]. Here, we employ a weak-coupling

method based on the random phase approximation (RPA),

which is implemented on the L-shaped Kadanoff-Baym

contour to enable a simulation of the nonequilibrium prop-

agation of the system, as explained in the following. (For an

introduction into the Keldysh formalism in the notation used

here, see Ref. [34].)

a. Hartree and Fock approximation. Hartree and Fock

self-energies are obtained by the usual mean-field decoupling

of the interaction term (6). The 4 × 4 Hartree self-energy is

given by

�H
a,a′ (t) = δαα′

∑

α1,γ1

V αα′
(γ − γ ′)

×
1

L

∑

k

′
ρ(α,γ+γ1),(α′,γ ′+γ1)(k), (14)

where the inner sums are taken over sublattices, bands, and
∑′

k indicates the sum over momenta in the reduced Brillouin

zone. The 4 × 4 Fock self-energy is given by

�F
a,a′ (t) = −

1

L

∑

q

′ ∑

γ1

V αα′
(q + γ1)

× ρ(α,γ+γ1),(α′,γ ′+γ1)(k − q). (15)

b. RPA equations. The RPA approximation can be derived

from the Luttinger-Ward functional 
[G,W ] (cf. Fig. 2) and

hence is a conserving approximation. Here we just summarize

the resulting equations (for a derivation see, e.g., Ref. [31]).

The Feynmann diagrams for the electron self-energy �k(t,t ′)

Σk(t, t ) =
kk

q

k − qt t

Πq(t, t ) =

Φ[Gk,Wk] =

(a) (b)

(c) k

k + q

t t

qq

FIG. 2. Feynman diagrams for the self-energy �k (a), polarization

�k (b), and the Luttinger-Ward functional 
[Gk,Wk] (c).

and polarization �k(t,t ′) are shown in Figs. 2(a) and 2(b) and

the corresponding algebraic expressions read

�
rpa

a,a′(k,t,t ′) =
i

L

∑

q

′ ∑

γ1,γ
′
1

G(α,γ−γ1),(α′,γ ′−γ ′
1)(k − q; t,t ′)

×W(α,γ1),(α′,γ ′
1)(q,t,t ′), (16)

�a,a′ (q; t,t ′) =
−i

L

∑

k

′ ∑

γ1γ
′
1

G(α,γ1+γ ),(α′,γ ′
1+γ ′)(k + q; t,t ′)

×G(α′,γ ′
1),(α,γ1)(k; t ′,t). (17)

The effective interaction Ŵ is obtained from the integral

equations

Ŵq = V̂q + V̂q ∗ �̂q ∗ Ŵq , (18)

where ∗ marks the convolution on the Kadanoff-Baym

contour [34]. [The bare interaction is instantaneous in time

V̂q(t,t ′) = δ(t,t ′)V̂q .] The Green’s function, in turn, is obtained

from the Dyson equation

Ĝk = ĜH
k + ĜH

k ∗ �̂k ∗ Ĝk, (19)

where

ĜH
k = (i∂t − ĥk − �̂H )−1 (20)

is the Hartree Green’s function. [Note that inserting the

instantaneous contribution of W into (16) results in the Fock

self-energy, so at the level of RPA, the full self-energy is

�k(t,t ′) = �rpa(t,t ′) + �H(t)δ(t,t ′).]
In the actual implementation, we treat the time-local part of

Ŵq separately. We define the full susceptibility χ̂k by the RPA

series χ̂k = �̂k + �̂k ∗ V̂k ∗ �̂k + �̂k ∗ V̂k ∗ �̂k ∗ V̂k ∗ �̂k +
· · · , which is numerically evaluated by solving the integral

equation

χ̂k = �̂k + �̂k ∗ V̂k ∗ χk (21)

on the contour C. From this we obtain Ŵk = V̂k + V̂k ∗ χ̂k ∗
V̂k . The solution of the integral equations (19) and (21) for

each point k in the Brillouin zone can be distributed over

several compute notes. The evaluation of the momentum sums

in (16) and (17) then requires an efficient implementation of

the collective communication.
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III. RESULTS

A. Equilibrium properties

In the following section we present results for the photoin-

duced dynamics of the two-band model Eq. (1). Figure 1(a)

shows the noninteracting band structure for a band separation

� = 2.0 with an electron pocket at k = 0 and a hole pocket

around k = −π , while Fig. 1(b) shows the same data back-

folded into the reduced Brillouin zone. The excitonic CDW

phase can be stabilized for a wide range of �. The symmetry

breaking is evidenced by the off-diagonal components of the

density matrix [cf. Eq. (10)]. As an order parameter, we plot

in Fig. 1(d) the temperature-dependent local (momentum-

averaged) value ρ12. (Other off-diagonal components of ρ

show the same behavior). As expected, the order parameter is

slightly larger in the static Hartree-Fock description, compared

to GW, which also includes fluctuations in the self-energy.

In the symmetry-broken phase, the Hartree-Fock self-energy

leads to a shift of the energy bands and an opening of the gap,

as shown by the solid lines in Fig. 1(c). The main effect of the

RPA on the equilibrium band structure is a lifetime broadening

of these bands, in particular the high-energy bands, as shown

in Fig. 1(c).

B. Gap closing in time-resolved photoemission

We now induce the dynamics of the system by exciting the

equilibrium state with a short pulse which allows direct dipolar

transitions between the bands; see Eq. (3). Unless stated

otherwise, we will use the parameters of Fig. 1(c) in the sub-

sequent simulations, which correspond to an initial state well

within the symmetry-broken region of the phase diagram, i.e.,

� = 2.0, U = 3.0, V = 1, inverse temperature β = 10, and a

rather short-ranged nonlocal interaction (λ = 5). We use the

few-cycle pump pulse A(t) = A0 sin (ω(t − t0))e−4.6(t−t0)2/t2
0 ,

with frequency ω, amplitude A0, and the width of the

pulse envelope t0 = 2πnp/ω, where np is the number of

cycles.

To get a first glance on the dynamics we compute the

time- and angle-resolved photoemission spectrum Ik(ω,tp),

which measures the photoemitted intensity as a function of the

probe time tp, and of the energy ω and momentum k of the

photoemitted electron. The intensity Ik(ω,tp) can be obtained

from the single-particle Green’s function Gk(t,t ′)

I (ω,tp) =−i

∫

dt dt ′S(t)S(t ′)eiω(t−t ′)G<
k (tp + t,tp + t ′),

(22)

where S(t) = exp(−t2/2δ2) is the envelope of the probe pulse

with some duration δ [35]. Note that this expression neglects

matrix element effects, which would just lead to a different

intensity in various spots of the Brillouin zone, but would

not influence the time dependence of the signal. Furthermore,

because photoemission is not band selective, Gk ≡ Tr Ĝk is

traced over the orbital indices in Eq. (22).

Snapshots of the photoemission spectrum I (ω,tp) are

plotted in Fig. 3 for the initial equilibrium state (panel labeled

“Eq”) and for three times after the excitation. To resolve

dynamics on the time scale of the inverse hopping, we have

chosen a rather short probe duration δ = 3. The corresponding

uncertainty-limited frequency resolution (1/δ) is nevertheless

sufficient to reveal the bands in the equilibrium spectrum

[compare Fig. 1(c) and Fig. 3(a)]. Following the strong

excitation, one observes a partial photoinduced population

in the upper bands, a subsequent closure of the gap, and

a restoration of the high-symmetry band structure. For a

weaker excitation, the gap would only partially close within

the time window of our simulation. Photo emission is thus

well suited to probe the photoinduced melting of the excitonic

CDW. To understand the mechanisms behind the photoinduced

melting, we will now systematically analyze the behavior of

the order parameter and later return to the discussion of the

photoemission spectrum.

C. Nonthermal melting of the order parameter

Figures 4(a) and 4(b) show the different elements of

the momentum-averaged density matrix ρ loc [Eq. (10)] for

the two excitation strengths A0 = 1.1 and A0 = 2.0. The

diagonal occupations ρ00 to ρ33 correspond to the occupation

of the four (bare) bands (from bottom to top), and their time

evolution indicates the photoinduced population shift. During

the pulse ρ00 and ρ33 decrease and increase, respectively,

which implies that the population is predominantly transferred

from the lowest to the highest band, as expected for a large

pulse frequency ω = 10. Subsequently, this photoinduced

population relaxes to the lower bands, leading to an increase of

−π/2 −π/4 0 −π/4 π/2

−4

−2

0

2

4

Eq

−π/2 −π/4 0 −π/4 π/2

−4

−2

0

2

4

t = 2.1

−π/2 −π/4 0 −π/4 π/2

−4

−2

0

2

4

t = 7.0

−π/2 −π/4 0 −π/4 π/2

−4

−2

0

2

4

t = 20.

0

1

2

3

4

5

6

FIG. 3. Snapshots of the momentum resolved PES Ik(t,ω) for U = 3,V = 1,� = 2.0,β = 10 after a pulse excitation with amplitude

A0 = 1.4, frequency ω = 10.0, and np = 3 cycles. From left to the right the panels show the spectrum in equilibrium and at the probe times

tp = 2.5,7.0,20.
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FIG. 4. Change in the local density matrix �ρij for excitation A0 = 1.1 (a) and A0 = 2.0 (b). The inset of (b) shows the actual values of

the density matrix ρ(t) for pulse strength A0 = 2.0. The components that are not shown are small in comparison and quickly damped after

the pulse. The absolute value (c) and the phase (inset) of the local order parameter ρ loc
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A0 = 0.2,0.3, . . . ,0.7.

ρ22 and a decrease of ρ11. We will see in the following that the

energy transfer associated with the cooling of photocarriers is

related to the melting of the condensate.

In Fig. 4(c) the absolute values |ρ12| and the phase (inset)

of the order parameter are plotted for different excitations

strengths A0. After the pulse the absolute value of the

off-diagonal components decreases. For weaker pulses A0 �
1.1, it remains nonzero in the long-time limit, while for

the larger amplitudes it vanishes, with a critical excitation

strength Ac ≈ 1.1 for U = 3, V = 1. The phase of the

order parameter [inset of Fig. 4(c)] also shows a nontrivial

dynamics with a slow drift in the long-time limit in the case

of a nonvanishing order parameter. On top of the overall

reduction of the order parameter there are weak superimposed

oscillations corresponding to the amplitude mode of the order

parameter. We extract these oscillations by subtracting the

slow exponential background; see Fig. 4(d). The amplitude

mode gets strongly damped and its frequency is reduced as we

increase the excitation strength.

In equilibrium the transition into the high-symmetry state

can be achieved by raising the temperature of the system.

A naive guess might thus be that the threshold amplitude

Ac for the melting of the excitonic condensate is such

that the total energy after the excitation corresponds to the

thermal energy of the system at the equilibrium critical

temperature. However, the final energy after the pulse Ac

is Efin = 1.15 which corresponds to βeff = 0.9, while the

equilibrium transition temperature is βeq ≈ 2.5. In turn, the

energy corresponding to the critical temperature βeff = 0.9 is

transferred to the system already by a much weaker pulse of

amplitude Ath = 0.6. This shows that the system is trapped

in a transient nonthermal symmetry-broken state and the

threshold is related to the nonthermal critical point. Because

the dynamics described within the GW method goes beyond

the collisionless mean-field description, we expect that on

longer time scales, the system evolves to the thermal state,

but these times are not accessible in our simulation for all the

parameters.

To further characterize the nonthermal melting threshold in

the present case, we now quantitatively analyze the relaxation

times of the order parameter. For the excitation above the

critical pulse amplitude, A0 > Ac, the order parameter shows

an exponential time evolution with two characteristic times, the

initial relaxation to the nonthermal state, which we attribute

to the dephasing, and for longer times the relaxation to

the thermal state, i.e., thermalization; see Fig. 5(a). Both

relaxation times exhibit a slowdown as A0 is decreased and the

critical point for the initial dephasing process agrees with the

previously determined critical excitation strength Ac ≈ 1.1;

see Fig. 5(b). For an excitation strength below the critical pulse

amplitude, A0 < Ac, the system exhibits a single exponential

relaxation to the trapped state and this relaxation time shows a

slowdown at the same critical point. In this parameter region

the system also shows damped amplitude oscillations, whose

frequency 1/τAM decreases with increasing pulse strength.

However, the identification of the point of divergence is

difficult due to the strong damping of the oscillations as one

approaches the critical excitation strength Ac.
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FIG. 5. (a) Logarithmic plot of the order parameter dynamics ρ12 for several excitation strengths. The dashed straight lines show fits of
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pulse amplitude A0. On the upper horizontal axis we indicate the amount of excited charge carriers. The red (black) dashed line corresponds to

the expected point of the equilibrium phase transition due to modification of the temperature (chemical doping). The red solid line is a guide

to the eye.

D. Nonthermal distribution functions

The nonthermal nature of the state can also be accessed

directly: in any equilibrium state, Green’s functions would

satisfy the fluctuation-dissipation theorem which relates spec-

tral functions and occupation functions: G>(ω)/G<(ω) =
exp(−βω). By analyzing the ratio Tr[G>(t,ω)]/Tr[G<(t,ω)]

in the nonequilibrium case and comparing to the function

exp ( − βeff(t,ω)ω), we can thus see if the state in the long-time

limit can be described by a thermal state at an effective

temperature βeff or if a more complicated description is needed,

e.g., a model with several effective temperatures. For an

excitation far above the critical excitation, A0 = 2.0 > Ac,

this ratio in the long-time limit shows a nearly exponential ω

dependence, see Fig. 6(b), so the system can be described by a

thermal state at elevated temperature. The long-time dynamics

for excitations below the critical excitation, A0 = 1.0 < Ac,

shown in Fig. 6(a), however, shows a cooling of the high energy

part of the spectrum (ω � 1.0). The low-energy part, on the

other hand, is excited as the relaxation progresses, and exhibits

a nonexponential dependence on the energy. This clearly

shows that one cannot apply a single-temperature description.

Interestingly, an effective temperature fit shows that for A0 =
1.0 the very low (ω � 0.3) and high (ω � 1) energy parts have

βeff ≈ 3.5, which is below the equilibrium transition tempera-

ture, while the intermediate energy region is characterized by

βeff ≈ 2, which is above the thermal transition point.

By fitting the high-energy part of the given ratio we

extracted the time dependence of the effective temperature

βeff(t,ω > 1.0), which exhibits an exponential relaxation. The

relaxation times, shown in the inset of Fig. 6(a), decrease

monotonously with the pulse amplitude A0, with only a

weak dip at the previously determined critical excitation Ac.

This result is not surprising, since the relaxation time of

βeff(t,ω > 1.0) is determined by kinetic processes at high

energies, that are only weakly coupled to the low energy

dynamics governed by the presence of the gap.

E. Mechanism: Relation to photoexcited carrier density

By photoexciting the system we introduce additional elec-

trons and holes and the presence of the gap prevents them from

recombining. This suggest that the mechanism for melting
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FIG. 6. Time dependence of the ratio Tr[G<(t,ω)]/Tr[G>(t,ω)] on a logarithmic scale after an excitation with pulse strength A0 = 1.0 < Ac

(a) and A0 = 2.0 > Ac (b). The inset shows the relaxation time extracted from the relaxation of this ratio in the high-energy (ω � 1) region.
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strength Ac.

of the gap is a transfer of kinetic energy of photoexcited

carriers to the condensate. High energy particle-hole pairs

relax via electron-electron scattering, which breaks several

bound pairs into additional free charge carriers. If a carrier

relaxes within the upper band and breaks up an exciton, this

is an impact ionization process [36] which results in a carrier

multiplication. The process is evidenced in several ways.

(i) The carrier production is directly seen from the

time-dependent increase of the carrier number δn(t) =
∫ ∞

0
dω[A<(ω,t) − A<(ω,0)] in Fig. 7(a). The energy distri-

bution of the excited charge carriers is visible in the previously

introduced ratio Tr[G>(t,ω)]/Tr[G<(t,ω)], see Fig. 6(a), with

a bump (increase) in the distribution function at the energy

corresponding to the excess of the charge carriers (ω ≈ 1.0).

Furthermore, one can look at the dependence of the number of

excited carriers on the absorbed energy. The critical excitation

strength Ac corresponds to an absorbed energy �E ≈ 0.26.

Above and below the critical excitation the amount of excited

charge carriers indeed depends approximately linearly on the

absorbed energy; see Fig. 7(b). Below the critical excitation

strength the ratio of the excited charge carriers and absorbed

energy is larger than above. Since the condensate is only

present below the critical excitation strength the pair breaking

processes result in a stronger dependence of �n on the

absorbed energy for A0 < Ac. This nonlinear dependence

was actually discussed in a recent experiment [20], which

demonstrated two different linear dependences of the number

of excited charge carriers versus absorbed energy for excitation

strengths below and above the critical amplitude, though the

carrier number was obtained from reflectivity data.

(ii) In the population of the bare bands, Figs. 4(a) and 4(b),

the occupations of the lowest (ρ00) and the highest (ρ33) band

relax almost to the initial values at weak excitation in the

long-time limit, while a substantial population remains for

strong excitation (A0 = 2.0). Since in this case the condensate

is melted, photoinduced carriers have no channel for energy

relaxation left.

These arguments suggest that the state after an excitation

with A0 < Ac can be compared to a chemically doped

equilibrium system. We would like to analyze this scenario

more quantitatively by considering the amount of excited

charge carriers δn(t). As we excite the system above the critical

excitation strength A0 > Ac the gap is melted and the number

of excited charge carriers becomes more ill defined [see the

inset of Fig. 7(a) that shows the time evolution of the occupied

part of the spectrum], but it still provides a measure for the

amount of excited charge carriers.

In order to test the hypothesis that the nonthermal critical

point corresponds to the equilibrium critical point obtained by

doping we compare the number of the excited charge carriers

in the long-time limit n(tmax) to the critical equilibrium value of

doped holes and electrons nh + ne at the point of the doping-

induced transition; see black dashed line in Fig. 5(a). The

comparison with this doping-induced critical point shows a

better agreement than the comparison to the thermal critical

point of the heated system. The equilibrium doping-induced

phase transition happens close to the point where the chemical

potential exceeds the top of the hole pocket so that there are no

holes present to form excitonic pairs. This suggests that also

the dynamical phase transition happens as a consequence of

the filling up of the hole pocket via photoexcitation.

F. Screened interactions

In this part we discuss how the screening properties are

changed by the excitation, and in particular also by the

destruction of the excitonic pairing. For this purpose we

compute the fully screened interaction Wq [cf. Eq. (18)],

which is by definition related to the dielectric constant ε and

the bare interaction Vq through Wq = ε−1
q Vq . Including the

fluctuations on the RPA level, retardation effects are induced

in Wq . In nonequilibrium Wq(t,t ′) therefore depends on two

time arguments, and in order to get insights into the dynamics

of screening we introduce a partial Fourier transform to

define a time- and frequency-dependent interaction Wq(ω,t) =
∫ t+tmax

t
dt ′eiωt ′WR

q (t ′,t).
For simplicity we will first analyze the local interaction

traced over orbitals, Wloc = 1
L

∑

q TrŴq . (In an experimental

setup the direct measurement of Wq would be related to the

charge susceptibility, and thus the trace over orbitals is related

to the most straightforward orbital nonselective measurement

of the susceptibility.) The equilibrium state of the system (see
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FIG. 8. Trace over the real part of the partial Fourier transform of the local screened interaction Tr[Re[Wloc](ω,t) − U ] for U = 3.0 with

the pulse amplitude of A0 = 1.1 (a) and A0 = 2.0 (b) for times before, during, and after the pulse. The time t = 0 corresponds to the center of

the pulse. The dashed (full) line represent the symmetric l = 1 (antisymmetric l = 0) eigenmode of the effective interaction Re[W
(l)
loc](ω,t) − U

for A0 = 1.1 (c) and A0 = 2.0 (d). The insets present the time evolution of the change in the static component of the eigenmodes.

data in Fig. 8 before the pulse, t = −2.8) shows a sizable

reduction of the effective static interaction. By exciting the

system below the critical pulse amplitude, A0 = 1.0 < Ac,

the static and low-energy interaction is screened, while at

the energies of the order of the gap size (0.7 � ω � 1.7)

it exhibits a strong antiscreening effect; see Fig. 8(a). For

excitations above the critical amplitude, A0 = 2 > Ac, the

effective interaction after the pulse is less screened for all

energies [see Fig. 8(b)], with the most pronounced effect at

energies comparable to the gap size.

In order to get more insight into the dynamics of screening

we perform an eigenvalue decomposition of the screened

interaction with respect to the orbital degrees of freedom [37].

This yields the modes W (±) which correspond to fluctuations

of the total density n1 + n2 and the relative density n1 − n2 of

the bands α = 1,2 in the unfolded Brillouin zone. Technically,

this amounts to taking the momentum-diagonal interaction

for a momentum q + γ in the full Brillouin zone, W̃
α,α′

q+γ ≡
(Ŵq)(α,γ ),(α′,γ ) for γ ∈ {0,Q}, which is a 2 × 2 matrix in orbital

space, averaging over momenta, W̃
α,α′

loc = 1
L

∑′
q

∑

γ W̃
α,α′

q+γ ,

and making the projection W± = ηt
±W̃locη± with the vectors

η± = (1,±1)/
√

2 onto the symmetric and antisymmetric

channel.

In the case of a weak pulse, see Fig. 8(c), when a substantial

gap is still present in the spectral function, the antisymmetric

mode W
(−)
loc shows a strong reduction of the screening on

the energy scale of the gap size, while the low energy

screening has barely changed. For excitations above the critical

amplitude, A0 = 2 > Ac, the antisymmetric mode shows a

strong reduction of screening also on low energy scales; see

Fig. 8(d). We interpret this that by photoexciting the system

we introduce additional electrons into the hole pocket, which

reduces the amount of possible low-energy excitations between

the bands and therefore reduces the screening. A qualitatively

similar effect is present in equilibrium if we chemically dope

the system. In contrast for the symmetric mode W
(+)
loc the

low-energy screening is enhanced both by weak and strong

excitations. The increase of the low energy screening in the

symmetric mode can be understood by the increase of the total

amount of free charge carriers introduced into the system by

photodoping. Therefore, the two eigenmodes tend to compete

with each other, which leads to a nontrivial modification of the

screening for the pulse strength below and above the critical

amplitude Ac.

These results already show that the interpretation of the

static value W (ω = 0) of the screened interaction as an

effective interaction in a low-energy model which determines

the exciton binding energy is difficult, as the interaction itself

has a strong frequency dependence on the energy scale of the

gap, and even for excitations close to the melting threshold

there is an opposite effect of the photoexcitation on W (ω) on

the energy scale of the gap and at ω = 0. Just by looking at

the value of W , it is thus not easy to conclude whether the

change of the screening can be viewed as a driving force for

the melting of the condensate. In order to overcome this issue
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we will approach this question from a more phenomenological

perspective in the next section.

IV. DISCUSSION

In the light of the previous discussions we will now return

to the interpretation of the photoemission spectrum. In a

photoemission experiment one can observe the dynamics of

the gap, while most of the discussion above has focused on

the order parameter. In a nonequilibrium situation and in the

presence of dynamical screening the relation between the gap

size and the order parameter becomes nontrivial, and it is a

priori unclear which of the phenomena described above can

be observed in the evolution of the photoemission spectrum.

To clarify this point, we analyze the relation between the gap

and the order parameter in the present case. In Fig. 9 we plot

the gap size � (obtained from the low energy maximum of the

photoemission spectra at the momentum where the gap closes)

as a function of the order parameter |ρ12|, both in equilibrium,

and in nonequilibrium for various excitation amplitudes and

times after the pulse. Interestingly, although the photoexcited

states are clearly nonthermal (and in particular have a large

number of excess carriers with respect to the thermal state),

the nonequilibrium ratio between the two quantities agrees

with the equilibrium ratio for different temperatures.

The strong correlation between the order parameter and

the gap indicates that one should be able to see some

characteristics of the nonthermal critical behavior, which was

analyzed in terms of the order parameter ρ (Fig. 5) also in the

photoemission spectrum. One indicator for the existence of

a nonthermal critical point is the two-time relaxation process

displayed in Fig. 5(a). In the current setup this behavior is

however difficult to extract from the spectrum due to several

reasons: the crossover to the thermalization happens when the

order parameter is already very small, and thus the resulting

differences in the spectrum are minor. Furthermore, in a

realistic experimental setup the longer time dynamics strongly

depends on the coupling to additional degrees of freedom,

such as lattice-modulation phonons, which are not included
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FIG. 9. Absolute value of the order parameter |ρ12| as a function

of the gap size � determined from the photoemission spectrum after a

pulse with excitation strength A0 = 0.5, . . . ,1.25 and the equilibrium

dependence for different temperatures β = 1,2,4,6,8,10. The black

dashed line represents the ratio obtained from the equilibrium

Hartree-Fock calculations in the temperature range β = 0.2, . . . ,10.

in our description. However, the most direct indication of

the nonthermal critical point, which is the slowdown of the

dynamics at the nonthermal threshold, is clearly visible in the

photoemission spectrum: in Fig. 5(b) we plot the relaxation

time τI which is extracted from an exponential fit to the

relaxation of the local part of the photoemission intensity at the

Fermi energy Iloc(ω = 0). It displays a slowdown in the same

region as the order parameter. The analysis of the time scales

in the photoemission spectra therefore gives an experimentally

accessible test for the existence of a nonthermal critical point.

The almost universal ratio between the order parameter and

the gap in Fig. 9 can also be used as a phenomenological

way to analyze the question to what extent the change of

the interaction due to screening plays a role in the dynamics

of the excitonic condensate. This question is difficult to

answer in general, as there is not a single matrix element

(or single mode) and energy range of the screened interaction

W (ω) which would have a dominant contribution, while the

photoinduced changes of W are partly opposite in various

energy ranges as discussed above. However, motivated by a

mean-field description where the gap is proportional to the

order parameter and the ratio is set by the interaction, one

can simply take the ratio of the gap and order parameter

as a measure for the relevant pairing interaction. For the

different excitations displayed in Fig. 9 the photoexcited

carrier numbers are very different, but nevertheless the ratio of

gap and order parameter is comparable (compare, e.g., the data

close to the point � = 0.5 and ρ = 0.21). Furthermore, this

ratio is also very similar to the ratio measured in the simple

mean-field calculation. This can be interpreted in the sense

that the screening effects are not dominant for the melting of

the condensate, but the main mechanism is the breaking of

excitons by photoinduced carriers through impact ionization.

V. CONCLUSION

We have used the nonequilibrium generalization of the self-

consistent GW method to simulate and analyze the dynamics

of a pulse-excited excitonic insulator. We compared the results

with the Hartree-Fock theory in equilibrium, where basic

features of the spectrum agreed on the qualitative level, while

the lack of memory effects and momentum transfer implies

the absence of thermalization. The latter effects are captured

by the GW method, which allows us to discuss the interplay

of excitonic formation, impact ionization, thermalization,

and dynamical screening. The method should yield qualita-

tively accurate results in the limit of weak electron-electron

coupling.

We found that photoexcitation leads to a melting of the

excitonic order parameter. Depending on the pulse strength

one can induce a transition into either a nonthermal trapped

state with reduced condensate density or a melting of the

long-range order. A slowdown of the dynamics is observed at

the threshold which separates the two regimes. The threshold

field for fast melting of the order parameter turns out not to be

related to the thermal critical point, which indicates that the

two relaxation regimes are separated by a nonthermal critical

point [27,29]. Consequently, we find that the order parameter

exhibits an exponential dynamics with two characteristic time

scales: the first is attributed to the dephasing dynamics with a
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critical slowdown at the nonthermal critical point. The second

characteristic time scale is the time of thermalization which

exhibits a slowdown as one approaches the thermal critical

point. The whole dynamics strongly resembles the dynamics

of the antiferromagnet in the weakly interacting Hubbard

model [27], where a transition from the antiferromagnet

to paramagnet has been studied in an interaction-quench

setup.

The mechanism for melting the gap is a transfer of

kinetic energy to the condensate, which also leads to impact

ionization, and a stronger increase of the carrier number with

absorbed energy below the threshold. In the present model,

the modifications in the dynamically screened interaction

by photoexcitation seems to be a secondary mechanism

for the melting of the condensate: a direct analysis of the

interaction shows significant modifications after photodoping,

but the effect is opposite at low frequencies and in the

energy range of the gap, making the overall consequences

subtle. On a more phenomenological level, one finds that

the ratio of the order parameter and the gap (as measured

in photoemission spectroscopy), which may be taken as an

overall measure for the interaction, is almost independent of

the number of photoexcited carriers, and remains comparable

to the value obtained with a static interaction even for strong

photoexcitation. Concerning real materials with more than one

band, the quantitative effect of screening may be different,

but one can expect that incoherent scattering and impact

ionization remains a universal mechanism for the melting

of the condensate. Such systems may therefore be a good

candidate to eventually see a nonthermal critical point in an

experiment.

Furthermore, as shown in recent experiments [18,20,38]

the ultrafast response of correlated materials allows us to

disentangle different degrees of freedom in real time. The

example of TiSe2 showed [20] that after a short pulse the

system is trapped in a nonthermal CDW state without excitonic

correlations. The possibility of disentangling the intertwined

orders by ultrafast dynamics could be applicable to a broad

variety of materials. By combining the method introduced

in this work with the nonequilibrium version of the self-

consistent Migdal approximation, see for instance Ref. [39],

one can theoretically investigate the important question of the

interplay between the electronic and structural contribution to

the CDW. Another possible extension is the combination with

the extended dynamical mean field theory, which allows us to

treat stronger electron-electron interactions [40–42].
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