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Photoinduced Topological Phase 
Transitions in Topological Magnon 
Insulators
S. A. Owerre  

Topological magnon insulators are the bosonic analogs of electronic topological insulators. They 

are manifested in magnetic materials with topologically nontrivial magnon bands as realized 

experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1–3, bdc), and they 
also possess protected magnon edge modes. These topological magnetic materials can transport heat 

as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons 
are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon 
materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this 
report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators 
in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light 
intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different 
topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We 
further show that, under certain conditions, periodically driven gapped topological magnon insulators 
can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. 
We envision that this work will pave the way for interesting new potential practical applications in 
topological magnetic materials.

Topological insulators have captivated the attention of researchers in recent years and they currently represent 
one of the active research areas in condensed matter physics1–5. �ese nontrivial insulators can be realized in 
electronic systems with strong spin-orbit coupling and a nontrivial gap in the energy band structures. �ey also 
possess Chern number or 2 protected metallic edge or surface modes that can transport information without 
backscattering5. In principle, however, the ubiquitous notion of topological band theory is independent of the 
statistical nature of the quasiparticle excitations. In other words, the concept of Berry curvature and Chern num-
ber can be de�ned for any topological band structure irrespective of the quasiparticle excitations. Consequently, 
these concepts have been extended to bosonic systems with charge-neutral quasiparticle excitations such as mag-
nons6–22, triplons23,24, phonons25,26, and photons27.

Topological magnon insulators6–17 are the bosonic analogs of electronic topological insulators. They 
result from the nontrivial low-energy excitations of insulating quantum magnets with spin-orbit coupling or 
Dzyaloshinskii-Moriya (DM) interaction28,29, and exhibit topologically nontrivial magnon bands and Chern 
number protected magnon edge modes, with similar properties to those of electrons in topological insulators1–5. 
�eoretically, topological magnetic excitations can arise in di�erent lattice geometries with DM interaction, how-
ever their experimental observation is elusive in real magnetic materials. Recently, intrinsic topological magnon 
insulator has been observed experimentally in a quasi-2D kagomé ferromagnet Cu(1–3, bdc)16. Moreover, recent 
evidence of topological triplon bands have also been reported in a dimerized quantum magnet SrCu2(BO3)2

23,24. 
These magnetic materials have provided an interesting transition from electronic to bosonic topological 
insulators.

Essentially, the intrinsic properties of a speci�c topological magnon insulator are material constants that can-
not be tuned, thereby hindering a topological phase transition in the material. In many cases of physical interest, 
however, manipulating the intrinsic properties of topological magnetic materials could be a stepping stone to 
promising practical applications, and could also provide a platform for studying new interesting features such as 
photo-magnonics30, magnon spintronics31,32, and ultrafast optical control of magnetic spin currents33–36. One way 
to achieve these scienti�c goals is de�nitely through light-matter interaction induced by photo-irradiation. In 
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recent years, the formalism of photo-irradiation has been a subject of intensive investigation in electronic systems 
such as graphene and others37–66. Basically, photo-irradiation allows both theorists and experimentalists to engi-
neer topological phases from trivial systems and also induce photocurrents and phase transitions in topologically 
nontrivial systems. In a similar manner to the notion of bosonic topological band theory, one can also extend the 
mechanism of photo-irradiation to bosonic systems.

In this report, we theoretically investigate photo-irradiated intrinsic topological magnon insulators in the 
kagomé ferromagnets and their associated topological phase transitions. One of the main objectives of this report 
is to induce tunable parameters in intrinsic topological magnon insulators, which subsequently drive the sys-
tem into a topological phase transition. We achieve this objective by utilizing the quantum theory of magnons, 
which are charge-neutral spin-1 bosonic quasiparticles and carry a magnetic dipole moment. �erefore, magnons 
can couple to both time-independent67–70 and periodic time-dependent (see Methods)71 electric �elds through 
the Aharonov-Casher (AC) e�ect72, in the same manner that electronic charged particles couple through the 
Aharonov-Bohm (AB) e�ect73. Quite distinctively, for the periodic time-dependent electric �elds (see Methods)71, 
this results in a periodically driven magnon system, and thus can be studied by the Floquet-Bloch theory. Using 
this formalism, we show that intrinsic topological magnon insulators can be tuned from one topological magnon 
insulator to another with di�erent Berry curvatures, Chern numbers, and thermal Hall conductivity. Moreover, 
we show that, by manipulating the light intensity, periodically driven intrinsic topological magnon insulators can 
also transit to synthetic gapless topological magnon semimetals. �erefore, the magnon spin current in topolog-
ical magnetic materials can be manipulated by photo-irradiation, which could be a crucial step towards potential 
practical applications.

Results
Topological magnon insulators. We consider the simple microscopic spin Hamiltonian for intrinsic top-
ological magnon insulators in the kagomé ferromagnets16
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�e �rst summation is taken over nearest-neighbour (NN) sites  and ′ on the 2D kagomé lattice, and 
→
′D  is 

the DM vector between the NN sites due to lack of an inversion center as depicted in Fig. (1)a. �e last term is the 
Zeeman coupling to an external magnetic �eld µ

→
=

→
B g H

B
, where µB is the Bohr magneton and g the spin g-factor. 

Topological magnon insulators6–8,10–17 can be captured by transforming the spin Hamiltonian to a bosonic hopping 
model using the Holstein-Primako� (HP) spin-boson transformation. In this formalism, only the DM vector 
parallel to the magnetic �eld contributes to the noninteracting bosonic Hamiltonian6,16, but other components of 
the DM vector can be crucial when considering magnon-magnon interactions19. Here, we limit our study to non-
interacting magnon system as it captures all the topological aspects of the system6,16. We consider then an external 

magnetic field along the z (out-of-plane) direction, ˆ
→
=B Bz , and take the DM vector as 

→
=′ ˆD Dz . The 

Holstein-Primako� (HP) spin-boson transformation is given by = − ≈ =+ −† †
     S S a a S S a S, 2 ( )z , where 

 
†a a( ) are the bosonic creation (annihilation) operators, and = ±±

  S S iSx y denote the spin raising and lowering 
operators. Applying the transformation to Eq. (1) yields the bosonic (magnon) hopping Hamiltonian
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−
 D Jtan ( / )1  is the �ctitious magnetic �ux in each unit triangular plaquette of the kagomé lattice6, 

in analogy to the Haldane model1. The Fourier transform of the magnon Hamiltonian is given by 

 ψ ψ= ∑
→

→ → →† k( )k k k
, with ψ =→ → → →a a a( , , )

k k k k,1 ,2 ,3
T, where 

→
= − Λ

→
×k t k( ) I ( )z 3 3 ,

Λ
→
=













ϕ ϕ

ϕ ϕ

ϕ ϕ

−

−

−

k t

k e k e

k e k e

k e k e

( ) 2

0 cos cos

cos 0 cos

cos cos 0

,

(3)

i i

i i

i i

0

2 3

2 1

3 1

with =
→
⋅ →k k ai i , and → =a (1, 0)1 , → =a (1/2, 3 /2)2 , → = → − →a a a3 2 1 are the lattice vectors. Diagonalizing the 

Hamiltonian gives three magnon branches of the kagomé ferromagnet. In the following we set B = 0 as it simply 
shi�s the magnon bands to high energy. As shown in Fig. (1)c, without the DM interaction, i.e. D/J = 0 or ϕ = 0, 
the two lower dispersive bands form Dirac magnon cones at ±K (see Fig. (1)b), whereas the �at band has the 
highest energy and touches one of the dispersive bands quadratically at Γ. In Fig. (1)d, we include a small DM 
interaction D/J = 0.15 applicable to Cu(1–3, bdc)16. Now the �at band acquires a dispersion and all the bands are 
separated by a �nite energy gap with well-de�ned Chern numbers. �us, the system becomes a topological mag-
non insulator7,8,16,17.

Periodically driven topological magnon insulators. In this section, we introduce the notion of period-
ically driven intrinsic topological magnon insulators. Essentially, this concept will be based on the 
charge-neutrality of magnons in combination with their magnetic dipole moment µ µ→ = ẑ with µ µ= g

B
. Let us 

suppose that magnons in insulating quantum magnetic systems are exposed to an electromagnetic �eld with a 
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dominant time-dependent electric �eld vector τ
→
E ( ). �en the e�ects of the �eld on the system can be described 

by a vector potential defined as τ τ τ
→

= −∂
→

∂E A( ) ( )/ , where τ ωτ ωτ φ= +
→
A A A( ) [ sin( ), sin( ), 0]x y  with 

amplitudes Ax and Ay, frequency ω, and phase difference φ. The vector potential has time-periodicity: 

τ τ
→

+ =
→

A T A( ) ( ), with π ω=T 2 /  being the period. Here φ = π/2 corresponds to circularly-polarized light, 
whereas φ = (0, π) corresponds to linearly-polarized light.

Using the AC e�ect for charge-neutral particles72, we consider magnon quasiparticles with magnetic dipole µ 
moving in the background of a time-dependent electric �eld. In this scenario they will acquire a time-dependent 
AC phase (see Methods) given by

∫τ µ τ=
→
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→

→

→

′

′
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where  = =c 1 has been used, and →r  is the coordinate of the lattice at site . By virtue of the time-dependent 
Peierls substitution, the periodically driven magnon Hamiltonian is succinctly given by
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′

+
′′ ′


 


  †t e a a t n( ) ( H c)

(5)

i A
z0

[ ( )]

Therefore, the time-dependent momentum space Hamiltonian  τ
→
k( , ) corresponds to making the 

time-dependent Peierls substitution τ
→
→
→
+
→

k k A ( ) in Eq. (3). We note that previous studies based on the AC 
e�ect in insulating magnets considered a time-independent electric �eld gradient, which leads to magnonic 
Landau levels67–70. In stark contrast to those studies, the time-dependent version can lead to Floquet topological 
magnon insulators in insulating quantum magnets with inversion symmetry, e.g. the honeycomb lattice71 or the 
Lieb lattice (see Supplementary Information). We note that Floquet topological magnon insulators can also be 
generated by driving a gapped trivial magnon insulator with vanishing Chern number, in a similar manner to 

Figure 1. (a) Schematic of the kagomé lattice with three sublattices A, B, C as indicated by coloured dots, and 
the out-of-plane DM interaction is indicated by open circles. (b) �e �rst Brillouin zone of the kagomé lattice 
with two inequvilaent high symmetry points at ±K. �e red and green dots denote the photoinduced Dirac-
Weyl magnon nodes as will be discussed later. (c) Magnon bands of undriven insulating kagomé ferromagnets 
with D/J = 0, showing Dirac magnon nodes at ±K, formed by the two lower dispersive bands. (d) Topological 
magnon bands of undriven insulating kagomé ferromagnets with D/J = 0.15.
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Dirac magnons. A comprehensive study of this case is beyond the purview of this report. In the current study, 
however, the kagomé lattice quantum ferromagnets naturally lack inversion symmetry, and thus allows an intrin-
sic DM interaction as depicted in Fig. (1)a.

Now, we apply the magnonic Floquet-Bloch theory in Methods. For simplicity, we consider the magnonic 
Floquet Hamiltonian in the o�-resonant regime, when the driving frequency ω is larger than the magnon band-
width ∆ of the undriven system, i.e. ω  ∆. In this limit, the Floquet bands are decoupled, and it su�ces to con-

sider the zeroth order time-independent Floquet magnon Hamiltonian 
→
= − Λ
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where x( )n  is the Bessel function of order n. Evidently, a direct consequence of photo-irradiation is that the 
magnonic Floquet Hamiltonian (6) is equivalent to that of a distorted kagomé ferromagnet with unequal tunable 
interactions ≠ ≠t t tAB BC CA

0 0 0 . In the following, we shall discuss the topological aspects of this model. �e Berry 
curvature is one of the main important quantities in topological systems. It is the basis of many observables in 
topological insulators. To study the photoinduced topological phase transitions in driven topological magnon 
insulators, we de�ne the Berry curvature of a given magnon band α as
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→
∂v̂ k k( )/x y x y,

0
,  are the velocity operators, ψ

α
→
k ,

 are the magnon eigenvectors, and 
α

→
k ,

 are the mag-
non energy bands. �e associated Chern number is de�ned as the integration of the Berry curvature over the 
Brillouin zone (BZ),
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where α = 1, 2, 3 label the lower, middle, and upper magnon bands respectively.
In Fig. 2 we have shown the evolution of the magnon bands and the Berry curvatures for varying light inten-

sity. We can see that the lower and upper magnon bands and their corresponding Berry curvatures change with 
varying light intensity, whereas the middle magnon band remains unchanged. Consequently, the system changes 
from one topological magnon insulator with Chern numbers (−1, 0, 1) to another one with Chern numbers (1, 0, 
−1) as shown in the photoinduced topological phase diagram in Fig. 3(a). In other words, exposing a topological 
magnon insulator to a varying light intensity �eld redistribute the magnon band structures and subsequently 
leads to a topological phase transition from one topological magnon insulator to another with di�erent Berry 
curvatures and Chern numbers.

A crucial consequence of topological magnon insulators is the thermal Hall e�ect74,75. �eoretically, the ther-
mal Hall e�ect is understood as a consequence of the Berry curvatures induced by the DM interaction6,76,77. If we 
focus on the regime in which the Bose distribution function is close to equilibrium, the same theoretical concept 
of undriven thermal Hall e�ect can be applied to the photoinduced system. �e transverse component κxy of the 
thermal Hall conductivity is given explicitly as76,77

∫ ∑κ
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α α
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where  =
→
= −α α

→
αn n k e[ ( )] 1/[ 1]k k T( )/ B  is the Bose distribution function close to thermal equilibrium, kB is 

the Boltzmann constant, T is the temperature, and = + − − −+( )c x x x x( ) (1 ) ln (ln ) 2Li ( )x

x2
1 2

2
2 , with xLi ( )2  

being the dilogarithm. Indeed, the thermal Hall conductivity is the Berry curvature weighed by the c2 function. 
�erefore, any change in the Berry curvature will a�ect the thermal Hall conductivity. Evidently, as shown in 
Fig. 3(b), the two photoinduced phases in the intrinsic topological magnon insulator have di�erent signs of the 
anomalous thermal Hall conductivity due to the sign change in the Berry curvatures. �e elliptic ring in the top-
ological phase diagram in Fig. 3 is an artifact of the kagomé lattice, together with circularly polarized light. It does 
not exist with linearly polarized light, and it is also not present on the honeycomb lattice.
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Photoinduced topological magnon semimetal. The topological phase transitions in periodically 
driven intrinsic topological magnon insulators can also be extended to synthetic topological magnon semimetals 
with gapless magnon bands. As we mentioned above the photoinduced distorted interactions ≠ ≠t t tAB BC CA

0 0 0  
can be controlled by the amplitude and the polarization of the light intensity, therefore there is a possibility to 
obtain new interesting magnon phases in periodically driven intrinsic topological magnon insulators. Let us 
consider three di�erent limiting cases of the photoinduced distorted interactions.

(i): = ≠ ≠t t t0; 0AB BC CA
0 0 0 , which leads to the magnon bands  =→ t

k
z

0  and

= ± + + +→± t t k t k
1

2
( ) [1 cos(2 )] ( ) [1 cos(2 )]

(13)k
z

BC CA
0

2
1 0

2
3

Figure 2. Top panel. Topological magnon bands of periodically driven topological magnon insulator at 
D/J = 0.15. (a) Ax = Ay = 1.7 and φ = π/2. (b) Ax = Ay = 2.5 and φ = π/2. Bottom panel. Tunable Berry curvatures 
of periodically driven intrinsic topological magnon insulator on the kagomé lattice at ky = 0 and D/J = 0.15. (c) 
= = .A A 1 7x y  and φ = π/2. (d) = = .A A 2 5x y  and φ = π/2.

Figure 3. Topological phase diagram of periodically driven intrinsic topological magnon insulator on the 
kagomé lattice. (a) Chern number phase diagram for = .D J/ 0 15 and φ = π/2. (b) �ermal Hall conductivity 
phase diagram for = .D J/ 0 15, φ = π/2, and = .T 0 75.
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(ii): = ≠ ≠t t t0; 0BC AB CA
0 0 0 . �e magnon bands in this case are given by  =→ t
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z
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(iii): = ≠ ≠t t t0; 0CA BC CA
0 0 0 . In this case we have  =→ t
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0

2
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In each case there are three magnon bands featuring one �at magnon band and two dispersive magnon bands, 
similar to the undriven topological magnon insulator in Fig. (1)d. However, in the present case there is a possibil-
ity to obtain other interesting magnon phases different from the gapped topological magnon bands in the 
undriven system. For instance, cases (i)–(iii) realize pseudospin-1 Dirac-Weyl magnon cones or three-component 
bosons at π π= ±K ( /2, /2 3 )1 , π=K (0, / 3 )2 , and π π= ± ±K ( /2, /2 3 )3  respectively, as indicated by 
red and green dots in Fig. 1(b). �e pseudospin-1 Dirac-Weyl magnon cones occur at the energy of the �at band 
 = tzKi

 as shown in Fig. (4). Expanding the Floquet-Bloch magnon Hamiltonian in the vicinity of K1 yields

 λ λ+ → ±×≃ ∓q t v q v qK( ) I , (16)z x x x y y y
0

1 3 3

where =v tx
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Similar pseudospin-1 linear Hamiltonian can be obtained for the Dirac-Weyl magnon cones around K2 and K3.

Conclusion
We have presented a study of photoinduced topological phase transitions in periodically driven intrinsic top-
ological magnon insulators. �e main result of this report is that intrinsic topological magnon insulators in 
the kagomé ferromagnets can be driven to di�erent topological phases with di�erent Berry curvatures using 
photo-irradiation. �erefore, each topological phase is associated with a di�erent sign of the thermal Hall con-
ductivity, which results in a sign reversal of the magnon heat photocurrent. �ese topological transitions require 
no external magnetic �eld. Interestingly, we observed that by varying the light intensity, the periodically driven 
intrinsic topological magnon insulators can also realize synthetic gapless topological magnon semimetals with 
pseudospin-1 Dirac-Weyl magnon cones. We believe that our results should also apply to 3D topological magnon 
insulators. In fact, a 3D topological magnon insulator should also have a Dirac magnon cone on its 2D surface, 
which can be photo-irradiated to engineer a 2D topological magnon insulator in analogy to electronic systems44. 
Here, we have studied the o�-resonant regime, when the driving frequency ω is larger than the magnon band-
width ∆ of the undriven system. In this regime, the Floquet sidebands are decoupled and can be considered 
independently. By lowering the driving frequency below the magnon bandwidth, the Floquet sidebands overlap, 
which results in photon absorption. In this limit the system would have several overlapping topological phases 
depending on the polarization of the light. In general, we believe that the predicted results in this report are 

Figure 4. Photoinduced pseudospin-1 topological magnon semimetals in periodically driven intrinsic 
topological magnon insulator on the kagomé lattice. (i) = ≠ ≠t t t0; 0AB BC CA

0 0 0  with = .A 1 7x , = .A 1 5y  and 
φ = π/2. (ii) = ≠ ≠t t t0; 0BC AB CA

0 0 0  with Ax = 1.7, Ay = 2.5 and φ = 0. (iii) = ≠ ≠t t t0; 0CA BC CA
0 0 0  with 

Ax = 1.7, Ay = 1.5 and φ = π/2. Here we set D/J = 0.15.
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pertinent to experiments and will remarkably impact future research in topological magnon insulators and their 
potential practical applications to photo-magnonics30 and magnon spintronics31,32.

Methods
Neutral particle with magnetic dipole moment in an external electromagnetic field. Two-
dimensional topological magnon insulators (or Dirac magnons) can be captured by massive (or massless) 
(2 + 1)-dimensional Dirac equation near ±K. In general, a massive neutral particle with mass (m) couples 
non-minimally to an external electromagnetic �eld (denoted by the tensor Fµv) via its magnetic dipole moment 
(µ). In (3 + 1) dimensions, the system is described by the Dirac-Pauli Lagrangian78

ψ γ
µ
σ ψ=



 ∂ − −





µ
µ

µν
µνx i F m x( )

2
( ),

(18)


where  = =c 1 has been used. Here ≡ = →µx x x x( , )0 , †ψ ψ γ=x x( ) ( ) 0, and γ γ γ= →µ ( , )0  are the 4 × 4 Dirac 
matrices that obey the algebra

γ γ = = − − −µ ν µν µνg g{ , } 2 , where diag(1, 1, 1, 1), (19)

and

σ γ γ γ γ µ ν= = ≠ .µν µ ν µ νi
i

2
[ , ] , ( )

(20)

For the purpose of our study in this report, we consider an electromagnetic �eld with only spatially uniform 

and time-varying electric �eld vector τ
→
E ( ) (however, the resulting AC phase is valid for a general electric �eld 

τ
→ →E r( , )). In this case, the corresponding Hamiltonian is given by

∫ ψ α µβ τ β ψ= → ⋅ − ∇
→
−

→
+†d x x i i E m x( )[ ( ( )) ] ( ), (21)

3

where α γ γ→ = →0 , and β γ= 0.
In (2 + 1) dimensions, the Hamiltonian (21) corresponds to that of 2D topological magnon insulators (near 

±K) with magnetic dipole moment µ µ→ = ẑ , where µ = gµB. In this case, the Dirac matrices are simply Pauli 
matrices given by

β γ σ γ σ γ σ= = = = − .i i, , (22)z y x
0 1 2

�e corresponding momentum space Hamiltonian in (2 + 1) dimensions now takes the form

 ∫ π
ψ τ τ ψ τ=
→ → →†d k
k k k

(2 )
( , ) ( , ) ( , ),

(23)

2

2

where

 τ σ µ τ σ σ σ σ
→

= → ⋅
→
+
→

× + → = .ˆk k E z m( , ) [ ( ( ) )] , with ( , ) (24)z x y

We can clearly see the time-dependent AC phase from the Hamiltonian in Eq. 24. Since E A( ) ( )/τ τ τ
→

= −∂
→

∂ , 

we can replace τ
→

× ˆE z( )  with τ
→
A ( ) as in Eq. (4). We note that this replacement does not change our results, because 

we could also de�ne the time-periodic electric �eld τ
→
E ( ) such that τ ωτ ωτ φ

→
× = +ˆE z E E( ) [ sin( ), sin( ),0]x y , 

where Ex,y is now equivalent to Ax,y in Eq. (4).

Magnonic Floquet-Bloch theory. Periodically driven quantum systems are best described by the 
Floquet-Bloch theory. �e magnonic version describes the interaction of light with magnonic Bloch states in 
insulating magnets. In this section, we develop this theory for the time-dependent magnon Hamiltonian Eq. (5) 
in momentum space. We consider the time-dependent Schrödinger equation for the system

ℏ H
ψ τ

τ
τ ψ τ

|
→

〉
=

→
|
→

〉i
d k

d
k k

( , )
( , ) ( , ) ,

(25)

where |ψ τ
→
k( , ) is the driven wave function. Due to the periodicity of the vector potential τ

→
A ( ), the driven 

Hamiltonian  k( , )τ
→

 is also periodic and can be expanded in Fourier space as

∑τ τ
→

=
→

+ =
→ωτ

=−∞

∞
k k T e k( , ) ( , ) ( ),

(26)n

in
n  

where   †∫ τ τ
→
=

→
=

→ωτ−
−k e k d k( ) ( , ) ( )n T

T in
n

1

0
 is the Fourier component. �e ansatz for solution to the 

Schrödinger equation can be written as
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  ∑ψ τ ξ τ ξ|
→

〉 = |
→

〉 = |
→
〉α

τ

α

τ ωτ

α

−
→

−
→

=−∞

∞
α αk e k e e n k( , ) ( , ) , ( )

(27)

i k i k

n

in( ) ( )

where |ξ τ
→

α
k( , )〉 is the time-periodic Floquet-Bloch wave function of magnons and 

→
α k( ) are the magnon 

quasi-energies. The corresponding Floquet-Bloch eigenvalue equation is given by  τ ξ τ
→

|
→

〉=
α

k k( , ) ( , )F  

 ξ τ
→
|
→

〉α α
k k( ) ( , ) , where  τ τ

→
=

→
− ∂τk k i( , ) ( , )F  is the Floquet operator. �is leads to a time-independent 

Floquet eigenvalue equation

∑ ωδ ξ ξ
→
+

→
=

→ →
α α α

− k m k k k[ ( ) ] ( ) ( ) ( ),
(28)m

n m
n m

m n
,H ε

where  ∫ τ τ
→
=

→ωτ−k d e k( ) ( , )p

T

T ip p1

0
. �e associated Bessel function integral is given by

∫ τ φ= + ′ + ′ωτ ωτ ωτ φ
φ

φ− ′ +



′
+ ′






T
d e e e e z z zz

1
( 2 cos( ) ),

(29)

T
ip iz iz ip

z

z z
p

0

sin( ) sin( ) arctan
sin( )

cos( ) 2 2

where p is the Bessel function of order p. In Eq. (6) we consider the zeroth order approximation corresponding 
to p = 0.
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